化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2476-2486.DOI: 10.16085/j.issn.1000-6613.2021-1161
郑小梅1,2(), 林茹晶1,2, 周文静1,2, 徐泠1,2, 张洪宁1,2, 张昕颖1,2, 谢丽1,2()
收稿日期:
2021-06-01
修回日期:
2021-08-22
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
谢丽
作者简介:
郑小梅(1993—),女,博士研究生。E-mail:基金资助:
ZHENG Xiaomei1,2(), LIN Rujing1,2, ZHOU Wenjing1,2, XU Ling1,2, ZHANG Hongning1,2, ZHANG Xinying1,2, XIE Li1,2()
Received:
2021-06-01
Revised:
2021-08-22
Online:
2022-05-05
Published:
2022-05-24
Contact:
XIE Li
摘要:
微生物电解池(microbial electrolysis cell,MEC)产甲烷技术是一种有望成为缓解能源危机与温室效应的重要新型途径。它以外界输入的较小电能为能量来源,以微生物为催化剂,在阳极通过分解有机物形成电子和质子;在阴极产生氢气和甲烷。近年来,MEC在反应器构型、阴极材料设计及电子转移途径、微生物群落结构组成等方面的研究取得了重要进展,寻找高效低价的阴极材料催化剂,实现MEC从概念到应用成为相关领域的研究热点。本文综述了MEC耦合厌氧消化系统产甲烷的工作原理和常见阴极材料的发展现状;分别对碳基阴极、金属基阴极及复合阴极的甲烷产率进行了阐述;系统介绍了不同阴极系统的电子传递方式、电化学特性、生物相容性、微生物群落结构组成等属性;讨论了各类电极的优缺点,并指出了今后的重点研究方向,以期为MEC耦合厌氧消化产甲烷技术的工程应用提供基础。
中图分类号:
郑小梅, 林茹晶, 周文静, 徐泠, 张洪宁, 张昕颖, 谢丽. 微生物电解池辅助CO2甲烷化阴极材料的研究进展[J]. 化工进展, 2022, 41(5): 2476-2486.
ZHENG Xiaomei, LIN Rujing, ZHOU Wenjing, XU Ling, ZHANG Hongning, ZHANG Xinying, XIE Li. Review on cathode materials for CO2 methanation assisted by microbial electrolytic cell[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2476-2486.
阴极材料 | 电极尺寸 | 反应器构型 | 接种培养物 | 基质 | 运行方式 /时间 | 温度/℃ | 阴极电势 (vs. Ag/AgCl)/V | 甲烷产率 | CE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
活性炭颗粒 | 1.5g | 单室 | 厌氧污泥 (5.9g/L) | 乙酸钠 (3.2g/L) | 批实验 | 10 | 0.90 | 31mg CH4-COD/ g VSS | 60 | [ |
颗粒活性炭 | 8.45g | 双室 | 污水处理厂厌氧污(12.9g/L) | CO2 | 半连续流 | 30 | 0.58 | 65L/(m2·d) | 66 | [ |
石墨颗粒 | 27.6g | 0.9 | 62L/(m2·d) | 67 | ||||||
颗粒活性炭 | 13.87g | 双室 | 稳定MEC出水 | 乙酸钠 (1.64g/L) | 批实验 | 30 | 2.0~3.0 | 15.12m3/(m3·d) | 71.76 | [ |
碳毡 | 60cm2 | 单室 | 市政污泥池 厌氧污泥(10g/L) | 蜜糖 (44.7g/L) | 批实验 | 34 | 0.5 | 65.5mL/(L·d) | — | [ |
1 | 127.5mL/(L·d) | |||||||||
碳布 | 4×10cm | 单室 | 嗜热阳极MFC出水 | 乙酸钠 (0.8gCOD/L) | 批实验 | 55 | 0.8 | 1103mmol/ (m2·d) | — | [ |
碳纤维刷 | Φ2.5cm×12cm | 单室 | 发酵罐厌氧菌群 接种物(17.083g/L) | 葡萄糖 (4g/L) | 批实验 | 35 | 0.8 | 0.37L/gCOD | 29 | [ |
碳棒 | Φ0.5×10cm | 双室 | 厌氧污泥 | CO2 | 批实验 | 35 | 0.6~0.1 | 0.46mL/h | — | [ |
碳棒 | Φ25×80mm | 单室 | 污水处理厂 厌氧污泥(43g/L) | 活性污泥 (41g/L) | 批实验 | 37 | 0.6 | 2998.4mL | — | [ |
石墨毡 | 20cm2 | 三室 | 厌氧污泥(5.7g/L) | 碳酸氢钠 (5g/L) | 批实验 | — | 0.8 | 0.0015L/(m2·d) | 2.6 | [ |
1.1 | 7.2L/(m2·d) | 20.3 | ||||||||
1.3 | 8.8L/(m2·d) | 69.4 |
表1 MEC-AD碳基阴极的结构和运行性能
阴极材料 | 电极尺寸 | 反应器构型 | 接种培养物 | 基质 | 运行方式 /时间 | 温度/℃ | 阴极电势 (vs. Ag/AgCl)/V | 甲烷产率 | CE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
活性炭颗粒 | 1.5g | 单室 | 厌氧污泥 (5.9g/L) | 乙酸钠 (3.2g/L) | 批实验 | 10 | 0.90 | 31mg CH4-COD/ g VSS | 60 | [ |
颗粒活性炭 | 8.45g | 双室 | 污水处理厂厌氧污(12.9g/L) | CO2 | 半连续流 | 30 | 0.58 | 65L/(m2·d) | 66 | [ |
石墨颗粒 | 27.6g | 0.9 | 62L/(m2·d) | 67 | ||||||
颗粒活性炭 | 13.87g | 双室 | 稳定MEC出水 | 乙酸钠 (1.64g/L) | 批实验 | 30 | 2.0~3.0 | 15.12m3/(m3·d) | 71.76 | [ |
碳毡 | 60cm2 | 单室 | 市政污泥池 厌氧污泥(10g/L) | 蜜糖 (44.7g/L) | 批实验 | 34 | 0.5 | 65.5mL/(L·d) | — | [ |
1 | 127.5mL/(L·d) | |||||||||
碳布 | 4×10cm | 单室 | 嗜热阳极MFC出水 | 乙酸钠 (0.8gCOD/L) | 批实验 | 55 | 0.8 | 1103mmol/ (m2·d) | — | [ |
碳纤维刷 | Φ2.5cm×12cm | 单室 | 发酵罐厌氧菌群 接种物(17.083g/L) | 葡萄糖 (4g/L) | 批实验 | 35 | 0.8 | 0.37L/gCOD | 29 | [ |
碳棒 | Φ0.5×10cm | 双室 | 厌氧污泥 | CO2 | 批实验 | 35 | 0.6~0.1 | 0.46mL/h | — | [ |
碳棒 | Φ25×80mm | 单室 | 污水处理厂 厌氧污泥(43g/L) | 活性污泥 (41g/L) | 批实验 | 37 | 0.6 | 2998.4mL | — | [ |
石墨毡 | 20cm2 | 三室 | 厌氧污泥(5.7g/L) | 碳酸氢钠 (5g/L) | 批实验 | — | 0.8 | 0.0015L/(m2·d) | 2.6 | [ |
1.1 | 7.2L/(m2·d) | 20.3 | ||||||||
1.3 | 8.8L/(m2·d) | 69.4 |
阴极材料 | 电极尺寸 | 反应器构型 | 接种培养物 | 基质 | 运行方式 | 温度/℃ | 阴极电势 (vs. Ag/AgCl)/V | 甲烷产率 | CE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
不锈钢 | 22×7cm | 双室 | 实验室稳定运行厌氧消化系统的厌氧污泥,64.2g/L | 乙酸钠 (7.3g/L) | 批实验 | 25 | 0.4/1.0 | 1.08/1.18L/ (L·d) | — | [ |
热处理 不锈钢毡 | 20cm2 | 三室 | 厌氧污泥,5.7g/L | 碳酸氢钠 (5g/L) | 批实验 | — | -0.8 | 0.02L/(m2·d) | 2.4 | [ |
-1.1 | 1.0L/(m2·d) | 32.9 | ||||||||
-1.3 | 7.2L/(m2·d) | 60.8 | ||||||||
不锈钢毡 | -0.8 | 0.08L/(m2·d) | 10.0 | |||||||
-1.1 | 0.3L/(m2·d) | 22.9 | ||||||||
-1.3 | 5.14L/(m2·d) | 56.9 | ||||||||
不锈钢 | 135cm2 | 单室 | 消化污泥+活性污泥, 5.2 gVSS/L | 活性污泥 (7.89gCOD/L) | 批实验 | 22.5 | 1.2 | 25.6mL/d | — | [ |
不锈钢 | 10.0×7.6cm | 单室 | 活性污泥 | 乙酸钠 (10g/L) | 批实验 | 25 | 1 | 225.5mL/gCOD | — | [ |
272mL/gCOD | ||||||||||
360mL/gCOD | ||||||||||
泡沫镍 | Φ3cm×0.5mm | 单室 | 实验室稳定运行的MEC出水,14g/L | 废水活性污泥 | 批实验 | 35 | 0.8 | 145L/d | — | [ |
表2 MEC-AD金属基阴极的结构和运行性能
阴极材料 | 电极尺寸 | 反应器构型 | 接种培养物 | 基质 | 运行方式 | 温度/℃ | 阴极电势 (vs. Ag/AgCl)/V | 甲烷产率 | CE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
不锈钢 | 22×7cm | 双室 | 实验室稳定运行厌氧消化系统的厌氧污泥,64.2g/L | 乙酸钠 (7.3g/L) | 批实验 | 25 | 0.4/1.0 | 1.08/1.18L/ (L·d) | — | [ |
热处理 不锈钢毡 | 20cm2 | 三室 | 厌氧污泥,5.7g/L | 碳酸氢钠 (5g/L) | 批实验 | — | -0.8 | 0.02L/(m2·d) | 2.4 | [ |
-1.1 | 1.0L/(m2·d) | 32.9 | ||||||||
-1.3 | 7.2L/(m2·d) | 60.8 | ||||||||
不锈钢毡 | -0.8 | 0.08L/(m2·d) | 10.0 | |||||||
-1.1 | 0.3L/(m2·d) | 22.9 | ||||||||
-1.3 | 5.14L/(m2·d) | 56.9 | ||||||||
不锈钢 | 135cm2 | 单室 | 消化污泥+活性污泥, 5.2 gVSS/L | 活性污泥 (7.89gCOD/L) | 批实验 | 22.5 | 1.2 | 25.6mL/d | — | [ |
不锈钢 | 10.0×7.6cm | 单室 | 活性污泥 | 乙酸钠 (10g/L) | 批实验 | 25 | 1 | 225.5mL/gCOD | — | [ |
272mL/gCOD | ||||||||||
360mL/gCOD | ||||||||||
泡沫镍 | Φ3cm×0.5mm | 单室 | 实验室稳定运行的MEC出水,14g/L | 废水活性污泥 | 批实验 | 35 | 0.8 | 145L/d | — | [ |
阴极材料 | 电极尺寸 | 反应器构型 | 接种培养物 | 基质 | 运行方式 | 温度/℃ | 阴极电势 (vs. Ag/AgCl)/V | 甲烷产率 | CE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
Pt-碳毡 | 0.5mg/cm2 | 双室 | 厌氧污泥, 6.6gVss/L | 乙酸钠 | 批实验 | 35 | 0.8 | 0.91m3/m3 | 71.7 | [ |
Pt修饰碳布 | Φ40mm; 0.5mg/cm2 | 单室 | 污水处理厂曝气池出水 | 1.5g/L 乙酸钠 | 批实验 | 20~25 | 0.8 | 91.8g/(m3·d) | 102.7±4.5 | [ |
Pt-石墨块 | 2cm×2cm×0.32cm | 双室 | 市政污水处理厂二级消化厌氧消化泥 | 乙酸钠 | 批实验 | 30 | 0.6 | 250nmol/(m3·d) | 100 | [ |
Pt-碳布 | Φ3cm; 0.5mg/cm2 | 单室 | 酸化处理后的二沉池厌氧消化污泥 | — | 批实验 | 20 | 0.8 | 0.0564m3/(m3·d) | — | [ |
Pt-碳布 | 0.5mg/cm2 | 单室 | 初沉池出水 | 1g/L乙酸钠 | 批实验 | 30 | 0.8 | 93L/(m3·d) | 82 | [ |
Pt-钛网 | 4cm×5cm | 三室 | 初沉池出水 | CO2 | 批实验+ 连续流 | 22 | 1.2~1.5 | CH4含量98.1% | 32.6 | [ |
磁铁矿/ 沸石-碳布 | 2.5cm×4cm | 单室 | 厌氧二级发酵罐厌氧污泥,16.883g/L | 葡萄糖 | 批实验 | 35 | 0.8 | 238mL/(L·d) | 52.3 | [ |
表3 MEC-AD复合阴极的结构和运行性能
阴极材料 | 电极尺寸 | 反应器构型 | 接种培养物 | 基质 | 运行方式 | 温度/℃ | 阴极电势 (vs. Ag/AgCl)/V | 甲烷产率 | CE/% | 参考文献 |
---|---|---|---|---|---|---|---|---|---|---|
Pt-碳毡 | 0.5mg/cm2 | 双室 | 厌氧污泥, 6.6gVss/L | 乙酸钠 | 批实验 | 35 | 0.8 | 0.91m3/m3 | 71.7 | [ |
Pt修饰碳布 | Φ40mm; 0.5mg/cm2 | 单室 | 污水处理厂曝气池出水 | 1.5g/L 乙酸钠 | 批实验 | 20~25 | 0.8 | 91.8g/(m3·d) | 102.7±4.5 | [ |
Pt-石墨块 | 2cm×2cm×0.32cm | 双室 | 市政污水处理厂二级消化厌氧消化泥 | 乙酸钠 | 批实验 | 30 | 0.6 | 250nmol/(m3·d) | 100 | [ |
Pt-碳布 | Φ3cm; 0.5mg/cm2 | 单室 | 酸化处理后的二沉池厌氧消化污泥 | — | 批实验 | 20 | 0.8 | 0.0564m3/(m3·d) | — | [ |
Pt-碳布 | 0.5mg/cm2 | 单室 | 初沉池出水 | 1g/L乙酸钠 | 批实验 | 30 | 0.8 | 93L/(m3·d) | 82 | [ |
Pt-钛网 | 4cm×5cm | 三室 | 初沉池出水 | CO2 | 批实验+ 连续流 | 22 | 1.2~1.5 | CH4含量98.1% | 32.6 | [ |
磁铁矿/ 沸石-碳布 | 2.5cm×4cm | 单室 | 厌氧二级发酵罐厌氧污泥,16.883g/L | 葡萄糖 | 批实验 | 35 | 0.8 | 238mL/(L·d) | 52.3 | [ |
1 | ANGELIDAKI I, TREU L, TSAPEKOS P, et al. Biogas upgrading and utilization: current status and perspectives[J]. Biotechnology Advances, 2018, 36(2): 452-466. |
2 | 孟凡飞, 王海波, 廖昌建. 水合物法提纯沼气技术研究进展[J]. 化工进展, 2018, 37(1): 68-79. |
MENG Fanfei, WANG Haibo, LIAO Changjian. Research progress of hydrate separation technology for biogas purification[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 68-79. | |
3 | OKONKWO C N, LEE J J, DE VYLDER A, et al. Selective removal of hydrogen sulfide from simulated biogas streams using sterically hindered amine adsorbents[J]. Chemical Engineering Journal, 2020, 379: 122349. |
4 | JIANG Y Y, LING J H, XIAO P, et al. Simultaneous biogas purification and CO2 capture by vacuum swing adsorption using zeolite NaUSY[J]. Chemical Engineering Journal, 2018, 334: 2593-2602. |
5 | BASSANI I, KOUGIAS P G, TREU L, et al. Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions[J]. Environmental Science & Technology, 2015, 49(20): 12585-12593. |
6 | 周苑媛, 董楠石, 卜凡, 等. 基于外源供氢沼气生物提纯微生物及反应器开发研究进展[J]. 化工进展, 2018, 37(7): 2765-2772. |
ZHOU Yuanyuan, DONG Nanshi, BU Fan, et al. Microbial community and reactor development of microbiological biogas upgrading with external hydrogen supply: a review[J]. Chemical Industry and Engineering Progress, 2018, 37(7): 2765-2772. | |
7 | EERTEN-JANSEN M C A A VAN, HEIJNE A T, BUISMAN C J N, et al. Microbial electrolysis cells for production of methane from CO2: long-term performance and perspectives[J]. International Journal of Energy Research, 2012, 36(6): 809-819. |
8 | NELABHOTLA A, DINAMARCA C. Bioelectrochemical CO2 reduction to methane: MES integration in biogas production processes[J]. Applied Sciences, 2019, 9(6): 1056. |
9 | ZHANG Z Y, SONG Y, ZHENG S J, et al. Electro-conversion of carbon dioxide (CO2) to low-carbon methane by bioelectromethanogenesis process in microbial electrolysis cells: the current status and future perspective[J]. Bioresource Technology, 2019, 279: 339-349. |
10 | 靳捷, 刘奕梅, 邵俊捷, 等. 基于阴极材料优化的微生物电解池研究进展[J]. 化工进展, 2016, 35(2): 595-603. |
JIN Jie, LIU Yimei, SHAO Junjie, et al. Review on optimization of cathode materials in microbial electrolysis cells[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 595-603. | |
11 | 郑韶娟, 陆雪琴, 张衷译, 等. 微生物电解池: 生物电催化辅助CO2甲烷化技术[J]. 环境化学, 2019, 38(7): 1666-1674. |
ZHENG Shaojuan, LU Xueqin, ZHANG Zhongyi, et al. Microbial electrolysis cell (MEC): a new platform for CO2 bioelectromethanogenesis assisted by bioelectrocatalysis[J]. Environmental Chemistry, 2019, 38(7): 1666-1674. | |
12 | GUO K, FREGUIA S, DENNIS P G, et al. Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems[J]. Environmental Science & Technology, 2013, 47(13): 7563-7570. |
13 | GUO K, SOERIYADI A H, PATIL S A, et al. Surfactant treatment of carbon felt enhances anodic microbial electrocatalysis in bioelectrochemical systems[J]. Electrochemistry Communications, 2014, 39: 1-4. |
14 | ZHANG T, NIE H R, BAIN T S, et al. Improved cathode materials for microbial electrosynthesis[J]. Energy & Environmental Science, 2013, 6(1): 217-224. |
15 | GUO K, DONOSE B C, SOERIYADI A H, et al. Flame oxidation of stainless steel felt enhances anodic biofilm formation and current output in bioelectrochemical systems[J]. Environmental Science & Technology, 2014, 48(12): 7151-7156. |
16 | HOU J X, LIU Z L, YANG S Q, et al. Three-dimensional macroporous anodes based on stainless steel fiber felt for high-performance microbial fuel cells[J]. Journal of Power Sources, 2014, 258: 204-209. |
17 | GUO K, CHEN X, FREGUIA S, et al. Spontaneous modification of carbon surface with neutral red from its diazonium salts for bioelectrochemical systems[J]. Biosensors & Bioelectronics, 2013, 47: 184-189. |
18 | CUI M H, CUI D, LEE H S, et al. Effect of electrode position on azo dye removal in an up-flow hybrid anaerobic digestion reactor with built-in bioelectrochemical system[J]. Scientific Reports, 2016, 6: 25223. |
19 | CHENG S, XING D, CALL D F, et al. Direct biological conversion of electrical current into methane by electromethanogenesis[J]. Environmental Science & Technology, 2009, 43(10): 3953-3958. |
20 | LOGAN B E. Microbial fuel cells[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2007. |
21 | LIN C B, WU P, LIU Y D, et al. Enhanced biogas production and biodegradation of phenanthrene in wastewater sludge treated anaerobic digestion reactors fitted with a bioelectrode system[J]. Chemical Engineering Journal, 2019, 365: 1-9. |
22 | CHOI K S, KONDAVEETI S, MIN B. Bioelectrochemical methane (CH4) production in anaerobic digestion at different supplemental voltages[J]. Bioresource Technology, 2017, 245: 826-832. |
23 | LEE M, NAGENDRANATHA REDDY C, MIN B. In situ integration of microbial electrochemical systems into anaerobic digestion to improve methane fermentation at different substrate concentrations[J]. International Journal of Hydrogen Energy, 2019, 44(4): 2380-2389. |
24 | NAGENDRANATHA REDDY C, NGUYEN H T H, NOORI M T, et al. Potential applications of algae in the cathode of microbial fuel cells for enhanced electricity generation with simultaneous nutrient removal and algae biorefinery: current status and future perspectives[J]. Bioresource Technology, 2019, 292: 122010. |
25 | ZHEN G Y, LU X Q, KOBAYASHI T, et al. Promoted electromethanosynthesis in a two-chamber microbial electrolysis cells (MECs) containing a hybrid biocathode covered with graphite felt (GF)[J]. Chemical Engineering Journal, 2016, 284: 1146-1155. |
26 | LIU D, ROCA-PUIGROS M, GEPPERT F, et al. Granular carbon-based electrodes as cathodes in methane-producing bioelectrochemical systems[J]. Frontiers in Bioengineering and Biotechnology, 2018, 6: 78. |
27 | ZHANG D D, ZHU W B, TANG C, et al. Bioreactor performance and methanogenic population dynamics in a low-temperature (5―18℃) anaerobic fixed-bed reactor[J]. Bioresource Technology, 2012, 104: 136-143. |
28 | XU S Y, ZHANG Y C, LUO L W, et al. Startup performance of microbial electrolysis cell assisted anaerobic digester (MEC-AD) with pre-acclimated activated carbon[J]. Bioresource Technology Reports, 2019, 5: 91-98. |
29 | CHENG S A, MAO Z Z, SUN Y, et al. A novel electrochemical oxidation-methanogenesis system for simultaneously degrading antibiotics and reducing CO2 to CH4 with low energy costs[J]. Science of the Total Environment, 2021, 750: 141732. |
30 | LIU D D, ZHANG L, CHEN S, et al. Bioelectrochemical enhancement of methane production in low temperature anaerobic digestion at 10℃[J]. Water Research, 2016, 99: 281-287. |
31 | DE VRIEZE J, GILDEMYN S, ARENDS J B A, et al. Biomass retention on electrodes rather than electrical current enhances stability in anaerobic digestion[J]. Water Research, 2014, 54: 211-221. |
32 | FU Q, KURAMOCHI Y, FUKUSHIMA N, et al. Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis[J]. Environmental Science & Technology, 2015, 49(2): 1225-1232. |
33 | VU M T, NOORI M T, MIN B. Conductive magnetite nanoparticles trigger syntrophic methane production in single chamber microbial electrochemical systems[J]. Bioresource Technology, 2020, 296: 122265. |
34 | ZHEN G Y, KOBAYASHI T, LU X Q, et al. Understanding methane bioelectrosynthesis from carbon dioxide in a two-chamber microbial electrolysis cells (MECs) containing a carbon biocathode[J]. Bioresource Technology, 2015, 186: 141-148. |
35 | ZHAO Z Q, ZHANG Y B, WANG L Y, et al. Potential for direct interspecies electron transfer in an electric-anaerobic system to increase methane production from sludge digestion[J]. Scientific Reports, 2015, 5: 11094. |
36 | LIU D D, ZHENG T Y, BUISMAN C, et al. Heat-treated stainless steel felt as a new cathode material in a methane-producing bioelectrochemical system[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11346-11353. |
37 | KUNDU A, SAHU J N, REDZWAN G, et al. An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell[J]. International Journal of Hydrogen Energy, 2013, 38(4): 1745-1757. |
38 | BO T, ZHU X Y, ZHANG L X, et al. A new upgraded biogas production process: coupling microbial electrolysis cell and anaerobic digestion in single-chamber, barrel-shape stainless steel reactor[J]. Electrochemistry Communications, 2014, 45: 67-70. |
39 | 薄涛, 翟洪艳, 季民. 不锈钢毡电极MEC甲烷原位纯化及原理[J]. 环境科学学报, 2017, 37(11): 4057-4063. |
BO Tao, ZHAI Hongyan, JI Min. Research on in suit methane purification in MEC with stainless steel felt as electrode and theory analysis[J]. Acta Scientiae Circumstantiae, 2017, 37(11): 4057-4063. | |
40 | YANG G W, XU C L, LI H L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance[J]. Chemical Communications, 2008(48): 6537-6539. |
41 | WANG L, YANG C X, SANGEETHA T, et al. Methane production in a bioelectrochemistry integrated anaerobic reactor with layered nickel foam electrodes[J]. Bioresource Technology, 2020, 313: 123657. |
42 | GIL-CARRERA L, ESCAPA A, CARRACEDO B, et al. Performance of a semi-pilot tubular microbial electrolysis cell (MEC) under several hydraulic retention times and applied voltages[J]. Bioresource Technology, 2013, 146: 63-69. |
43 | ZHANG Y, GONG L L, JIANG Q Q, et al. In-situ CO2 sequestration and nutrients removal in an anaerobic digestion-microbial electrolysis cell by silicates application: effect of dosage and biogas circulation[J]. Chemical Engineering Journal, 2020, 399: 125680. |
44 | WANG L, HE Z W, GUO Z C, et al. Microbial community development on different cathode metals in a bioelectrolysis enhanced methane production system[J]. Journal of Power Sources, 2019, 444: 227306. |
45 | HU H Q, FAN Y Z, LIU H. Hydrogen production in single-chamber tubular microbial electrolysis cells using non-precious-metal catalysts[J]. International Journal of Hydrogen Energy, 2009, 34(20): 8535-8542. |
46 | SANGEETHA T, GUO Z C, LIU W Z, et al. Cathode material as an influencing factor on beer wastewater treatment and methane production in a novel integrated upflow microbial electrolysis cell (Upflow-MEC)[J]. International Journal of Hydrogen Energy, 2016, 41(4): 2189-2196. |
47 | CHENG T F, LI H Y, XIA W, et al. Exploration into the nickel ‘microcosmos’ in prokaryotes[J]. Coordination Chemistry Reviews, 2016, 311: 24-37. |
48 | SUO D, FANG Z, YU Y Y, et al. Synthetic curli enables efficient microbial electrocatalysis with stainless-steel electrode[J]. AIChE Journal, 2020, 66(4): e16897. |
49 | ASZTALOS J R, KIM Y. Enhanced digestion of waste activated sludge using microbial electrolysis cells at ambient temperature[J]. Water Research, 2015, 87: 503-512. |
50 | YIN Q, ZHU X Y, ZHAN G Q, et al. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina [J]. Journal of Environmental Sciences (China), 2016, 42: 210-214. |
51 | LIU W Z, CAI W W, GUO Z C, et al. Microbial electrolysis contribution to anaerobic digestion of waste activated sludge, leading to accelerated methane production[J]. Renewable Energy, 2016, 91: 334-339. |
52 | SIEGERT M, YATES M D, CALL D F, et al. Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis[J]. ACS Sustain Chem. Eng., 2014, 2(4): 910-917. |
53 | CAI W W, LIU W Z, YANG C X, et al. Biocathodic methanogenic community in an integrated anaerobic digestion and microbial electrolysis system for enhancement of methane production from waste sludge[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4913-4921. |
54 | CAI W W, LIU W Z, ZHANG Z J, et al. mcrA sequencing reveals the role of basophilic methanogens in a cathodic methanogenic community[J]. Water Research, 2018, 136: 192-199. |
55 | LI X, ZENG C P, LU Y B, et al. Development of methanogens within cathodic biofilm in the single-chamber microbial electrolysis cell[J]. Bioresource Technology, 2019, 274: 403-409. |
56 | GOPAL J, HASAN N, MANIKANDAN M, et al. Bacterial toxicity/compatibility of platinum nanospheres, nanocuboids and nanoflowers[J]. Scientific Reports, 2013, 3: 1260. |
57 | RIZZELLO L, CINGOLANI R, POMPA P P. Nanotechnology tools for antibacterial materials[J]. Nanomedicine, 2013, 8(5): 807-821. |
58 | CHOI M J, YANG E, YU H W, et al. Transition metal/carbon nanoparticle composite catalysts as platinum substitutes for bioelectrochemical hydrogen production using microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2019, 44(4): 2258-2265. |
59 | JEREMIASSE A W, HAMELERS H V M, SAAKES M, et al. Ni foam cathode enables high volumetric H2 production in a microbial electrolysis cell[J]. International Journal of Hydrogen Energy, 2010, 35(23): 12716-12723. |
60 | SELEMBO P A, MERRILL M D, LOGAN B E. Hydrogen production with nickel powder cathode catalysts in microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2010, 35(2): 428-437. |
61 | KIM K R, KANG J, CHAE K J. Improvement in methanogenesis by incorporating transition metal nanoparticles and granular activated carbon composites in microbial electrolysis cells[J]. International Journal of Hydrogen Energy, 2017, 42(45): 27623-27629. |
62 | KIM K Y, HABAS S E, SCHAIDLE J A, et al. Application of phase-pure nickel phosphide nanoparticles as cathode catalysts for hydrogen production in microbial electrolysis cells[J]. Bioresource Technology, 2019, 293: 122067. |
63 | JAYABALAN T, MATHESWARAN M, RADHAKRISHNAN T K, et al. Influence of nickel molybdate nanocatalyst for enhancing biohydrogen production in microbial electrolysis cell utilizing sugar industrial effluent[J]. Bioresource Technology, 2021, 320: 124284. |
64 | JAYABALAN T, MATHESWARAN M, PREETHI V, et al. Enhancing biohydrogen production from sugar industry wastewater using metal oxide/graphene nanocomposite catalysts in microbial electrolysis cell[J]. International Journal of Hydrogen Energy, 2020, 45(13): 7647-7655. |
65 | GAO T, ZHANG H M, XU X T, et al. Integrating microbial electrolysis cell based on electrochemical carbon dioxide reduction into anaerobic osmosis membrane reactor for biogas upgrading[J]. Water Research, 2021, 190: 116679. |
66 | YANG Z M, GUO R B, SHI X S, et al. Magnetite nanoparticles enable a rapid conversion of volatile fatty acids to methane[J]. RSC Advances, 2016, 6(31): 25662-25668. |
67 | LIU P P, LIANG P, JIANG Y, et al. Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell[J]. Applied Energy, 2018, 216: 382-388. |
68 | LIU F H, ROTARU A E, SHRESTHA P M, et al. Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange[J]. Environmental Microbiology, 2015, 17(3): 648-655. |
69 | VU M T, NOORI M T, MIN B. Magnetite/zeolite nanocomposite-modified cathode for enhancing methane generation in microbial electrochemical systems[J]. Chemical Engineering Journal, 2020, 393: 124613. |
70 | SUN R, ZHOU A J, JIA J N, et al. Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells[J]. Bioresource Technology, 2015, 175: 68-74. |
71 | PARK J, LEE B, TIAN D, et al. Bioelectrochemical enhancement of methane production from highly concentrated food waste in a combined anaerobic digester and microbial electrolysis cell[J]. Bioresource Technology, 2018, 247: 226-233. |
72 | WANG Y, ZHONG K Q, LI H, et al. Bimetallic hybrids modified with carbon nanotubes as cathode catalysts for microbial fuel cell: effective oxygen reduction catalysis and inhibition of biofilm formation[J]. Journal of Power Sources, 2021, 485: 229273. |
73 | YI G P, CUI D, YANG L M, et al. Bacteria-affinity aminated carbon nanotubes bridging reduced graphene oxide for highly efficient microbial electrocatalysis[J]. Environmental Research, 2020, 191: 110212. |
74 | GÖDDE J, MERKO M, XIA W, et al. Nickel nanoparticles supported on nitrogen-doped carbon nanotubes are a highly active, selective and stable CO2 methanation catalyst[J]. Journal of Energy Chemistry, 2021, 54: 323-331. |
75 | 胡凯, 贾硕秋, 陈卫. 微生物电解池构型和电极材料研究综述[J]. 能源环境保护, 2016, 30(5): 1-8, 34. |
HU Kai, JIA Shuoqiu, CHEN Wei. Review on configurations and electrode materials of microbial electrolysis cell[J]. Energy Environmental Protection, 2016, 30(5): 1-8, 34. | |
76 | BEEGLE J R, BOROLE A P. Energy production from waste: evaluation of anaerobic digestion and bioelectrochemical systems based on energy efficiency and economic factors[J]. Renewable and Sustainable Energy Reviews, 2018, 96: 343-351. |
77 | PARK J G, LEE B, SHI P, et al. Effects of electrode distance and mixing velocity on current density and methane production in an anaerobic digester equipped with a microbial methanogenesis cell[J]. International Journal of Hydrogen Energy, 2017, 42(45): 27732-27740. |
78 | HOU Y P, ZHANG R D, LUO H P, et al. Microbial electrolysis cell with spiral wound electrode for wastewater treatment and methane production[J]. Process Biochemistry, 2015, 50(7): 1103-1109. |
79 | PARK J G, JIANG D Q, LEE B, et al. Towards the practical application of bioelectrochemical anaerobic digestion (BEAD): insights into electrode materials, reactor configurations, and process designs[J]. Water Research, 2020, 184: 116214. |
80 | RADER G K, LOGAN B E. Multi-electrode continuous flow microbial electrolysis cell for biogas production from acetate[J]. International Journal of Hydrogen Energy, 2010, 35(17): 8848-8854. |
81 | 毛政中, 孙怡, 黄志鹏, 等. 微生物电解池产甲烷技术研究进展[J]. 化工学报, 2019, 70(7): 2411-2425. |
MAO Zhengzhong, SUN Yi, HUANG Zhipeng, et al. Progress of research on methanogenic microbial electrolysis cell[J]. CIESC Journal, 2019, 70(7): 2411-2425. | |
82 | ENZMANN F, HOLTMANN D. Rational scale-up of a methane producing bioelectrochemical reactor to 50L pilot scale[J]. Chemical Engineering Science, 2019, 207: 1148-1158. |
83 | YUAN Y, CHENG H Y, CHEN F, et al. Enhanced methane production by alleviating sulfide inhibition with a microbial electrolysis coupled anaerobic digestion reactor[J]. Environment International, 2020, 136: 105503. |
84 | JIN X, ZHANG Y, LI X, et al. Microbial electrolytic capture, separation and regeneration of CO2 for biogas upgrading[J]. Environmental Science & Technology, 2017, 51(16): 9371-9378. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[3] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[5] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[8] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[11] | 奚永兰, 王成成, 叶小梅, 刘洋, 贾昭炎, 曹春晖, 韩挺, 张应鹏, 田雨. 微纳米气泡在厌氧消化中的应用研究进展[J]. 化工进展, 2023, 42(8): 4414-4423. |
[12] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[13] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[14] | 刘洋, 叶小梅, 苗晓, 王成成, 贾昭炎, 曹春晖, 奚永兰. 农村有机生活垃圾干发酵氨胁迫下中试工艺[J]. 化工进展, 2023, 42(7): 3847-3854. |
[15] | 张凯, 吕秋楠, 李刚, 李小森, 莫家媚. 南海海泥中甲烷水合物的形貌及赋存特性[J]. 化工进展, 2023, 42(7): 3865-3874. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |