化工进展 ›› 2022, Vol. 41 ›› Issue (7): 3648-3659.DOI: 10.16085/j.issn.1000-6613.2021-1652
郭制安1,2(), 隋智慧1,2(), 李亚萍1,2, 徐逸坤1,2, 孙芳1, 赵欣1
收稿日期:
2021-08-04
修回日期:
2021-10-19
出版日期:
2022-07-25
发布日期:
2022-07-23
通讯作者:
隋智慧
作者简介:
郭制安(1996—),男,硕士研究生,研究方向为聚丙烯酸酯改性及其性能。E-mail:基金资助:
GUO Zhi’an1,2(), SUI Zhihui1,2(), LI Yaping1,2, XU Yikun1,2, SUN Fang1, ZHAO Xin1
Received:
2021-08-04
Revised:
2021-10-19
Online:
2022-07-25
Published:
2022-07-23
Contact:
SUI Zhihui
摘要:
相变双向调温纺织材料是能源领域与纺织行业结合的产物,具有自动双向调温的优点。本文从制备技术的角度出发,分别介绍了相变纤维制备法和后整理法两大途径。围绕相变纤维制备法,详细阐述了微胶囊熔融纺丝法、微胶囊溶液纺丝法、静电纺丝法、PCMs复合纺丝法和纤维中空填充法的原理及应用。针对后整理法,详细介绍了填充法、涂层法、印花法、浸轧法和接枝法的原理及应用。分析了各种制备技术的优缺点,以期从制备技术上加深对相变双向调温纺织材料的认知和理解。制备技术的进步可提高相变双向调温纺织材料的综合性能,如何制备出满足服用要求、综合性能优异的相变双向调温纺织材料是其实现应用的关键。最后,对相变双向调温纺织材料未来的研究方向提出了建议和展望,以期为相变双向调温纺织材料制备技术的研究提供参考和借鉴。
中图分类号:
郭制安, 隋智慧, 李亚萍, 徐逸坤, 孙芳, 赵欣. 相变双向调温纺织材料制备技术研究进展[J]. 化工进展, 2022, 41(7): 3648-3659.
GUO Zhi’an, SUI Zhihui, LI Yaping, XU Yikun, SUN Fang, ZHAO Xin. Research progress on preparation technology of phase-change bidirectional temperature-regulating textile materials[J]. Chemical Industry and Engineering Progress, 2022, 41(7): 3648-3659.
1 | TYURIN I N, GETMANTSEVA V V, ANDREEVA E G. Analysis of innovative technologies of thermoregulating textile materials[J]. Fibre Chemistry, 2018, 50(1): 1-9. |
2 | IQBAL K, KHAN A, SUN D M, et al. Phase change materials, their synthesis and application in textiles—A review[J]. The Journal of the Textile Institute, 2019, 110(4): 625-638. |
3 | 申天伟, 陆少锋, 张晶, 等. 低黄变聚脲微胶囊相变材料的制备及性能表征[J]. 化工进展, 2017, 36(12): 4547-4553. |
SHEN Tianwei, LU Shaofeng, ZHANG Jing, et al. Preparation and performance characterization of low-yellowing polyurea microcapsule phase change materials[J]. Chemical Industry and Engineering Progress, 2017, 36(12): 4547-4553. | |
4 | ALVA G, LIN Y X, LIU L K, et al. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: a review[J]. Energy and Buildings, 2017, 144: 276-294. |
5 | ZHAO C Y, ZHANG G H. Review on microencapsulated phase change materials (MEPCMs): fabrication, characterization and applications[J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 3813-3832. |
6 | JAMEKHORSHID A, SADRAMELI S M, FARID M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium[J]. Renewable and Sustainable Energy Reviews, 2014, 31: 531-542. |
7 | 王鑫, 方建华, 吴江, 等.改性SiO2杂化层相变微胶囊的制备与表征[J].化工进展, 2020, 39(4): 1431-1438. |
WANG Xin, FANG Jianhua, WU Jiang, et al. Preparation and characterization of SiO2 hybrid phase change microcapsules[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1431-1438. | |
8 | ZHOU Y C, WU S Q, MA Y, et al. Recent advances in organic/composite phase change materials for energy storage[J]. ES Energy & Environment, 2020, 9: 28-40. |
9 | PRAJAPATI D G, KANDASUBRAMANIAN B. A review on polymeric-based phase change material for thermo-regulating fabric application[J]. Polymer Reviews, 2020, 60(3): 389-419. |
10 | BRYANT Y G, COLVIN D P. Fiber with reversible enhanced thermal storage properties and fabrics made therefrom: US4756958[P]. 1988-07-12. |
11 | IQBAL K, SUN D M. Development of thermo-regulating polypropylene fibre containing microencapsulated phase change materials[J]. Renewable Energy, 2014, 71: 473-479. |
12 | IQBAL K, SUN D M. Development of thermal stable multifilament yarn containing micro-encapsulated phase change materials[J]. Fibers and Polymers, 2015, 16(5): 1156-1162. |
13 | LI W, MA Y J, TANG X F, et al. Composition and characterization of thermoregulated fiber containing acrylic-based copolymer microencapsulated phase-change materials (MicroPCMs)[J]. Industrial & Engineering Chemistry Research, 2014, 53(13): 5413-5420. |
14 | HARTMANN M H, WORLEY J B. Cellulosic fibers having enhanced reversible thermal properties and methods of forming thereof: US7244497[P]. 2007-07-17. |
15 | ZHANG X X, WANG X C, TAO X M, et al. Structures and properties of wet spun thermo-regulated polyacrylonitrile-vinylidene chloride fibers[J]. Textile Research Journal, 2006, 76(5): 351-359. |
16 | AHN Y H, DEWITT S J A, MCGUIRE S, et al. Incorporation of phase change materials into fibers for sustainable thermal energy storage[J]. Industrial & Engineering Chemistry Research, 2021, 60(8): 3374-3384. |
17 | LI J J, WANG B, YE G D, et al. Study of synthesizing energy storage microcapsules in PVA spinning solution and thermal regulating fibers prepared by this solution[J]. Fibers and Polymers, 2013, 14(4): 537-541. |
18 | SARIER N, ONDER E. Organic phase change materials and their textile applications: an overview[J]. Thermochimica Acta, 2012, 540: 7-60. |
19 | WU Y, CHEN C Z, JIA Y F, et al. Review on electrospun ultrafine phase change fibers (PCFs) for thermal energy storage[J]. Applied Energy, 2018, 210: 167-181. |
20 | MCCANN J T, MARQUEZ M, XIA Y N. Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers[J]. Nano Letters, 2006, 6(12): 2868-2872. |
21 | LING Z Y, CHEN J J, XU T, et al. Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model[J]. Energy Conversion and Management, 2015, 102: 202-208. |
22 | NOMURA T, TABUCHI K, ZHU C Y, et al. High thermal conductivity phase change composite with percolating carbon fiber network[J]. Applied Energy, 2015, 154: 678-685. |
23 | MEHRALI M, LATIBARI S T, MEHRALI M, et al. Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material[J]. Applied Thermal Engineering, 2013, 61(2): 633-640. |
24 | XIAO X, ZHANG P, LI M. Effective thermal conductivity of open-cell metal foams impregnated with pure paraffin for latent heat storage[J]. International Journal of Thermal Sciences, 2014, 81: 94-105. |
25 | NOURANI M, HAMDAMI N, KERAMAT J, et al. Thermal behavior of paraffin-nano-Al2O3 stabilized by sodium stearoyl lactylate as a stable phase change material with high thermal conductivity[J]. Renewable Energy, 2016, 88: 474-482. |
26 | BABAPOOR A, KARIMI G, KHORRAM M. Fabrication and characterization of nanofiber-nanoparticle-composites with phase change materials by electrospinning[J]. Applied Thermal Engineering, 2016, 99: 1225-1235. |
27 | GOLESTANEH S I, KARIMI G, BABAPOOR A, et al. Thermal performance of co-electrospun fatty acid nanofiber composites in the presence of nanoparticles[J]. Applied Energy, 2018, 212: 552-564. |
28 | LU Y, XIAO X D, FU J, et al. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospinning[J]. Chemical Engineering Journal, 2019, 355: 532-539. |
29 | XIANG H X, ZHOU J L, ZHANG Y K, et al. Polyethylene glycol infused acid-etched halloysite nanotubes for melt-spun polyamide-based composite phase change fibers[J]. Applied Clay Science, 2019, 182: 105249. |
30 | ZHANG X W, LU Y. Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost[J]. Polymer Reviews, 2014, 54(4): 677-701. |
31 | ZHANG X G, QIAO J X, ZHAO H, et al. Preparation and performance of novel polyvinylpyrrolidone/polyethylene glycol phase change materials composite fibers by centrifugal spinning[J]. Chemical Physics Letters, 2018, 691: 314-318. |
32 | CHEN G, SHI T T, ZHANG X G, et al. Polyacrylonitrile/polyethylene glycol phase-change material fibres prepared with hybrid polymer blends and nano-SiC fillers via centrifugal spinning[J]. Polymer, 2020, 186: 122012. |
33 | HANSEN R H. Temperature adaptable fabrics: US3607591[P]. 1971-09-21. |
34 | VIGO T L, FROST C E. Temperature-sensitive hollow fibers containing phase change salts[J]. Textile Research Journal, 1982, 52(10): 633-637. |
35 | SONG S K, ZHAO T T, ZHU W T, et al. Natural microtubule-encapsulated phase-change material with simultaneously high latent heat capacity and enhanced thermal conductivity[J]. ACS Applied Materials & Interfaces, 2019, 11(23): 20828-20837. |
36 | DONG T, JIANG W, LIU Y, et al. A phase change material embedded composite consisting of kapok and hollow PET fibers for dynamic thermal comfort regulation[J]. Industrial Crops and Products, 2020, 158: 112945. |
37 | KAMON E, KENNEY W L, DENO N S, et al. Readdressing personal cooling with ice[J]. American Industrial Hygiene Association Journal, 1986, 47(5): 293-298. |
38 | COLEMAN S R. Heat storage capacity of gelled coolants in ice vests[J]. American Industrial Hygiene Association Journal, 1989, 50(6): 325-329. |
39 | KENNY G P, SCHISSLER A R, STAPLETON J, et al. Ice cooling vest on tolerance for exercise under uncompensable heat stress[J]. Journal of Occupational and Environmental Hygiene, 2011, 8(8): 484-491. |
40 | GAO C S, KUKLANE K, HOLMÉR I. Cooling vests with phase change materials: the effects of melting temperature on heat strain alleviation in an extremely hot environment[J]. European Journal of Applied Physiology, 2011, 111(6): 1207-1216. |
41 | REINERTSEN R E, FÆREVIK H, HOLBØ K, et al. Optimizing the performance of phase-change materials in personal protective clothing systems[J]. International Journal of Occupational Safety and Ergonomics, 2008, 14(1): 43-53. |
42 | BENDKOWSKA W, KŁONOWSKA M, KOPIAS K, et al. Thermal manikin evaluation of PCM cooling vests[J]. Fibres & Textiles in Eastern Europe, 2010, 1 (78): 70-74. |
43 | ZHAO M M, GAO C S, WANG F M, et al. The torso cooling of vests incorporated with phase change materials: a sweat evaporation perspective[J]. Textile Research Journal, 2013, 83(4): 418-425. |
44 | HOUSHYAR S, PADHYE R, TROYNIKOV O, et al. Evaluation and improvement of thermo-physiological comfort properties of firefighters’ protective clothing containing super absorbent materials[J]. The Journal of the Textile Institute, 2015, 106(12): 1394-1402. |
45 | ITANI M, GHADDAR N, GHALI K. Innovative PCM-desiccant packet to provide dry microclimate and improve performance of cooling vest in hot environment[J]. Energy Conversion and Management, 2017, 140: 218-227. |
46 | ZHAO Y J, YI W, CHAN A P, et al. Evaluating the physiological and perceptual responses of wearing a newly designed cooling vest for construction workers[J]. Annals of Work Exposures and Health, 2017, 61(7): 883-901. |
47 | KOO K, PARK Y, CHOE J, et al. The application of microencapsulated phase-change materials to nylon fabric using direct dual coating method[J]. Journal of Applied Polymer Science, 2008, 108(4): 2337-2344. |
48 | SHIN Y, YOO D I, SON K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). Ⅱ. Preparation and application of PCM microcapsules[J]. Journal of Applied Polymer Science, 2005, 96(6): 2005-2010. |
49 | KIM J, CHO G. Thermal storage/release, durability, and temperature sensing properties of thermostatic fabrics treated with octadecane-containing microcapsules[J]. Textile Research Journal, 2002, 72(12): 1093-1098. |
50 | SUN Y L, WANG R, LIU X, et al. Design of a novel multilayer low-temperature protection composite based on phase change microcapsules[J]. Journal of Applied Polymer Science, 2019, 136(20): 47534. |
51 | EL-KASHOUTI M, ELHADAD S, ABDEL-ZAHER K. Printing technology on textile fibers: review[J]. Journal of Textiles, Coloration and Polymer Science, 2019, 16(2): 129-138. |
52 | 周岚, 刘国金, 张国庆, 等. 一种蓄热调温喷印液及数码喷印制备蓄热调温纺织品的方法: CN110004729A[P]. 2019-07-12. |
ZHOU Lan, LIU Guojin, ZHANG Guoqing, et al. A method for preparing temperature-regulating printing fluid and temperature-regulating textiles by digital printing: CN110004729A[P]. 2019-07-12. | |
53 | CHOI K, CHO G, KIM P, et al. Thermal storage/release and mechanical properties of phase change materials on polyester fabrics[J]. Textile Research Journal, 2004, 74(4): 292-296. |
54 | NEJMAN A, CIEŚLAK M, GAJDZICKI B, et al. Methods of PCM microcapsules application and the thermal properties of modified knitted fabric[J]. Thermochimica Acta, 2014, 589: 158-163. |
55 | CHOI K, CHO G. Development of phase change materials treated thermostatic fabric by screen printing method[J]. Research Journal of Textile and Apparel, 2006, 10(2): 19-24. |
56 | SHIN Y, SON K, YOO D I. Development of natural dyed textiles with thermo-regulating properties[J]. Thermochimica Acta, 2010, 511(1/2): 1-7. |
57 | DEMIRBAĞ S, AKSOY S A. Encapsulation of phase change materials by complex coacervation to improve thermal performances and flame retardant properties of the cotton fabrics[J]. Fibers and Polymers, 2016, 17(3): 408-417. |
58 | SHIN Y, YOO D I, SON K. Development of thermoregulating textile materials with microencapsulated phase change materials (PCM). Ⅳ. Performance properties and hand of fabrics treated with PCM microcapsules[J]. Journal of Applied Polymer Science, 2005, 97(3): 910-915. |
59 | KARTHIKEYAN M, RAMACHANDRAN T, SUNDARAM O S. Nanoencapsulated phase change materials based on polyethylene glycol for creating thermoregulating cotton[J]. Journal of Industrial Textiles, 2014, 44(1): 130-146. |
60 | SALAÜN F, DEVAUX E, BOURBIGOT S, et al. Thermoregulating response of cotton fabric containing microencapsulated phase change materials[J]. Thermochimica Acta, 2010, 506(1/2): 82-93. |
61 | SHAHID A, MIAH S, RAHIM A. Thermal and breathability management of microencapsulated phase change material (MPCM) incorporated jute fabric[J]. Journal of Engineered Fibers and Fabrics, 2021, 16: 155892502110295. |
62 | SHI H F, LI J H, JIN Y M, et al. Preparation and properties of poly(vinyl alcohol)-g-octadecanol copolymers based solid-solid phase change materials[J]. Materials Chemistry and Physics, 2011, 131(1/2): 108-112. |
63 | KUMAR A, KULKARNI P S, SAMUI A B. Polyethylene glycol grafted cotton as phase change polymer[J]. Cellulose, 2014, 21(1): 685-696. |
64 | BENMOUSSA D, MOLNAR K, HANNACHE H, et al. Novel thermo-regulating comfort textile based on poly(allyl ethylene diamine)/n-hexadecane microcapsules grafted onto cotton fabric[J]. Advances in Polymer Technology, 2018, 37(2): 419-428. |
65 | XIONG R, GRANT A M, MA R L, et al. Naturally-derived biopolymer nanocomposites: interfacial design, properties and emerging applications[J]. Materials Science and Engineering R: Reports, 2018, 125: 1-41. |
66 | QIAN Y Q, HAN N, ZHANG Z X, et al. Enhanced thermal-to-flexible phase change materials based on cellulose/modified graphene composites for thermal management of solar energy[J]. ACS Applied Materials & Interfaces, 2019, 11(49): 45832-45843. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 时雨, 赵运超, 樊智轩, 蒋达华. 夏热冬冷地区相变屋面最佳相变温度的实验研究[J]. 化工进展, 2023, 42(9): 4828-4836. |
[5] | 汤磊, 曾德森, 凌子夜, 张正国, 方晓明. 相变蓄冷材料及系统应用研究进展[J]. 化工进展, 2023, 42(8): 4322-4339. |
[6] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[7] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[8] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[9] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[10] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[11] | 张晨宇, 王宁, 徐洪涛, 罗祝清. 纳米颗粒强化传热的多级潜热储热器性能评价[J]. 化工进展, 2023, 42(5): 2332-2342. |
[12] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[13] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[14] | 徐玉珍, 蒋达华, 刘景滔, 陈璞. 粉煤灰基相变储能材料的制备及性能[J]. 化工进展, 2023, 42(5): 2595-2605. |
[15] | 孙闫晨昊, 王维, 李一喆, 祝妍妮, 刘学武, 张大为. 橘皮油微胶囊制备及其产品质量评价[J]. 化工进展, 2023, 42(5): 2626-2637. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |