1 |
王广建, 石林, 王芳, 等. 高分散Ni2P/γ-Al2O3催化剂的制备及其加氢脱硫性能研究[J]. 现代化工, 2021, 41(4): 157-161.
|
|
WANG Guangjian, SHI Lin, WANG Fang, et al. Preparation of highly-dispersed Ni2P/γ-Al2O3 catalyst and its catalytic performance in hydrodesulfurization[J]. Modern Chemical Industry, 2021, 41(4): 157-161.
|
2 |
潘志明, 刘明辉, 牛萍萍, 等. Ni2P纳米片用于光催化二氧化碳还原[J]. 物理化学学报, 2020, 36(1): 120-128.
|
|
PAN Zhiming, LIU Minghui, NIU Pingping, et al. Photocatalytic CO2 reduction using Ni2P nanosheets[J]. Acta Phys. -Chim. Sin., 2020, 36 (1): 120-128.
|
3 |
赵云霏, 毋瑞仙, 蒋平平, 等. g-C3N4和Ni2P的复合及其光催化产氢性能研究[J]. 分子催化, 2018, 32(2): 142-151.
|
|
ZHAO Yunfei, WU Ruixian, JIANG Pingping, et al. Integration of g-C3N4 and Ni2P together for photocatalytic hydrogen evolution[J]. Journal of Molecular Catalysis (China), 2018, 32(2): 142-151.
|
4 |
CALVINHO K U D, LAURSEN A B, YAP K M K, et al. Selective CO2 reduction to C3 and C4 oxyhydrocarbons on nickel phosphides at overpotentials as low as 10mV[J]. Energy & Environmental Science, 2018, 11(9): 2550-2559.
|
5 |
LAURSEN A B, PATRAJU K R, WHITAKER M J, et al. Nanocrystalline Ni5P4: a hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media[J]. Energy & Environmental Science, 2015, 8(3): 1027-1034.
|
6 |
李景锋, 李学辉, 柴永明, 等. 磷化镍的制备、表征及其催化性能研究进展[J]. 化工进展, 2013, 32(11): 2621-2630.
|
|
LI Jingfeng, LI Xuehui, CHAI Yongming, et al. Progress in the fabrication, characterization and catalytic reactvity of nickel phosphide[J]. Chemical Industry and Engineering Progress, 2013, 32(11): 2621-2630.
|
7 |
YU Z Q, WANG Y, SUN Z C, et al. Ni3P as a high-performance catalytic phase for the hydrodeoxygenation of phenolic compounds[J]. Green Chemistry, 2018, 20(3): 609-619.
|
8 |
LIU X G, LI Z Y, ZHANG B Q, et al. Improvement of hydrodeoxygenation stability of nickel phosphide based catalysts by silica modification as structural promoter[J]. Fuel, 2017, 204: 144-151.
|
9 |
ZHANG X Y, GUO B Y, CHEN Q W, et al. Ultrafine and highly-dispersed bimetal Ni2P/Co2P encapsulated by hollow N-doped carbon nanospheres for efficient hydrogen evolution[J]. International Journal of Hydrogen Energy, 2019, 44(29): 14908-14917.
|
10 |
SUN M, LIU H, QU J, et al. Earth-rich transition metal phosphide for energy conversion and storage[J]. Advanced Energy Materials, 2016, 6(13): 1600087.
|
11 |
LI D, SENEVIRATHNE K, AQUILINA L, et al. Effect of synthetic levers on nickel phosphide nanoparticle formation: Ni5P4 and NiP2 [J]. Inorganic Chemistry, 2015, 54(16): 7968-7975.
|
12 |
遇治权. Ni3P基催化剂的制备及苯酚加氢脱氧性能[D]. 大连: 大连理工大学, 2019.
|
|
YU Zhiquan. Preparation of Ni3P-based catalysts and their catalytic performances in phenol hydrodeoxygenation[D]. Dalian: Dalian University of Technology, 2019.
|
13 |
SONG L M, ZHANG S J, WU X Q, et al. A novel synthesis of Ni2P catalysts by reducing nickel sulfide at low temperature[J]. Vacuum, 2015, 111: 68-72.
|
14 |
SONG H, DAI M, SONG H L, et al. A novel synthesis of Ni2P/MCM-41 catalysts by reducing a precursor of ammonium hypophosphite and nickel chloride at low temperature[J]. Applied Catalysis A: General, 2013, 462/463: 247-255.
|
15 |
孟繁星, 遇治权, 景文文, 等. 磷酸铈对磷化镍催化苯酚转移加氢的促进作用[J]. 高等学校化学学报, 2020, 41(4): 765-771.
|
|
MENG Fanxing, YU Zhiquan, JING Wenwen, et al. Promoting effect of cerous phosphate on the phenol catalytic transfer hydrogenation over nickel phosphide catalyst[J]. Chemical Journal of Chinese Universities, 2020, 41(4): 765-771.
|
16 |
SUN Z J, ZHENG H F, LI J S, et al. Extraordinarily efficient photocatalytic hydrogen evolution in water using semiconductor nanorods integrated with crystalline Ni2P cocatalysts[J]. Energy & Environmental Science, 2015, 8(9): 2668-2676.
|
17 |
MURATA K, KREETHAWATE L, LARPKIATTAWORN S, et al. Evaluation of Ni-based catalysts for the catalytic fast pyrolysis of jatropha residues[J]. Journal of Analytical and Applied Pyrolysis, 2016, 118: 308-316.
|
18 |
ZHOU K, WANG B, JIANG S, et al. Facile preparation of nickel phosphide (Ni12P5) and synergistic effect with intumescent flame retardants in ethylene–vinyl acetate copolymer [J]. Industrial & Engineering Chemistry Research, 2013, 52(19): 6303-6310.
|
19 |
FENG X, ZHAO Y H, LIU D K, et al. Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst[J]. International Journal of Hydrogen Energy, 2018, 43(36): 17112-17120.
|
20 |
JIN L H, XIA H, HUANG Z P, et al. Phase separation synthesis of trinickel monophosphide porous hollow nanospheres for efficient hydrogen evolution[J]. Journal of Materials Chemistry A, 2016, 4(28): 10925-10932.
|
21 |
ZHANG R, WANG G D, WEI Z H, et al. A Fe–Ni5P4/Fe–Ni2P heterojunction electrocatalyst for highly efficient solar-to-hydrogen generation[J]. Journal of Materials Chemistry A, 2021, 9(2): 1221-1229.
|
22 |
ZHANG C, PARK G, LEE B J, et al. Self-templated formation of fluffy graphene-wrapped Ni5P4 hollow spheres for Li-ion battery anodes with high cycling stability[J]. ACS Applied Materials & Interfaces, 2021, 13(20): 23714-23723.
|
23 |
ANDERS B, ROBERT B, MARIANNA J, et al. Climbing the volcano of electrocatalytic activity while avoiding catalyst corrosion: Ni3P, a hydrogen evolution electrocatalyst stable in both acid and alkali[J]. ACS Catalysis. 2018, 8: 4408-4419.
|
24 |
YU Z Q, WANG Y, LIU S, et al. Aqueous phase hydrodeoxygenation of phenol over Ni3P-CePO4 catalysts[J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10216-10225.
|
25 |
ZHOU W J, XIN H, YANG H R, et al. The deoxygenation pathways of palmitic acid into hydrocarbons on silica-supported Ni12P5 and Ni2P catalysts[J]. Catalysts, 2018, 8(4): 153.
|
26 |
SUN Z C, ZHU M S, FUJITSUKA M, et al. Phase effect of Ni x P y hybridized with g-C3N4 for photocatalytic hydrogen generation[J]. ACS Applied Materials & Interfaces, 2017, 9(36): 30583-30590.
|
27 |
GUO X M, CAO J, GUO M N, et al. Excellent visible light photocatalytic H2 evolution activity of novel noble-metal-free Ni12P5/CdS composite[J]. Catalysis Communications, 2019, 119: 176-179.
|
28 |
LI Q X, HU X. First-principles study of Ni2P(0001) surfaces[J]. Physical Review B, 2006, 74(3): 035414.
|
29 |
ZHOU L C, KONG Y, DU Y, et al. Spatial and electronic structure of the Ni3P surface[J]. Applied Surface Science, 2010, 256(24): 7692-7695.
|