化工进展 ›› 2022, Vol. 41 ›› Issue (6): 2993-3001.DOI: 10.16085/j.issn.1000-6613.2021-1467
吕杰琼(), 谢晖, 高永平, 连丽丽, 王希越, 张浩, 高文秀(), 娄大伟()
收稿日期:
2021-07-12
修回日期:
2021-10-06
出版日期:
2022-06-10
发布日期:
2022-06-21
通讯作者:
高文秀,娄大伟
作者简介:
吕杰琼(1997—),女,硕士研究生,研究方向为催化化学。E-mail:基金资助:
LYU Jieqiong(), XIE Hui, GAO Yongping, LIAN Lili, WANG Xiyue, ZHANG Hao, GAO Wenxiu(), LOU Dawei()
Received:
2021-07-12
Revised:
2021-10-06
Online:
2022-06-10
Published:
2022-06-21
Contact:
GAO Wenxiu,LOU Dawei
摘要:
以三聚氰胺和三聚氯氰为前体,采用溶剂热法制备富氮类共价有机骨架材料 COF-MC[含氮量为55%(质量分数)]。利用傅里叶变换红外光谱(FTIR)、X射线衍射(XRD)、N2吸附-脱附、扫描电子显微镜(SEM)、热重(TGA)和X射线光电子能谱(XPS)测试手段对COF-MC进行表征。通过对COF-MC在苯甲醛和丙二腈Knoevenagel缩合反应中催化性能的评价,考察反应条件与催化性能的关系,并对 Knoevenagel缩合反应的碱性催化机理进行了初步的探讨。实验结果表明,COF-MC作为催化剂在氮气环境中,无需借助其他溶剂,80℃回流搅拌2h后,苯甲醛转化率为98%,苄烯丙二腈选择性在99.9%以上。反应后的催化剂可以通过简单的热过滤分离,重复使用4次后苯甲醛转化率仍可达89%,且催化剂中无金属离子的参与,避免了金属对环境的污染。
中图分类号:
吕杰琼, 谢晖, 高永平, 连丽丽, 王希越, 张浩, 高文秀, 娄大伟. 富氮类共价有机骨架材料COF-MC催化Knoevenagel缩合反应的应用[J]. 化工进展, 2022, 41(6): 2993-3001.
LYU Jieqiong, XIE Hui, GAO Yongping, LIAN Lili, WANG Xiyue, ZHANG Hao, GAO Wenxiu, LOU Dawei. Application of nitrogen-rich covalent organic framework material COF-MC catalyzing Knoevenagel condensation reaction[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 2993-3001.
元素质量分数/% | 不同种类氮质量分数/% | |||||||
---|---|---|---|---|---|---|---|---|
C | O | S | N | —N | —NH— | —NH2 | π-π* 卫星峰 | |
35.96 | 3.71 | 5.10 | 55.23 | 48.23 | 39.24 | 6.72 | 5.81 |
表1 COF-MC中元素及不同种类氮质量分数
元素质量分数/% | 不同种类氮质量分数/% | |||||||
---|---|---|---|---|---|---|---|---|
C | O | S | N | —N | —NH— | —NH2 | π-π* 卫星峰 | |
35.96 | 3.71 | 5.10 | 55.23 | 48.23 | 39.24 | 6.72 | 5.81 |
序号 | 催化剂 | n(苯甲醛)∶n(丙二腈) | 转化率 /% | 选择性 /% | TOF×10-3 /mol·g-1·h-1 |
---|---|---|---|---|---|
1 | 无 | 1∶1 | 7 | >99.9 | |
2 | COF-MC | 1∶1 | 92 | >99.9 | 92 |
3 | COF-MC | 1∶1.5 | 100 | >99.9 | 100 |
表2 催化剂及底物比对Knoevenagel缩合反应的影响
序号 | 催化剂 | n(苯甲醛)∶n(丙二腈) | 转化率 /% | 选择性 /% | TOF×10-3 /mol·g-1·h-1 |
---|---|---|---|---|---|
1 | 无 | 1∶1 | 7 | >99.9 | |
2 | COF-MC | 1∶1 | 92 | >99.9 | 92 |
3 | COF-MC | 1∶1.5 | 100 | >99.9 | 100 |
序号 | 催化剂用量/mg | 转化率/% | 选择性/% | TOF |
---|---|---|---|---|
1 | 50 | 100 | >99.9 | 100 |
2 | 40 | 100 | >99.9 | 125 |
3 | 30 | 99 | >99.9 | 163 |
4 | 20 | 98 | >99.9 | 242 |
5 | 10 | 80 | >99.9 | 402 |
表3 催化剂用量对Knoevenagel 缩合反应的影响
序号 | 催化剂用量/mg | 转化率/% | 选择性/% | TOF |
---|---|---|---|---|
1 | 50 | 100 | >99.9 | 100 |
2 | 40 | 100 | >99.9 | 125 |
3 | 30 | 99 | >99.9 | 163 |
4 | 20 | 98 | >99.9 | 242 |
5 | 10 | 80 | >99.9 | 402 |
序号 | 温度/℃ | 时间/h | 转化率/% | 选择性/% | TOF×10-3/mol·g-1·h-1 |
---|---|---|---|---|---|
1 | 60 | 2 | 79 | >99.9 | 196 |
2 | 70 | 2 | 95 | >99.9 | 238 |
3 | 80 | 2 | 98 | >99.9 | 244 |
4 | 90 | 2 | 99 | >99.9 | 248 |
5 | 80 | 0.5 | 61 | >99.9 | 610 |
6 | 80 | 1 | 75 | >99.9 | 375 |
7 | 80 | 1.5 | 94 | >99.9 | 313 |
8 | 80 | 2.5 | 98 | >99.9 | 196 |
表4 反应温度及时间对苯甲醛与丙二腈Knoevenagel缩合反应的影响
序号 | 温度/℃ | 时间/h | 转化率/% | 选择性/% | TOF×10-3/mol·g-1·h-1 |
---|---|---|---|---|---|
1 | 60 | 2 | 79 | >99.9 | 196 |
2 | 70 | 2 | 95 | >99.9 | 238 |
3 | 80 | 2 | 98 | >99.9 | 244 |
4 | 90 | 2 | 99 | >99.9 | 248 |
5 | 80 | 0.5 | 61 | >99.9 | 610 |
6 | 80 | 1 | 75 | >99.9 | 375 |
7 | 80 | 1.5 | 94 | >99.9 | 313 |
8 | 80 | 2.5 | 98 | >99.9 | 196 |
序号 | 催化剂 | 溶剂 | 温度/℃ | 时间/h | 产率/% | TOF×10-3/mol·g-1·h-1 | 参考文献 |
---|---|---|---|---|---|---|---|
1 | COF-MC | 无 | 80 | 2 | 98 | 244 | 本文 |
2 | COF-HNU14 | 无 | 25 | 5 | 99 | 50 | [ |
3 | A2B2-Pro-COF | 甲苯/H2O | 60 | 3 | 81 | 27 | [ |
4 | COF-366-R | 甲苯 | 60 | 6 | 81 | 25 | [ |
5 | GO/COF | 无 | 室温 | 1/6 | 98 | 392 | [ |
6 | Co-MOF/COF | 无 | 25 | 1/6 | 93 | 372 | [ |
7 | Zn-MOF/COF | 无 | 25 | 1/6 | 99 | 396 | [ |
8 | NC-700 | H2O/乙醇 | 40 | 1 | > 99 | 50 | [ |
9 | 壳聚糖 | 乙醇 | 40 | 6 | > 99 | 7 | [ |
10 | N-GO-1.00 | CH3CN | 40 | 4 | 96.5 | 24 | [ |
11 | Cyt@SBA-15 | 乙醇 | 室温 | 1 | 99 | 99 | [ |
12 | UiO-66-NH-RNH2 | 甲苯 | 室温 | 2 | 97 | 46 | [ |
表5 与已报道的苯甲醛和丙二腈 Knoevenagel 缩合反应催化剂比较
序号 | 催化剂 | 溶剂 | 温度/℃ | 时间/h | 产率/% | TOF×10-3/mol·g-1·h-1 | 参考文献 |
---|---|---|---|---|---|---|---|
1 | COF-MC | 无 | 80 | 2 | 98 | 244 | 本文 |
2 | COF-HNU14 | 无 | 25 | 5 | 99 | 50 | [ |
3 | A2B2-Pro-COF | 甲苯/H2O | 60 | 3 | 81 | 27 | [ |
4 | COF-366-R | 甲苯 | 60 | 6 | 81 | 25 | [ |
5 | GO/COF | 无 | 室温 | 1/6 | 98 | 392 | [ |
6 | Co-MOF/COF | 无 | 25 | 1/6 | 93 | 372 | [ |
7 | Zn-MOF/COF | 无 | 25 | 1/6 | 99 | 396 | [ |
8 | NC-700 | H2O/乙醇 | 40 | 1 | > 99 | 50 | [ |
9 | 壳聚糖 | 乙醇 | 40 | 6 | > 99 | 7 | [ |
10 | N-GO-1.00 | CH3CN | 40 | 4 | 96.5 | 24 | [ |
11 | Cyt@SBA-15 | 乙醇 | 室温 | 1 | 99 | 99 | [ |
12 | UiO-66-NH-RNH2 | 甲苯 | 室温 | 2 | 97 | 46 | [ |
1 | APPATURI J N, PULINGAM T, RAJABATHAR J R, et al. Acid-base bifunctional SBA-15 as an active and selective catalyst for synthesis of ethyl α-cyanocinnamate via Knoevenagel condensation[J]. Microporous and Mesoporous Materials, 2021, 320: 111091. |
2 | PATEL D, VITHALANI R, MODI C K. Highly efficient FeNP-embedded hybrid bifunctional reduced graphene oxide for Knoevenagel condensation with active methylene compounds[J]. New Journal of Chemistry, 2020, 44(7): 2868-2881. |
3 | 陈琳, 谢蓉蓉, 关丽, 等. 苯并-α-吡喃酮类生物活性物质的合成[J]. 化工进展, 2014, 33(8): 2160-2164. |
CHEN Lin, XIE Rongrong, GUAN Li, et al. Synthesis of some biologically active coumarins[J]. Chemical Industry and Engineering Progress, 2014, 33(8): 2160-2164. | |
4 | YANG Y, WANG D, JIANG P F, et al. Structure-induced Lewis-base Ga4B2O9 and its superior performance in Knoevenagel condensation reaction[J]. Molecular Catalysis, 2020, 490: 110914. |
5 | RUBAN S M, SATHISH C I, RAMADASS K, et al. Ordered mesoporous carbon nitrides with tuneable nitrogen contents and basicity for Knoevenagel condensation[J]. ChemCatChem, 2021, 13(1): 468-474. |
6 | 高朋召, 吴迪, 郑航博, 等. 有机胺改性对ZIF-8催化Knoevenagel缩合反应活性的影响[J]. 湖南大学学报(自然科学版), 2020, 47(8): 124-132. |
GAO Pengzhao, WU Di, ZHENG Hangbo, et al. Effect of amine modification on catalytic activity of ZIF-8 in Knoevenagel condensation reaction[J]. Journal of Hunan University (Natural Sciences), 2020, 47(8): 124-132. | |
7 | 颜世强, 郭伟, 王文笙, 等. 锌-脯氨酸复合物催化的水相Knoevenagel缩合[J]. 有机化学, 2019, 39(5): 1469-1474. |
YAN Shiqiang, GUO Wei, WANG Wensheng, et al. Zinc-proline complex catalyzed Knoevenagel condensation in water[J]. Chinese Journal of Organic Chemistry, 2019, 39(5): 1469-1474. | |
8 | ŞEN B, AKDERE E H, ŞAVK A, et al. A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile[J]. Applied Catalysis B: Environmental, 2018, 225: 148-153. |
9 | JOHARIAN M, MORSALI A, AZHDARI TEHRANI A, et al. Water-stable fluorinated metal–organic frameworks (F-MOFs) with hydrophobic properties as efficient and highly active heterogeneous catalysts in aqueous solution[J]. Green Chemistry, 2018, 20(23): 5336-5345. |
10 | BAHUGUNA A, KUMAR A, CHHABRA T, et al. Potassium-functionalized graphitic carbon nitride supported on reduced graphene oxide as a sustainable catalyst for Knoevenagel condensation[J]. ACS Applied Nano Materials, 2018, 1(12): 6711-6723. |
11 | 李航, 付海, 班大明, 等. 蒙脱土负载KF催化Knoevenagel缩合反应[J]. 福建师范大学学报(自然科学版), 2019, 35(4): 37-43. |
LI Hang, FU Hai, BAN Daming, et al. Montmorillonite loading KF catalyzed Knoevenagel condensation reaction[J]. Journal of Fujian Normal University (Natural Science Edition), 2019, 35(4): 37-43. | |
12 | 李琳琳, 龚维, 付海, 等. 介孔分子筛KF-SBA-15的制备及其催化Knoevenagel反应[J]. 化学工业与工程, 2020, 37(3): 17-22. |
LI Linlin, GONG Wei, FU Hai,et al. Preparation of KF-SBA-15 and its catalytic Knoevenagel reaction[J]. Chemical Industry and Engineering, 2020, 37(3): 17-22. | |
13 | TANGALE N P, SONAR S K, NIPHADKAR P S, et al. Hierarchical K/LTL zeolites: synthesis by alkali treatment, characterization and catalytic performance in Knoevenagel condensation reaction[J]. Journal of Industrial and Engineering Chemistry, 2016, 40: 128-136. |
14 | COTE A P, BENIN A I, OCKWIG N W, et al. Porous, crystalline, covalent organic frameworks[J]. Science, 2005, 310(5751): 1166-1170. |
15 | 刘祎, 汪明旺, 吕宏凌, 等. 共价有机骨架聚合物功能膜制备方法的研究进展[J]. 化工进展, 2021, 40(8): 4360-4370. |
LIU Yi, WANG Mingwang, Hongling LYU, et al. Research progress in the preparation method of covalent organic framework polymers (COFs) functional membranes[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4360-4370. | |
16 | 张安睿, 艾玥洁. 共价有机框架(COFs)材料的结构控制及其在环境化学中的应用[J]. 化学进展, 2020, 32(10): 1564-1581. |
ZHANG Anrui, AI Yuejie. Structure control of covalent organic frameworks(COFs) and their applications in environmental chemistry[J]. Progress in Chemistry, 2020, 32(10): 1564-1581. | |
17 | WU X C, WANG B W, YANG Z Q, et al. Novel imine-linked covalent organic frameworks: preparation, characterization and application[J]. Journal of Materials Chemistry A, 2019, 7(10): 5650-5655. |
18 | MONEHZADEH F, RAFIEE Z. Application of GO/COF as a novel, efficient and recoverable catalyst in the Knoevenagel reaction[J]. Applied Organometallic Chemistry, 2020, 34(6): e5631. |
19 | APPATURI J N, RATTI R, PHOON B L, et al. A review of the recent progress on heterogeneous catalysts for Knoevenagel condensation[J]. Dalton Transactions, 2021, 50(13): 4445-4469. |
20 | QI S C, WU J K, LU J, et al. Underlying mechanism of CO2 adsorption onto conjugated azacyclo-copolymers: N-doped adsorbents capture CO2 chiefly through acid–base interaction?[J]. Journal of Materials Chemistry A, 2019, 7(30): 17842-17853. |
21 | 焦莉, 徐金妹, 张秋亚, 等. 氨基修饰片状氮化碳的制备及光催化性能[J]. 化工进展, 2020, 39(5): 1866-1874. |
JIAO Li, XU Jinmei, ZHANG Qiuya, et al. Preparation and photocatalytic activity of amino-modified sheet-like carbon nitride[J]. Chemical Industry and Engineering Progress, 2020, 39(5): 1866-1874. | |
22 | WANG Z Z, LYU P, HU Y, et al. Thermal degradation study of intumescent flame retardants by TG and FTIR: melamine phosphate and its mixture with pentaerythritol[J]. Journal of Analytical and Applied Pyrolysis, 2009, 86(1): 207-214. |
23 | HU X W, LONG Y, FAN M Y, et al. Two-dimensional covalent organic frameworks as self-template derived nitrogen-doped carbon nanosheets for eco-friendly metal-free catalysis[J]. Applied Catalysis B: Environmental, 2019, 244: 25-35. |
24 | BHUNIA M K, MELISSEN S, PARIDA M R, et al. Dendritic tip-on polytriazine-based carbon nitride photocatalyst with high hydrogen evolution activity[J]. Chemistry of Materials, 2015, 27(24): 8237-8247. |
25 | WANG H F, WANG C Y, YANG Y F, et al. H3PW12O40 /mpg-C3N4 as an efficient and reusable bifunctional catalyst in one-pot oxidation–Knoevenagel condensation tandem reaction[J]. Catalysis Science & Technology, 2017, 7(2): 405-417. |
26 | LIU H H, CHEN D L, WANG Z Q, et al. Microwave-assisted molten-salt rapid synthesis of isotype triazine-/heptazine based g-C3N4 heterojunctions with highly enhanced photocatalytic hydrogen evolution performance[J]. Applied Catalysis B: Environmental, 2017, 203: 300-313. |
27 | HUA S X, QU D, AN L, et al. Highly efficient p-type Cu3P/n-type g-C3N4 photocatalyst through Z-scheme charge transfer route[J]. Applied Catalysis B: Environmental, 2019, 240: 253-261. |
28 | CHAUDHARY M, SINGH L, REKHA P, et al. Adsorption of uranium from aqueous solution as well as seawater conditions by nitrogen-enriched nanoporous polytriazine[J]. Chemical Engineering Journal, 2019, 378: 122236. |
29 | ZHAO Y L, ZHAO Y, QIU J K, et al. Facile grafting of imidazolium salt in covalent organic frameworks with enhanced catalytic activity for CO2 fixation and the Knoevenagel reaction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18413-18419. |
30 | HAO W J, CHEN D, LI Y S, et al. Facile synthesis of porphyrin based covalent organic frameworks via an A2B2 monomer for highly efficient heterogeneous catalysis[J]. Chemistry of Materials, 2019, 31(19): 8100-8105. |
31 | HU J Y, ZANCA F, MCMANUS G J, et al. Catalyst-enabled in situ linkage reduction in imine covalent organic frameworks[J]. ACS Applied Materials & Interfaces, 2021, 13(18): 21740-21747. |
32 | RAHMATI E, RAFIEE Z. Synthesis of Co-MOF/COF nanocomposite: application as a powerful and recoverable catalyst in the Knoevenagel reaction[J]. Journal of Porous Materials, 2021, 28(1): 19-27. |
33 | RAFIEE Z. Fabrication of efficient Zn-MOF/COF catalyst for the Knoevenagel condensation reaction[J]. Journal of the Iranian Chemical Society, 2021, 18(10): 2657-2664. |
34 | SAKTHIVEL B, DHAKSHINAMOORTHY A. Chitosan as a reusable solid base catalyst for Knoevenagel condensation reaction[J]. Journal of Colloid and Interface Science, 2017, 485: 75-80. |
35 | XUE B, ZHU J G, LIU N, et al. Facile functionalization of graphene oxide with ethylenediamine as a solid base catalyst for Knoevenagel condensation reaction[J]. Catalysis Communications, 2015, 64: 105-109. |
36 | RAJABI F, FAYYAZ F, LUQUE R. Cytosine-functionalized SBA-15 mesoporous nanomaterials: synthesis, characterization and catalytic applications[J]. Microporous and Mesoporous Materials, 2017, 253: 64-70. |
37 | LUAN Y, QI Y, GAO H Y, et al. A general post-synthetic modification approach of amino-tagged metal–organic frameworks to access efficient catalysts for the Knoevenagel condensation reaction[J]. Journal of Materials Chemistry A, 2015, 3(33): 17320-17331. |
38 | ZHANG L N, WANG H, SHEN W Z, et al. Controlled synthesis of graphitic carbon nitride and its catalytic properties in Knoevenagel condensations[J]. Journal of Catalysis, 2016, 344: 293-302. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |