化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2487-2503.DOI: 10.16085/j.issn.1000-6613.2021-1223
余世勤1,2(), 赵鑫鹏2, 郑艳2, 严亮3, 贾建洪1, 余海斌2()
收稿日期:
2021-06-10
修回日期:
2021-08-31
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
余海斌
作者简介:
余世勤(1997—),男,硕士研究生,研究方向为聚烯烃接枝改性。E-mail:基金资助:
YU Shiqin1,2(), ZHAO Xinpeng2, ZHENG Yan2, YAN Liang3, JIA Jianhong1, YU Haibin2()
Received:
2021-06-10
Revised:
2021-08-31
Online:
2022-05-05
Published:
2022-05-24
Contact:
YU Haibin
摘要:
官能化聚烯烃是由聚烯烃改性后得到的产物,一般通过交联改性、共聚改性、固相力化学改性和接枝改性等方法制备,可应用于黏附、能源和封装等多重领域。基于聚烯烃高通量低成本的优势,聚烯烃接枝改性利用自由基反应直接向聚烯烃链上引入极性单体,较为经济便捷。聚烯烃接枝改性按反应条件的不同,又可分为溶液接枝、熔融接枝、辐射接枝、固相接枝和悬浮接枝。在接枝改性过程中,接枝率和接枝效率受多种因素影响,如聚烯烃型号、接枝单体、引发剂、共单体和反应条件等。本文综述了聚烯烃接枝改性不同接枝方法的研究进展,分析了各种接枝方法的优势和短板,并将接枝改性过程中的影响因素进行了总结。文章依据聚烯烃的可控自由基接枝改性和金属催化改性以及官能化聚烯烃的应用,展望了聚烯烃可控改性和官能化聚烯烃规模化生产。
中图分类号:
余世勤, 赵鑫鹏, 郑艳, 严亮, 贾建洪, 余海斌. 官能化聚烯烃的进展和应用[J]. 化工进展, 2022, 41(5): 2487-2503.
YU Shiqin, ZHAO Xinpeng, ZHENG Yan, YAN Liang, JIA Jianhong, YU Haibin. Progess and application of functional polyolefin[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2487-2503.
接枝方法 | 引发剂种类 | 溶剂 | 反应时间 | 反应温度 | 生产方式 | 成本 | 特点 |
---|---|---|---|---|---|---|---|
溶液接枝 | 过氧化物类 | 大量 | 长 | 373~393K | 间歇 | 较高 | 温度较低,接枝均匀,对环境污染 |
熔融接枝 | 过氧化物类 | 少量/无 | 短 | 433~483K | 连续 | 低 | 反应快,无后处理 |
辐射接枝 | 芳基酮类 | 无 | 短 | 室温 | 间歇 | 高 | 接枝均匀,产物纯净 |
固相接枝 | 过氧化物类 | 少量/无 | 较长 | 373~413K | 间歇 | 较低 | 表面接枝,反应温和 |
悬浮接枝 | 过氧化物类 | 少 | 较长 | 353~373K | 间歇 | 较低 | 反应温和,接枝均匀 |
表1 聚烯烃接枝方法[8]
接枝方法 | 引发剂种类 | 溶剂 | 反应时间 | 反应温度 | 生产方式 | 成本 | 特点 |
---|---|---|---|---|---|---|---|
溶液接枝 | 过氧化物类 | 大量 | 长 | 373~393K | 间歇 | 较高 | 温度较低,接枝均匀,对环境污染 |
熔融接枝 | 过氧化物类 | 少量/无 | 短 | 433~483K | 连续 | 低 | 反应快,无后处理 |
辐射接枝 | 芳基酮类 | 无 | 短 | 室温 | 间歇 | 高 | 接枝均匀,产物纯净 |
固相接枝 | 过氧化物类 | 少量/无 | 较长 | 373~413K | 间歇 | 较低 | 表面接枝,反应温和 |
悬浮接枝 | 过氧化物类 | 少 | 较长 | 353~373K | 间歇 | 较低 | 反应温和,接枝均匀 |
引发剂 | 半衰期(1h)/℃ |
---|---|
过氧类 | |
过氧化十二酰 | 80 |
过氧化苯甲酰 | 92 |
过氧化二异丙苯 | 128 |
过氧化二叔丁基 | 136 |
偶氮类 | |
偶氮二异丁腈 | 79 |
偶氮二异庚腈 | 64 |
氢过氧类 | |
异丙苯过氧化氢 | 193 |
叔丁基过氧化氢 | 199 |
表2 常用引发剂半衰期
引发剂 | 半衰期(1h)/℃ |
---|---|
过氧类 | |
过氧化十二酰 | 80 |
过氧化苯甲酰 | 92 |
过氧化二异丙苯 | 128 |
过氧化二叔丁基 | 136 |
偶氮类 | |
偶氮二异丁腈 | 79 |
偶氮二异庚腈 | 64 |
氢过氧类 | |
异丙苯过氧化氢 | 193 |
叔丁基过氧化氢 | 199 |
1 | 王建平. 十三五中国聚烯烃产业发展趋势透析[J]. 现代经济信息, 2018(3): 393. |
WANG Jianping. Analysis on the development trend of China’s polyolefin industry during the 13th Five-Year Plan[J]. Modern Economic Information, 2018(3): 393. | |
2 | ABD-EL-AZIZ A S, ANTONIETTI M, BARNER-KOWOLLIK C, et al. The next 100 years of polymer science[J]. Macromolecular Chemistry and Physics, 2020, 221(16): 2000216. |
3 | 郭红军. 聚烯烃高值化改性及其应用研究进展[J]. 工程塑料应用, 2019, 47(9): 158-162. |
GUO Hongjun. Reasearch progress in high value modification of polyolefins and their application[J]. Engineering Plastics Application, 2019, 47(9): 158-162. | |
4 | 李伯耿, 张明轩, 刘伟峰, 等.聚烯烃类弹性体——现状与进展[J]. 化工进展, 2017, 36(9): 3135-3144. |
LI Bogeng, ZHANG Mingxuan, LIU Weifeng, et al. State-of-the-art and research progress of polyolefin-based elastomer[J]. Chemical Industry and Engineering Progress, 2017, 36(9): 3135-3144. | |
5 | 赵文明. 高端聚烯烃树脂产业发展现状及市场预测[J]. 化学工业, 2017, 35(5): 46-58. |
ZHAO Wenming. Development status quo and prediction for China high-end polyolefin resins[J]. Chemical Industry, 2017, 35(5): 46-58. | |
6 | 简忠保. 功能化聚烯烃合成: 从催化剂到极性单体设计[J]. 高分子学报, 2018(11): 1359-1371. |
JIAN Zhongbao. Synthesis of functionalized polyolefins: design from catalysts to polar monomers[J]. Acta Polymerica Sinica, 2018(11): 1359-1371. | |
7 | CARROW B P, NOZAKI K. Transition-metal-catalyzed functional polyolefin synthesis: effecting control through chelating ancillary ligand design and mechanistic insights[J]. Macromolecules, 2014, 47(8): 2541-2555. |
8 | 阴凤琴. 引发剂类型对反应挤出聚丙烯接枝腰果酚的影响[D]. 福州: 福建师范大学, 2014. |
YIN Fengqin. Effect of different peroxide initiators on the reaction extrusion of polypropylene-graft-cardanol[D]. Fuzhou: Fujian Normal University, 2014. | |
9 | 李浩, 朱士洋, 张先明, 等. 溶剂热法合成含异氰酸酯基的聚丙烯大分子相容剂[J]. 高分子材料科学与工程, 2013, 29(11): 19-23. |
LI Hao, ZHU Shiyang, ZHANG Xianming, et al. Solvothermal process for synthesis of macromolecules compatibilizer of polypropylene containing isocyanate ester groups[J]. Polymer Materials Science & Engineering, 2013, 29(11): 19-23. | |
10 | WILLIAMSON J B, CZAPLYSKI W L, ALEXANIAN E J, et al. Regioselective C—H xanthylation as a platform for polyolefin functionalization[J]. Angewandte Chemie, 2018, 130(21): 6369-6373. |
11 | PLUMMER C M, ZHOU H B, LI S H, et al. A direct functionalization of polyolefins for blend compatibilization by an insertion of 1,1-bis(phenylsulfonyl) ethylene (BPSE)[J]. Polymer Chemistry, 2019, 10(24): 3325-3333. |
12 | 郭可锐. 聚烯烃接枝甲基丙烯酸缩水甘油酯(PO-g-GMA)的制备、结构表征及应用研究[D]. 大连: 大连理工大学, 2014. |
GUO Kerui. Synthesis, characterization and application of polyolefin grafted glycidyl methacrylate (PO-g-GMA)[D]. Dalian: Dalian University of Technology, 2014. | |
13 | 崔东玲. GMA接枝改性聚丙烯及其应用[D]. 大庆: 东北石油大学, 2017. |
CUI Dongling. GMA graft modification polypropylene and its application[D]. Daqing: Northeast Petroleum University, 2017. | |
14 | 王盼盼. 高接枝率的马来酸酐接枝聚丙烯制备和表征[D]. 青岛: 青岛科技大学, 2019. |
WANG Panpan. Preparation and characterization of maleic anhydride grafted polypropylene with high grafting rate[D]. Qingdao: Qingdao University of Science & Technology, 2019. | |
15 | 梁秋实. 氧化石墨烯对马来酸酐熔融接枝聚丙烯降解和接枝的影响[D]. 杭州: 杭州师范大学, 2017. |
LIANG Qiushi. Effects of graphene oxide on the degradation and grafting of maleic anhydride grafted polypropylene[D]. Hangzhou: Hangzhou Normal University, 2017. | |
16 | COIAI S, AUGIER S, PINZINO C, et al. Control of degradation of polypropylene during its radical functionalisation with furan and thiophene derivatives[J]. Polymer Degradation and Stability, 2010, 95(3): 298-305. |
17 | 毛行功. 稀土氧化物对反应挤出聚丙烯接枝腰果酚的影响[D]. 福州: 福建师范大学, 2015. |
MAO Xinggong. Effect of rare earth oxides on the reaction extrusion of polypropylene-graft-cardanol[D]. Fuzhou: Fujian Normal University, 2015. | |
18 | BURTON E L, WOODHEAD M, COATES P, et al. Reactive grafting of glycidyl methacrylate onto polypropylene[J]. Journal of Applied Polymer Science, 2010, 117(5): 2707-2714. |
19 | 叶志斌, 沈招弟, 陈梅金, 等. 加料方式对非均相体系反应挤出接枝的影响[J]. 泉州师范学院学报, 2016, 34(6): 41-44, 54. |
YE Zhibin, SHEN Zhaodi, CHEN Meijin, et al. The effect of feeding way on the grafting reaction of heterogeneous system extruded by reactive extrusion[J]. Journal of Quanzhou Normal University, 2016, 34(6): 41-44, 54. | |
20 | RAHAYU I, ZAINUDDIN A, MALIK Y T, et al. Maleic anhydride grafted onto high density polyethylene with an enhanced grafting degree via monomer microencapsulation[J]. Heliyon, 2020, 6(4): e03742. |
21 | 曲邦威. 超临界反应挤出法制备改性聚丙烯[D]. 杭州: 浙江大学, 2008. |
QU Bangwei. Polypropylene modified by supercritical reactive extrusion[D]. Hangzhou: Zhejiang University, 2008. | |
22 | 文亮, 杨华伟, 石恒冲, 等. N-羟基邻苯二甲酰亚胺引发的聚乙烯熔融接枝反应[J]. 应用化学, 2020, 37(5): 518-523. |
WEN Liang, YANG Huawei, SHI Hengchong, et al. Melt functionalization of polyethylene initiated by N-hydroxyphthalimide[J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 518-523. | |
23 | WILLIAMSON J B, NA C G, JOHNSON R R, et al. Chemo- and regioselective functionalization of isotactic polypropylene: a mechanistic and structure-property study[J]. Journal of the American Chemical Society, 2019, 141(32): 12815-12823. |
24 | 王杨. 紫外光辐照极性分子接枝聚乙烯反应的理论研究[D]. 哈尔滨: 哈尔滨理工大学, 2019. |
WANG Yang. Theoretical study on reaction of polar molecules grafted to polyethylene by UV radiation[D]. Harbin: Harbin University of Science and Technology, 2019. | |
25 | 邓绮霞. 紫外辐照接枝聚丙烯的研究[D]. 北京:北京化工大学, 2016. |
DENG Qixia.Study on UV irradiation grafting polypropylene[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
26 | 于洪健, 崔永珠, 何佩峰, 等. 紫外复配接枝MA/BA制备聚丙烯吸油材料[J]. 印染, 2018, 44(9): 12-16, 25. |
YU Hongjian, CUI Yongzhu, HE Peifeng, et al. Preparation of polypropylene oil absorption material grafted with MA/BA by UV radiation[J]. Dyeing & Finishing, 2018, 44(9): 12-16, 25. | |
27 | 乔文静. 紫外光辐照聚乙烯接枝马来酸酐的制备及其光化学原理的研究[D]. 哈尔滨: 哈尔滨理工大学, 2019. |
QIAO Wenjing. Preparation of UV-grafted polyethylene grafted maleic anhydride and the research on its photochemical principle[D]. Harbin: Harbin University of Science and Technology, 2019. | |
28 | 左都全, 马国玲. 预辐照聚乙烯接枝物亲水性能研究[J]. 西部皮革, 2018, 40(20): 1. |
ZUO Duquan, MA Guoling. Study on the hydrophilic properties of pre-irrated polyethylene grafts[J]. West Leather, 2018, 40(20): 1. | |
29 | 李眉远, 李文斐, 姚占海. 预辐照聚乙烯与甘油单硬脂酸单丙烯酸二酯接枝物的制备及性能[J]. 高分子材料科学与工程, 2020, 36(2): 1-6. |
LI Meiyuan, LI Wenfei, YAO Zhanhai. Preparation and properties of pre-irradiated polyethylene and glyceryl monostearic acid monoacrylic acid diester grafting copolymer[J]. Polymer Materials Science & Engineering, 2020, 36(2): 1-6. | |
30 | 冯忠伟. 有机溶剂协助固相接枝法制备极性聚乙烯[D]. 大庆: 东北石油大学, 2013. |
FENG Zhongwei. Preparation of polar polyethylene by organic solvent assisted solid-phase grafting method[D]. Daqing: Northeast Petroleum University, 2013. | |
31 | 王思. 复配浸渍剂协助聚丙烯接枝改性研究[D]. 大庆: 东北石油大学, 2012. |
WANG Si. Research on multi-impregnating agents assisted grafting modification of polypropylene[D]. Daqing: Northeast Petroleum University, 2012. | |
32 | 王璐. 乙醚浸渍协助聚丙烯接枝马来酸酐的研究[D]. 大庆: 东北石油大学, 2015. |
WANG Lu. Research on ethyl ether as the impregnating agent assisting the graft modification of PP with maleic anhydride[D]. Daqing: Northeast Petroleum University, 2015. | |
33 | 王绪文. 超临界CO2协助聚丙烯接枝改性研究[D]. 大庆: 东北石油大学, 2011. |
WANG Xuwen. Research on supercritical CO2 assisted grafting modification of polypropylene[D]. Daqing: Northeast Petroleum University, 2011. | |
34 | 王洪亮. 超临界二氧化碳溶胀后聚丙烯接枝改性研究[D]. 大庆: 大庆石油学院, 2008. |
WANG Hongliang. Study on grafting modification of polypropylene via SC CO2 [D]. Daqing: Daqing Petroleum Institute, 2008. | |
35 | 王崧合.选择性加热固相接枝法及其在聚丙烯功能化方面的应用[D]. 北京: 北京化工大学, 2020. |
WANG Songhe. Solid-phase grafting method through selective heating and its application in functionalization of polypropylene[D]. Beijing: Beijing University of Chemical Technology, 2020. | |
36 | 赵丹. 悬浮接枝法制备抗冲聚丙烯的研究[D]. 北京: 北京化工大学, 2017. |
ZHAO Dan. Preparation of toughened polypropylene by suspension grafting polymerization[D]. Beijing: Beijing University of Chemical Technology, 2017. | |
37 | 梁逢春, 宋文波, 袁浩, 等. 水相悬浮接枝改性PP的研究进展[J]. 合成树脂及塑料, 2018, 35(1): 81-85. |
LIANG Fengchun, SONG Wenbo, YUAN Hao, et al. Research progress of water-phase suspension grafting of PP[J]. China Synthetic Resin and Plastics, 2018, 35(1): 81-85. | |
38 | 董维超. 聚丙烯固相法与水悬浮法接枝改性研究[D]. 大庆: 东北石油大学, 2012. |
DONG Weichao. Research on grafting modification of polypropylene in solid-phase and water suspension methods[D]. Daqing: Northeast Petroleum University, 2012. | |
39 | 刘雅婧. 超高分子量聚乙烯悬浮接枝物的制备及性能研究[D]. 长春: 长春理工大学, 2014. |
LIU Yajing. Preparation and properties of ultra-high molecular weight polyethylene suspending graft copolymer[D]. Changchun: Changchun University of Science and Technology, 2014. | |
40 | 邵清, 宋文波. 聚烯烃的悬浮接枝改性及其应用[J]. 石油化工, 2017, 46(11): 1428-1433. |
SHAO Qing, SONG Wenbo. Application of suspension graft polymerization on functionalization of polyolefin[J]. Petrochemical Technology, 2017, 46(11): 1428-1433. | |
41 | ZHOU H B, WANG S S, HUANG H H, et al. Direct amination of polyethylene by metal-free reaction[J]. Macromolecules, 2017, 50(9): 3510-3515. |
42 | 陈钰欣, 冯顺卿, 梁敏思, 等. 元素分析仪测定有机化合物中氧元素含量的不确定度评定[J]. 计量技术, 2018(10): 3-6. |
CHEN Yuxin, FENG Shunqing, LIANG Minsi, et al. Evaluation of uncertainty of determination of oxygen content in organic compounds by elemental analyzer[J]. Measurement Technique, 2018(10): 3-6. | |
43 | HERNÁNDEZ-ORTIZ J C, STEENBERGE P H M VAN, DUCHATEAU J N E, et al. Sensitivity analysis of single-phase isothermal free radical-induced grafting of polyethylene[J]. Macromolecular Theory and Simulations, 2018, 27(6): 1800036. |
44 | WANG Y, SHI Y, SHAO W J, et al. Crystallization, structures, and properties of different polyolefins with similar grafting degree of maleic anhydride[J]. Polymers, 2020, 12(3): 675. |
45 | ZHANG C, YANG L, HE L, et al. Influence of different functionality degree grafting monomers on polypropylene melt radical branching reaction and their structure[J]. Polymers for Advanced Technologies, 2018, 29(1): 551-559. |
46 | STANIC S, GOTTLIEB G, KOCH T, et al. Influence of different types of peroxides on the long-chain branching of PP via reactive extrusion[J]. Polymers, 2020, 12(4): 886. |
47 | 郭永华, 陈英林, 吴江天, 等. 不同引发剂对PE熔融接枝MAH的影响[J]. 广州化工, 2011, 39(13): 76-78. |
GUO Yonghua, CHEN Yinglin, WU Jiangtian, et al. The effect of PE-g-MAH caused by different kinds of initiators[J]. Guangzhou Chemical Industry, 2011, 39(13): 76-78. | |
48 | 张楠. GMA固相接枝改性聚丙烯的研究[D]. 大庆: 东北石油大学, 2012. |
ZHANG Nan. Study on solid phase grafting modification of polypropylene with glycidyl methacryla[D]. Daqing: Northeast Petroleum University, 2012. | |
49 | YANG J H, YAO Z H, SHI D A, et al. Efforts to decrease crosslinking extent of polyethylene in a reactive extrusion grafting process[J]. Journal of Applied Polymer Science, 2001, 79(3): 535-543. |
50 | 董银春, 郭秋月, 林永男, 等. DAP存在下GMA熔融接枝聚丙烯的研究[J]. 现代塑料加工应用, 2017, 29(3): 25-28. |
DONG Yinchun, GUO Qiuyue, LIN Yongnan, et al. Melt grafting of GMA onto polypropylene in the presence of DAP[J]. Modern Plastics Processing and Applications, 2017, 29(3): 25-28. | |
51 | 袁宗伟, 王旭华. 以助交联剂为第二单体的聚丙烯熔融接枝反应[J]. 工程塑料应用, 2018, 46(4): 113-117. |
YUAN Zongwei, WANG Xuhua. Melt grafting reaction of polypropylene with co-crosslinking agent as second monomer[J]. Engineering Plastics Application, 2018, 46(4): 113-117. | |
52 | WILLIAMSON J B, LEWIS S E, JOHNSON III R R, et al. C—H functionalization of commodity polymers[J]. Angewandte Chemie International Edition, 2019, 58(26): 8654-8668. |
53 | ASSOUN L, MANNING S C, MOORE R B. Carboxylation of polypropylene by reactive extrusion with functionalised peroxides[J]. Polymer, 1998, 39(12): 2571-2577. |
54 | MAMY Daniel Rakotonirina M B, DIDIER Siri, ANOUK Gaudel-Siri, et al. Acyloxyimide derivatives as efficient promoters of polyolefin C—H functionalization: application in the melt grafting of maleic anhydride onto polyethylene[J]. Ploymer Chemistry, 2019, 10: 4336-4345. |
55 | RAY A, ZHU K M, KISSIN Y V, et al. Dehydrogenation of aliphatic polyolefins catalyzed by pincer-ligated iridium complexes[J]. Chemical Communications, 2005(27): 3388. |
56 | BOAEN N K, HILLMYER M A. Selective and mild oxyfunctionalization of model polyolefins[J]. Macromolecules, 2003, 36(19): 7027-7034. |
57 | BUNESCU A, LEE S, LI Q, et al. Catalytic hydroxylation of polyethylenes[J]. ACS Central Science, 2017, 3(8): 895-903. |
58 | CHEN L Y, MALOLLARI K G, ULIANA A, et al. Ruthenium-catalyzed, chemoselective and regioselective oxidation of polyisobutene[J]. Journal of the American Chemical Society, 2021, 143(12): 4531-4535. |
59 | PINSON J. Functionalization of polymers by reaction of radicals, nitrenes, and carbenes[M]//Surface Modification of Polymers. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2019: 241-271. |
60 | 孙晓东. 熔融接枝聚烯烃相容剂的制备与性能研究[D]. 北京: 北京化工大学, 2016. |
SUN Xiaodong. Research on preparation and propertis of melt grafting polyolefin compatilizer[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
61 | GRAZIANO A, GARCIA C, JAFFER S, et al. Novel functional graphene and its thermodynamic interfacial localization in biphasic polyolefin systems for advanced lightweight applications[J]. Composites Science and Technology, 2020, 188: 107958. |
62 | LI H M, XIE X M. Polyolefin-functionalized graphene oxide and its GO/HDPE nanocomposite with excellent mechanical properties[J]. Chinese Chemical Letters, 2018, 29(1): 161-165. |
63 | 徐恒. 甲基丙烯酸缩水甘油酯和丙烯酸接枝改性再生聚乙烯的研究[D]. 武汉: 湖北工业大学, 2018. |
XU Heng. Study on glycidyl methacrylate and acrylic acid graft modified recycled polyethylene[D]. Wuhan: Hubei University of Technology, 2018. | |
64 | 张文龙, 史培建, 马振清, 等. 乙烯咔唑接枝聚乙烯的空间电荷特性及力学性能[J]. 高分子材料科学与工程, 2017, 33(5): 97-101. |
ZHANG Wenlong, SHI Peijian, MA Zhenqing, et al. Space charge characteristics and mechanical properties of vinyl carbazole grafted polyethylene[J]. Polymer Materials Science & Engineering, 2017, 33(5): 97-101. | |
65 | 张文龙, 马振清, 戴亚杰, 等. 乙烯咔唑接枝聚乙烯的制备及其介电性能[J]. 高电压技术, 2017, 43(9): 2813-2817. |
ZHANG Wenlong, MA Zhenqing, DAI Yajie, et al. Preparation of vinyl carbazole grafted polyethylene and its dielectric properties[J]. High Voltage Engineering, 2017, 43(9): 2813-2817. | |
66 | 张文龙, 高丽平, 戴亚杰, 等. 乙烯咔唑接枝低密度聚乙烯的电性能研究[J]. 绝缘材料, 2018, 51(3): 21-25. |
ZHANG Wenlong, GAO Liping, DAI Yajie, et al. Electrical properties of vinyl carbazole grafted low density polyethylene[J]. Insulating Materials, 2018, 51(3): 21-25. | |
67 | 巫晓鑫, 吴水珠, 赵建青, 等. 锂离子电池聚烯烃隔膜改性及功能化研究[J]. 合成材料老化与应用, 2012, 41(4): 43-48. |
WU Xiaoxin, WU Shuizhu, ZHAO Jianqing, et al. Study on modification and functionalization for lithium-ion battery polyolefin separator[J]. Synthetic Materials Aging and Application, 2012, 41(4): 43-48. | |
68 | 洪柳婷, 王莉, 叶海木, 等. 聚烯烃锂离子电池隔膜的研究进展[J]. 高分子通报, 2017(6): 59-67. |
HONG Liuting, WANG Li, YE Haimu, et al. Development of polyolefin separator for lithium ion battery[J]. Polymer Bulletin, 2017(6): 59-67. | |
69 | 于洪健, 崔永珠, 何佩峰, 等. 紫外改性聚丙烯吸油材料的吸附性能[J]. 印染, 2018, 44(23): 14-17. |
YU Hongjian, CUI Yongzhu, HE Peifeng, et al. Adsorptive property of polypropylene oil absorbing material by UV grafting[J]. Dyeing & Finishing, 2018, 44(23): 14-17. | |
70 | CHUNG T C M. Functional polyolefins for energy applications[J]. Macromolecules, 2013, 46(17): 6671-6698. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[5] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[6] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[7] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[8] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[9] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[10] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[11] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[12] | 刘念, 陈葵, 武斌, 纪利俊, 吴艳阳, 韩金玲. 蛋黄-壳介孔磁性炭微球的制备及其对红霉素的高效吸附[J]. 化工进展, 2023, 42(5): 2724-2732. |
[13] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
[14] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
[15] | 章建忠, 许升, 樊家澍, 费振宇, 王堃, 黄建, 崔峰波, 冉文华. 玻璃纤维浸润剂的分析与表征技术进展[J]. 化工进展, 2023, 42(2): 821-838. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |