1 |
武恒平, 韦朝海, 任源, 等. 焦化废水预处理及其特征污染物的变化分析[J]. 化工进展, 2017, 36(10): 3911-3920.
|
|
WU Hengping, WEI Chaohai, REN Yuan, et al. Analysis of typical pollutants and its removal characteristics in the pretreatment of coking wastewater[J]. Chemical Industry and Engineering Progress, 2017, 36(10): 3911-3920.
|
2 |
胡记杰, 肖俊霞, 任源, 等. 焦化废水原水中有机污染物的活性炭吸附过程解析[J]. 环境科学, 2008, 29(6): 1567-1571.
|
|
HU Jijie, XIAO Junxia, REN Yuan, et al. Adsorption process of organic contaminant in untreated coking wastewater by powdered activated carbon[J]. Environmental Science, 2008, 29(6): 1567-1571.
|
3 |
MOHAMMED M, MEKALA L P, CHINTALAPATI S, et al. New insights into aniline toxicity: aniline exposure triggers envelope stress and extracellular polymeric substance formation in Rubrivivax benzoatilyticus JA2[J]. Journal of Hazardous Materials, 2020, 385: 121571.
|
4 |
O’SHEA K E, DIONYSIOU D D. Advanced oxidation processes for water treatment[J]. The Journal of Physical Chemistry Letters, 2012, 3(15): 2112-2113.
|
5 |
张轩, 宋小三, 赵珀, 等. 高级氧化技术处理1,4-二 烷污染研究进展[J]. 化工进展, 2021, 40(S2): 380-388.
|
|
ZHANG Xuan, SONG Xiaosan, ZHAO Po, et al. A critical review of advanced oxidation technology to treat 1,4-dioxane pollution[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 380-388.
|
6 |
YANG Shiying, LI Lei, XIAO Tuo, et al. Promoting effect of ammonia modification on activated carbon catalyzed peroxymonosulfate oxidation[J]. Separation and Purification Technology, 2016, 160: 81-88.
|
7 |
田婷婷, 李朝阳, 王召东, 等. 过渡金属活化过硫酸盐降解有机废水技术研究进展[J]. 化工进展, 2021, 40(6): 3480-3488.
|
|
TIAN Tingting, LI Chaoyang, WANG Shaodong, et al. Research progress of transition metal activated persulfate to degrade organic wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3480-3488.
|
8 |
孙金龙, 张宇, 刘福跃, 等. 基于碳基催化剂活化过二硫酸盐降解有机污染物的研究进展[J]. 化工进展, 2021, 40(3): 1653-1666.
|
|
SUN Jinlong, ZHANG Yu, LIU Fuyue, et al. Research progress in degradation of organic pollutants by activation of persulfates with carbon-based catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(3): 1653-1666.
|
9 |
OLMEZ-HANCI T, ARSLAN-ALATON I. Comparison of sulfate and hydroxyl radical based advanced oxidation of phenol[J]. Chemical Engineering Journal, 2013, 224: 10-16.
|
10 |
MATTA R, TLILI S, CHIRON S, et al. Removal of carbamazepine from urban wastewater by sulfate radical oxidation[J]. Environmental Chemistry Letters, 2011, 9(3): 347-353.
|
11 |
WANG Jianlong, WANG Shizong. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants[J]. Chemical Engineering Journal, 2018, 334: 1502-1517.
|
12 |
LIU H Z, BRUTON T A, LI W, et al. Oxidation of benzene by persulfate in the presence of Fe(Ⅲ)- and Mn(Ⅳ)-containing oxides: stoichiometric efficiency and transformation products[J]. Environmental Science & Technology, 2016, 50(2): 890-898.
|
13 |
CHEN Hao, CARROLL K C. Metal-free catalysis of persulfate activation and organic-pollutant degradation by nitrogen-doped graphene and aminated graphene[J]. Environmental Pollution, 2016, 215: 96-102.
|
14 |
CHEN Xiao, OH W D, LIM T T. Graphene- and CNTs-based carbocatalysts in persulfates activation: material design and catalytic mechanisms[J]. Chemical Engineering Journal, 2018, 354: 941-976.
|
15 |
JIANG Lili, ZHANG Ying, ZHOU Minghua, et al. Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism[J]. Journal of Hazardous Materials, 2018, 358: 53-61.
|
16 |
XIAO Pengfei, AN Lu, WU Dedong. The use of carbon materials in persulfate-based advanced oxidation processes: a review[J]. New Carbon Materials, 2020, 35(6): 667-683.
|
17 |
姜记威, 张诗轩, 曾文炉, 等. 生物炭基材料在抗生素废水处理中的研究进展[J]. 化工进展, 2021, 40(S2): 389-401.
|
|
JIANG Jiwei, ZHANG Shixuan, ZENG Wenlu, et al. Research progress on biochar-based materials for the treatment of antibiotic wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 389-401.
|
18 |
JIA Hanzhong, ZHAO Song, ZHU Kecheng, et al. Activate persulfate for catalytic degradation of adsorbed anthracene on coking residues: role of persistent free radicals[J]. Chemical Engineering Journal, 2018, 351: 631-640.
|
19 |
冯建祥, 陈攀攀, 石朝益, 等. Ni/焦粉催化CO2重整焦炉煤气的研究[J]. 天然气化工(C1化学与化工), 2017, 42(1): 52-57.
|
|
FENG Jianxiang, CHEN Panpan, SHI Zhaoyi, et al. CO2-COG reforming over Ni/coke powder catalyst[J]. Natural Gas Chemical Industry, 2017, 42(1): 52-57.
|
20 |
GAO Qieyuan, WANG Lei, LI Zhipeng, et al. Adsorptive removal of pyridine in simulation wastewater using coke powder[J]. Processes, 2019, 7(7): 459.
|
21 |
唐正, 赵松, 钱雅洁, 等. 生物炭持久性自由基形成机制及环境应用研究进展[J]. 化工进展, 2020, 39(4): 1521-1527.
|
|
TANG Zheng, ZHAO Song, QIAN Yajie, et al. Formation mechanisms and environmental applications of persistent free radicals in biochar: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1521-1527.
|
22 |
GHAUCH A, TUQAN A M, KIBBI N. Ibuprofen removal by heated persulfate in aqueous solution: a kinetics study[J]. Chemical Engineering Journal, 2012, 197: 483-492.
|
23 |
GUO Shengpeng, WANG Qing, LUO Chengjie, et al. Hydroxyl radical-based and sulfate radical-based photocatalytic advanced oxidation processes for treatment of refractory organic matter in semi-aerobic aged refuse biofilter effluent arising from treating landfill leachate[J]. Chemosphere, 2020, 243: 125390.
|
24 |
XIA Jinsong, ZHANG Na, CHONG Shaokun, et al. Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor[J]. Green Chemistry, 2018, 20(3): 694-700.
|
25 |
EUGENE A J, GUZMAN M I. Production of singlet oxygen (1O2) during the photochemistry of aqueous pyruvic acid: the effects of pH and photon flux under steady-state O2 (aq) concentration[J]. Environmental Science & Technology, 2019, 53(21): 12425-12432.
|
26 |
OEBBEKE M, SIEFKER C, WAGNER B, et al. Fragment binding to kinase hinge:if charge distribution and local pKa shifts mislead popular bioisosterism concepts[J]. Angewandte Chemie International Edition, 2021, 60(1): 252-258.
|
27 |
SANTOS A, FERNANDEZ J, RODRIGUEZ S, et al. Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate[J]. Science of the Total Environment, 2018, 615: 1070-1077.
|
28 |
XU Tianyuan, LIU Yun, GE Fei, et al. Application of response surface methodology for optimization of azocarmine B removal by heterogeneous photo-Fenton process using hydroxy-iron-aluminum pillared bentonite[J]. Applied Surface Science, 2013, 280: 926-932.
|
29 |
YAN Zhiming, GU Yong, WANG Xing, et al. Degradation of aniline by ferrous ions activated persulfate: impacts, mechanisms, and by-products[J]. Chemosphere, 2021, 268: 129237.
|
30 |
ZHAO Yan, ZHAO Yongsheng, LI Qin, et al. Effect of common inorganic ions on aniline degradation in groundwater by activated persulfate with ferrous iron[J]. Water Supply, 2016, 16(3): 667-674.
|
31 |
WANG Jun, LI Bin, LI Yang, et al. Easily regenerated CuO/γ-Al2O3 for persulfate-based catalytic oxidation: insights into the deactivation and regeneration mechanism[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 2630-2641.
|
32 |
DING Su, WAN Jinquan, WANG Yan, et al. Activation of persulfate by molecularly imprinted Fe-MOF-74@SiO2 for the targeted degradation of dimethyl phthalate: effects of operating parameters and chlorine[J]. Chemical Engineering Journal, 2021, 422: 130406.
|
33 |
ZHAO Y S, SUN C, SUN J Q, et al. Kinetic modeling and efficiency of sulfate radical-based oxidation to remove p-nitroaniline from wastewater by persulfate/Fe3O4 nanoparticles process[J]. Separation and Purification Technology, 2015, 142: 182-188.
|
34 |
CHEN Xiaojing, GUO Yanxia, CUI Jinglei, et al. Activated carbon preparation with the addition of coke-making by-product—coke powder: texture evolution and mechanism[J]. Journal of Cleaner Production, 2019, 237: 117812.
|
35 |
肖鹏飞, 安璐, 韩爽. 炭质材料在活化过硫酸盐高级氧化技术中的应用进展[J]. 化工进展, 2020, 39(8): 3293-3306.
|
|
XIAO Pengfei, AN Lu, HAN Shuang. Research advances on applying carbon materials to activate persulfate in advanced oxidation technology[J]. Chemical Industry and Engineering Progress, 2020, 39(8): 3293-3306.
|
36 |
REN Wei, XIONG Liangliang, YUAN Xuehong, et al. Activation of peroxydisulfate on carbon nanotubes: electron-transfer mechanism[J]. Environmental Science & Technology, 2019, 53(24): 14595-14603.
|
37 |
TANG Lin, LIU Yani, WANG Jiajia, et al. Enhanced activation process of persulfate by mesoporous carbon for degradation of aqueous organic pollutants: electron transfer mechanism[J]. Applied Catalysis B: Environmental, 2018, 231: 1-10.
|