化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2582-2592.DOI: 10.16085/j.issn.1000-6613.2021-1219
王鲁元1,2(), 金春江1,2,3, 陈惠敏3, 程星星4, 安东海3(), 张兴宇2, 孙荣峰1,2, 耿文广1,2
收稿日期:
2021-06-10
修回日期:
2021-10-07
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
安东海
作者简介:
王鲁元(1988—),男,博士,主要研究方向为VOCs环保治理及炭材料、脱硫脱硝催化剂的制备。E-mail:基金资助:
WANG Luyuan1,2(), JIN Chunjiang1,2,3, CHEN Huimin3, CHENG Xingxing4, AN Donghai3(), ZHANG Xingyu2, SUN Rongfeng1,2, GENG Wenguang1,2
Received:
2021-06-10
Revised:
2021-10-07
Online:
2022-05-05
Published:
2022-05-24
Contact:
AN Donghai
摘要:
以木质素为原料,采用管式炉反应器通过一步热解-半活化法获得木质素基多孔炭材料(LPC)。采用氮吸附(BET)、扫描电镜(SEM)和傅里叶变换红外光谱(FTIR)对多孔炭材料的物化性质进行分析。在900℃的恒定炭化温度下,CO2体积分数为6%、水蒸气体积分数约为20%时,LPC-C6S20表面具有良好的纳米结构,并且总孔容和比表面积分别达到0.77cm3/g和1497.51m2/g,活化气氛促进了多孔炭材料颗粒趋于均匀和微孔、中孔的形成。LPC样品含有—OH、C—H、C=C、C—O、C=O、CO—C、C—N、C=N等丰富的表面官能团。随着活化剂浓度的变化,这些官能团保持相对稳定。因此,通过该方法获得的样品具有良好的纳米结构,具有较大的孔容、比表面积和表面官能团。
中图分类号:
王鲁元, 金春江, 陈惠敏, 程星星, 安东海, 张兴宇, 孙荣峰, 耿文广. 一步热解活化法制备纳米木质素基多孔炭材料[J]. 化工进展, 2022, 41(5): 2582-2592.
WANG Luyuan, JIN Chunjiang, CHEN Huimin, CHENG Xingxing, AN Donghai, ZHANG Xingyu, SUN Rongfeng, GENG Wenguang. Preparation of nano-lignin-based porous carbon materials by one-step pyrolysis activation method[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2582-2592.
原料 | 工业分析(质量分数, 空干基)/% | 元素分析(质量分数, 空干无灰基)/% | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | S | O | |
木质素 | 3.25 | 3.51 | 19.00 | 74.24 | 59.67 | 5.311 | 0.312 | 0.298 | 27.649 |
表1 木质素工业分析与元素分析
原料 | 工业分析(质量分数, 空干基)/% | 元素分析(质量分数, 空干无灰基)/% | |||||||
---|---|---|---|---|---|---|---|---|---|
M | A | V | FC | C | H | N | S | O | |
木质素 | 3.25 | 3.51 | 19.00 | 74.24 | 59.67 | 5.311 | 0.312 | 0.298 | 27.649 |
样品 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 比表面积 /m2·g-1 | 微孔比表面积/m2·g-1 | 平均孔径/nm |
---|---|---|---|---|---|
LPC-C2S20 | 0.50 | 0.43 | 1081.89 | 1004.93 | 1.85 |
LPC-C4S20 | 0.64 | 0.46 | 1344.80 | 1169.50 | 1.91 |
LPC-C6S20 | 0.77 | 0.50 | 1497.51 | 1250.21 | 2.06 |
LPC-C8S20 | 0.79 | 0.51 | 1294.81 | 1026.92 | 2.45 |
表2 900℃下的LPC-C x S20系列孔隙结构特征数据
样品 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 比表面积 /m2·g-1 | 微孔比表面积/m2·g-1 | 平均孔径/nm |
---|---|---|---|---|---|
LPC-C2S20 | 0.50 | 0.43 | 1081.89 | 1004.93 | 1.85 |
LPC-C4S20 | 0.64 | 0.46 | 1344.80 | 1169.50 | 1.91 |
LPC-C6S20 | 0.77 | 0.50 | 1497.51 | 1250.21 | 2.06 |
LPC-C8S20 | 0.79 | 0.51 | 1294.81 | 1026.92 | 2.45 |
样品 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 比表面积 /m2·g-1 | 微孔比表面积/m2·g-1 | 平均孔径/nm |
---|---|---|---|---|---|
LPC-C6S0 | 0.51 | 0.36 | 992.52 | 856.67 | 2.04 |
LPC-C6S10 | 0.70 | 0.37 | 1,295.02 | 749.60 | 2.60 |
LPC-C6S20 | 0.77 | 0.50 | 1497.51 | 1250.21 | 2.06 |
LPC-C6S30 | 0.81 | 0.44 | 1409.03 | 1094.35 | 2.30 |
表3 900℃下LPC-C6S y 系列孔隙结构特征数据
样品 | 总孔容/cm3·g-1 | 微孔孔容/cm3·g-1 | 比表面积 /m2·g-1 | 微孔比表面积/m2·g-1 | 平均孔径/nm |
---|---|---|---|---|---|
LPC-C6S0 | 0.51 | 0.36 | 992.52 | 856.67 | 2.04 |
LPC-C6S10 | 0.70 | 0.37 | 1,295.02 | 749.60 | 2.60 |
LPC-C6S20 | 0.77 | 0.50 | 1497.51 | 1250.21 | 2.06 |
LPC-C6S30 | 0.81 | 0.44 | 1409.03 | 1094.35 | 2.30 |
1 | LI H Y, HE J, CHEN K Y, et al. Dynamic adsorption of sulfamethoxazole from aqueous solution by lignite activated coke[J]. Materials, 2020, 13(7): 1785. |
2 | BELL J G, BENHAM M J, THOMAS K M. Adsorption of carbon dioxide, water vapor, nitrogen, and sulfur dioxide on activated carbon for capture from flue gases: competitive adsorption and selectivity aspects[J]. Energy & Fuels, 2021, 35(9): 8102-8116. |
3 | WILSON S M W, AL-ENZI F, GABRIEL V A, et al. Effect of pore size and heterogeneous surface on the adsorption of CO2, N2, O2, and Ar on carbon aerogel, RF aerogel, and activated carbons[J]. Microporous and Mesoporous Materials, 2021, 322: 111089. |
4 | LIANG H X, SONG B, PENG P, et al. Preparation of three-dimensional honeycomb carbon materials and their adsorption of Cr(Ⅵ)[J]. Chemical Engineering Journal, 2019, 367: 9-16. |
5 | CHERRAD N. Conditioning of hydrogen storage by continuous solar adsorption in activated carbon AX-21 with simultaneous production[J]. International Journal of Hydrogen Energy, 2019, 44(4): 2153-2163. |
6 | 曾茂株, 佘煜琪, 胡玉彬, 等. 木质素多孔炭的制备及应用研究进展[J]. 化工进展, 2021, 40(8): 4573-4586. |
ZENG Maozhu, SHE Yuqi, HU Yubin, et al. Progress in preparation and application of lignin porous carbon[J]. Chemical Industry and Engineering Progress, 2021, 40(8): 4573-4586. | |
7 | PREMARATHNA K S D, RAJAPAKSHA A U, SARKAR B, et al. Biochar-based engineered composites for sorptive decontamination of water: a review[J]. Chemical Engineering Journal, 2019, 372: 536-550. |
8 | ZHUANG H F, XIE Q N, SHAN S D, et al. Performance, mechanism and stability of nitrogen-doped sewage sludge based activated carbon supported magnetite in anaerobic degradation of coal gasification wastewater[J]. Science of the Total Environment, 2020, 737: 140285. |
9 | LIU H, CHENG C, WU H M. Sustainable utilization of wetland biomass for activated carbon production: a review on recent advances in modification and activation methods[J]. Science of the Total Environment, 2021, 790: 148214. |
10 | MOCHIZUKI Y, TSUBOUCHI N. Preparation of pelletized coke by co-carbonization of caking coal and pyrolyzed char modified with tar produced during pyrolysis of woody biomass[J]. Fuel Processing Technology, 2019, 193: 328-337. |
11 | ALZAID M, ALSALH F, IQBAL M Z. Biomass derived activated carbon based hybrid supercapacitors[J]. Journal of Energy Storage, 2021, 40: 102751. |
12 | CHEN K, ZHANG H R, IBRAHIM U K, et al. The quantitative assessment of coke morphology based on the Raman spectroscopic characterization of serial petroleum cokes[J]. Fuel, 2019, 246: 60-68. |
13 | 邢宝林, 黄光许, 谌伦建, 等. 高品质低阶煤基活性炭的制备与表征[J]. 煤炭学报, 2013, 38(S1): 217-222. |
XING Baolin, HUANG Guangxu, CHEN Lunjian, et al. Preparation and characterization of high quality low-rank coal based activated carbon[J]. Journal of China Coal Society, 2013, 38(S1): 217-222. | |
14 | 姜勇, 张庆伟, 王胜, 等. 中孔煤基磁性活性炭的制备及性能表征[J]. 洁净煤技术, 2015, 21(3): 1-5, 10. |
JIANG Yong, ZHANG Qingwei, WANG Sheng, et al. Preparation and characterization of magnetic mesopores activated carbon from lignite[J]. Clean Coal Technology, 2015, 21(3): 1-5, 10. | |
15 | 俞志敏, 卫新来, 娄梅生, 等. 氯化锌活化生物质炭制备活性炭及其表征[J]. 化工进展, 2014, 33(12): 3318-3323. |
YU Zhimin, WEI Xinlai, LOU Meisheng, et al. Preparation and characterization of activated carbon from bio-char by chemical activation with ZnCl2 [J]. Chemical Industry and Engineering Progress, 2014, 33(12): 3318-3323. | |
16 | MALDHURE A, WAGHELA A, NAGARNAIK P, et al. Microwave treated activated carbon from industrial waste lignin for denitrification of surface water[J]. International Journal of Environmental Science and Technology, 2021: 1-10. |
17 | 李岩松, 徐国忠, 李白冰, 等. CO2活化兰炭粉制备粉状微孔活性炭[J]. 辽宁科技大学学报, 2018, 41(6): 462-468. |
LI Yansong, XU Guozhong, LI Baibing, et al. Preparation of micro-pore dominated active carbon powder by using semicoke powder activated with CO2 [J]. Journal of University of Science and Technology Liaoning, 2018, 41(6): 462-468. | |
18 | 蒋绪, 兰新哲, 景兴鹏, 等. 不同介质下物理法活化制备兰炭基活性炭实验研究[J]. 煤炭转化, 2019, 42(2): 65-71. |
JIANG Xu, LAN Xinzhe, JING Xingpeng, et al. Research on experiment of blue coke-based activated carbon by physical activation with different media[J]. Coal Conversion, 2019, 42(2): 65-71. | |
19 | 李海红, 薛慧, 裴盼盼, 等. 棉纤维基活性炭制备工艺的优化及性能表征[J]. 化工进展, 2018, 37(5): 1916-1922. |
LI Haihong, XUE Hui, PEI Panpan, et al. Preparation and characterization of activated carbon from cotton fiber[J]. Chemical Industry and Engineering Progress, 2018, 37(5): 1916-1922. | |
20 | 魏庆玲, 陈志敏, 王晓峰,等. 以氯化铵为成孔助剂两步法制备玉米芯基活性炭 [J]. 新型炭材料, 2018, 33(5): 402-408. |
WEI Qingling, CHEN Zhimin, WANG Xiaofeng, et al. A two-step method for the preparation of high performance corncob-based activated carbons as supercapacitor electrodes using ammonium chloride as a pore forming additive[J]. New Carbon Materials, 2018, 33(5): 402-408. | |
21 | 左宋林. 磷酸活化法活性炭孔隙结构的调控机制[J]. 新型炭材料, 2018, 33(4): 289-302. |
ZUO Songlin. A review of the control of pore texture of phosphoric acid-activated carbons[J]. New Carbon Materials, 2018, 33(4): 289-302. | |
22 | 王晶, 韩巧宁, 雷以廷, 等. 一步法制备富氧木质素活性炭及其亚甲基蓝吸附性能[J]. 化工学报, 2021, 72(5): 2826-2836. |
WANG Jing, HAN Qiaoning, LEI Yiting, et al. One-step preparation of oxygen-enriched lignin activated carbon and its methylene blue adsorption performance[J]. CIESC Journal, 2021, 72(5): 2826-2836. | |
23 | DONG Z, CHEN B B, ZHANG M J, et al. One-step preparation of carbon fiber-ZrO2 hybrid and its enhancement on the wear-resistant properties of polyimide[J]. Polymer Composites, 2021, 42(5): 2598-2607. |
24 | JIANG Y, WANG X, YU Z Z, et al. One-step preparation of non-covalent functionalized carboxylic multi-walled carbon nanotubes/polymethyl methacrylate nanocomposites via in situ polymerization[J]. Advances in Polymer Technology, 2018, 37(4): 1008-1015. |
25 | 姜晓威, 王会刚, 李龙之, 等. 微波辐照下炭材料升温特性试验研究[J]. 洁净煤技术, 2017, 23(5): 62-66. |
JIANG Xiaowei, WANG Huigang, LI Longzhi, et al. Heating characteristics of carbon-based materials under microwave irradiation[J]. Clean Coal Technology, 2017, 23(5): 62-66. | |
26 | CETIN E, GUPTA R, MOGHTADERI B. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity[J]. Fuel, 2005, 84(10): 1328-1334. |
27 | CAI H Y, GÜELL A J, CHATZAKIS I N, et al. Combustion reactivity and morphological change in coal chars: effect of pyrolysis temperature, heating rate and pressure[J]. Fuel, 1996, 75(1): 15-24. |
28 | OKUMURA Y. Effect of heating rate and coal type on the yield of functional tar components[J]. Proceedings of the Combustion Institute, 2017, 36(2): 2075-2082. |
29 | 张本镔, 刘运权, 叶跃元. 活性炭制备及其活化机理研究进展[J]. 现代化工, 2014, 34(3): 34-39. |
ZHANG Benbin, LIU Yunquan, YE Yueyuan. Progress in preparation of activated carbon and its activation mechanism[J]. Modern Chemical Industry, 2014, 34(3): 34-39. | |
30 | 田叶顺, 任文, 王国袖, 等. 微波加热CO2活化法制备生物质活性炭及其脱硫性能研究[J]. 化工学报, 2020, 71(12): 5774-5784. |
TIAN Yeshun, REN Wen, WANG Guoxiu, et al. Study on preparation and desulfurization characteristics of biomass activated carbon by microwave heating CO2 activation method[J].CIESC Journal, 2020, 71(12): 5774-5784. | |
31 | RAVIKOVITCH P I, NEIMARK A V. Density functional theory model of adsorption on amorphous and microporous solids[J] . Langmuir, 2006, 22(26): 11171-11179. |
32 | ZHANG X Y, GAO B, CREAMER A E, et al. Adsorption of VOCs onto engineered carbon materials: a review[J]. Journal of Hazardous Materials, 2017, 338: 102-123. |
33 | YANG X, YI H H, TANG X L, et al. Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure[J]. Journal of Environmental Sciences, 2018, 67: 104-114. |
34 | ZELLAGUI S, SCHÖNNENBECK C, ZOUAOUI-MAHZOUL N, et al. Pyrolysis of coal and woody biomass under N2 and CO2 atmospheres using a drop tube furnace — Experimental study and kinetic modeling[J]. Fuel Processing Technology, 2016, 148: 99-109. |
35 | SUN Y, YANG G, ZHANG J, et al. Activated carbon preparation from lignin by H3PO4 activation and its application to gas separation[J]. Chemical Engineering & Technology, 2012, 35(2): 309-316. |
36 | 黎先发. 木质素活性炭的制备及其对硝基苯的吸附[J]. 化工环保, 2014, 34(4): 305-310. |
LI Xianfa. Preparation of lignin-based activated carbons and adsorption of nitrobenzene[J]. Environmental Protection of Chemical Industry, 2014, 34(4): 305-310. | |
37 | HO P H, LOFTY V, BASTA A, et al. Designing microporous activated carbons from biomass for carbon dioxide adsorption at ambient temperature. A comparison between bagasse and rice by-products[J]. Journal of Cleaner Production, 2021, 294: 126260. |
38 | WEERAWAT C, POMRNSAWAN A. Production of activated carbon from peanut hill using phosphoric acid and microwave activation[J]. KKU Engineering Journal, 2015, 42(2): 185-191. |
39 | LIM H K, MD ALI U F, AHMAD R, et al. Adsorption of carbon dioxide (CO2) by activated carbon derived from waste coffee grounds[J]. IOP Conference Series: Earth and Environmental Science, 2021, 765(1): 012034. |
40 | PASTOR-VILLEGAS J, DURÁN-VALLE C J. Pore structure of chars and activated carbons prepared using carbon dioxide at different temperatures from extracted rockrose[J]. Journal of Analytical and Applied Pyrolysis, 2001, 57(1): 1-13. |
41 | 许伟, 孙康, 缪存标, 等. 水蒸气活化制备竹质成型活性炭及其对二硫化碳的吸附性能[J]. 林业工程学报, 2018, 3(2): 40-46. |
XU Wei, SUN Kang, MIAO Cunbiao, et al. Preparation of bamboo molding activated carbon by steam activation and its adsorption performance on carbon disulfide[J]. Journal of Forestry Engineering, 2018, 3(2): 40-46. | |
42 | CHEN X, GE X, ZHANG X, et al. Preparation of activated carbon from the residue of plasma pyrolysis of coal by steam activation[J]. Energy Sources A: Recovery, Utilization, and Environmental Effects, 2015, 37(4): 440-446. |
43 | GUPTA V K, MITTAL A, JAIN R, et al. Adsorption of Safranin-T from wastewater using waste materials—activated carbon and activated rice husks[J]. Journal of Colloid and Interface Science, 2006, 303(1): 80-86. |
44 | RIVERA-UTRILLA J, SÁNCHEZ-POLO M, GÓMEZ-SERRANO V, et al. Activated carbon modifications to enhance its water treatment applications. An overview[J]. Journal of Hazardous Materials, 2011, 187(1/2/3): 1-23. |
45 | AMIN N K. Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith[J]. Desalination, 2008, 223(1/2/3): 152-161. |
46 | PIERGROSSI V, FASOLATO C, CAPITANI F, et al. Application of Raman spectroscopy in chemical investigation of impregnated activated carbon spent in hydrogen sulfide removal process[J]. International Journal of Environmental Science and Technology, 2019, 16(3): 1227-1238. |
47 | ALI R, ASLAM Z, SHAWABKEH R A, et al. BET, FTIR, and RAMAN characterizations of activated carbon from waste oil fly ash[J]. Turkish Journal of Chemistry, 2020, 44(2): 279-295. |
48 | CROCE A, RE G, BISIO C, et al. On the correlation between Raman spectra and structural properties of activated carbons derived by hyper-crosslinked polymers[J]. Research on Chemical Intermediates, 2021, 47(1): 419-431. |
49 | MASOUM RAMAN S N, ISMAIL N A, JAMARI S S. Preparation and characterization of impregnated commercial rice husks activated carbon with piperazine for carbon dioxide (CO2) capture[J]. IOP Conference Series: Materials Science and Engineering, 2017, 206: 012005. |
50 | LAZZARINI A, PIOVANO A, PELLEGRINI R, et al. Graphitization of activated carbons: a molecular-level investigation by INS, DRIFT, XRD and Raman techniques[J]. Physics Procedia, 2016, 85: 20-26. |
51 | LIU Y P, LU Z W, HASI W, et al. Self-assembled activated carbon nanoparticles for reliable time-discretized quantitative surface-enhanced Raman spectroscopy[J]. Analytical Methods, 2017, 9(47): 6622-6628. |
[1] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[2] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
[3] | 郭立行, 庞蔚莹, 马克遥, 杨镓涵, 孙泽辉, 张盼, 付东, 赵昆. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651. |
[4] | 任建鹏, 吴彩文, 刘慧君, 吴文娟. 木质素-聚苯胺复合材料的制备及对刚果红的吸附[J]. 化工进展, 2023, 42(6): 3087-3096. |
[5] | 于丁一, 李圆圆, 王晨钰, 纪永升. pH响应性木质素水凝胶的制备及药物控释[J]. 化工进展, 2023, 42(6): 3138-3146. |
[6] | 刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916. |
[7] | 蔡江涛, 候刘华, 兰雨金, 张晨陈, 刘国阳, 朱由余, 张建兰, 赵世永, 张亚婷. 沥青基多孔炭材料的制备及在超级电容器中的应用进展[J]. 化工进展, 2023, 42(4): 1895-1906. |
[8] | 杨程瑞雪, 黄琪媛, 冉建速, 崔耘通, 王健健. 磷酸修饰二氧化硅负载钯催化剂用于木质素衍生物高效水相低温加氢脱氧[J]. 化工进展, 2023, 42(10): 5179-5190. |
[9] | 张鹏, 王绍庆, 李志合, 张安东, 高亮, 万震, 宋宁. 赤泥/木质素共热解制备复合吸附材料及其性能[J]. 化工进展, 2022, 41(S1): 407-414. |
[10] | 刘培慧, 刘宇喆, 李琳, 王少辉, 王同华. 具有多级孔道结构的高比表面多孔炭活化策略及VOCs吸附性能[J]. 化工进展, 2022, 41(S1): 613-621. |
[11] | 曾龙, 郑贵森, 邓大祥, 孙健, 刘永恒. 多孔壁面微通道换热性能的实验研究[J]. 化工进展, 2022, 41(9): 4625-4634. |
[12] | 蒲福龙, 伍尚炜, 郑映玲, 郑玉意, 侯雪丹. 基于乳酸的深度共熔溶剂提取秸秆木质素对纤维素酶水解效率的影响[J]. 化工进展, 2022, 41(9): 4937-4945. |
[13] | 龙垠荧, 杨健, 管敏, 杨怡洛, 程正柏, 曹海兵, 刘洪斌, 安兴业. 木质素基材料在混合型超级电容器电极材料中的研究进展[J]. 化工进展, 2022, 41(9): 4855-4865. |
[14] | 汪兴, 赵子龙, 张小山, 王宏杰, 董文艺, 陈慧慧. 制备条件对生物炭载铁催化剂催化破络Ni-EDTA性能及活性组分浸出的影响[J]. 化工进展, 2022, 41(9): 4831-4839. |
[15] | 张伟, 安兴业, 刘利琴, 龙垠荧, 张昊, 程正柏, 曹海兵, 刘洪斌. 木质素纳米颗粒/天然纤维基活性碳纤维材料的制备及其电化学性能[J]. 化工进展, 2022, 41(7): 3770-3783. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |