化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2231-2242.DOI: 10.16085/j.issn.1000-6613.2021-1277
张惠宁1,2(), 石中玉1, 肖彦奎1, 张晓琴3, 尹鑫1, 田丽红1
收稿日期:
2021-06-18
修回日期:
2021-08-24
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
张惠宁
作者简介:
张惠宁(1987—),男,博士,副教授,硕士研究生导师,研究方向为水污染控制理论、污水处理的新型(纳米)材料、污染物的光催化降解。E-mail:基金资助:
ZHANG Huining1,2(), SHI Zhongyu1, XIAO Yankui1, ZHANG Xiaoqin3, YIN Xin1, TIAN Lihong1
Received:
2021-06-18
Revised:
2021-08-24
Online:
2022-05-05
Published:
2022-05-24
Contact:
ZHANG Huining
摘要:
石墨烯作为一类新型纳米材料,具有对水中各类污染物良好的吸附去除性能,但石墨烯纳米粉末态的性状使其在使用后难以从溶液中分离出来而造成二次污染。因此构建大体积的三维石墨烯结构,可以有效弥补水处理中纳米材料难以分离的问题。本文介绍了如今常用的三维结构制备方法,如模板法、自组装法等,但这些方法通常步骤烦琐、影响因素及所需条件较多等,在过程中易产生结构缺陷,从而影响制得的三维结构的力学性能。文中指出,3D打印法通过计算机数据调控,具有操作简便、结构设计精准、批量制备的优点,可制备出优良的三维结构体,并可通过对浆料组分的灵活调控进行改性或增加其力学性能。综上所述,配置满足3D打印黏度要求的浆料,并使制得的三维结构具备一定要求的力学性能,充分利用其精密的规模化生产,是使3D打印三维石墨烯适用于水处理的关键所在。
中图分类号:
张惠宁, 石中玉, 肖彦奎, 张晓琴, 尹鑫, 田丽红. 3D打印制备三维石墨烯及其在水处理中的应用[J]. 化工进展, 2022, 41(5): 2231-2242.
ZHANG Huining, SHI Zhongyu, XIAO Yankui, ZHANG Xiaoqin, YIN Xin, TIAN Lihong. Preparation of 3D graphene by 3D printing and its application in water treatment[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2231-2242.
项目 | 模板法 | 化学交联法 | 自组装法 | 3D打印法 |
---|---|---|---|---|
优点 | 方法简便、成本较低、制备的三维石墨烯力学性能较差 | 使三维结构具有高强度的化学交联 | 工艺简便、能耗较低 | 快速制备、结构精密、较好的力学性能,且无须后处理工程 |
缺点 | 模板通常无法去除干净,并且去除模板时可能损坏结构,导致表面的缺陷较多 | 交联剂会降低导电性,反应所需温度也会增加能源消耗 | 影响因素较多,无法控制结构形貌的精度,力学性能较差 | 通常对材料及浆料具有一定要求。且部分3D打印技术成本较高 |
孔隙率 | 孔隙率高 | 孔隙率受pH影响[ | 可一步成型获得比表面积较大的三维石墨烯凝胶 | 孔隙率高 |
表1 常用三维结构制备方法优缺点
项目 | 模板法 | 化学交联法 | 自组装法 | 3D打印法 |
---|---|---|---|---|
优点 | 方法简便、成本较低、制备的三维石墨烯力学性能较差 | 使三维结构具有高强度的化学交联 | 工艺简便、能耗较低 | 快速制备、结构精密、较好的力学性能,且无须后处理工程 |
缺点 | 模板通常无法去除干净,并且去除模板时可能损坏结构,导致表面的缺陷较多 | 交联剂会降低导电性,反应所需温度也会增加能源消耗 | 影响因素较多,无法控制结构形貌的精度,力学性能较差 | 通常对材料及浆料具有一定要求。且部分3D打印技术成本较高 |
孔隙率 | 孔隙率高 | 孔隙率受pH影响[ | 可一步成型获得比表面积较大的三维石墨烯凝胶 | 孔隙率高 |
项目 | 喷墨打印法 | 熔融沉积成型 | 直写成型法 |
---|---|---|---|
打印材料 | 工程塑料、粉末、尼龙、光敏树脂,甚至是金属、陶瓷等[ | 丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚乳酸(PLA)、聚碳酸酯(PC)、耐冲击性聚苯乙烯(HIPS)、热塑性聚氨酯 (TPU)、聚醚醚酮 (PEEK)等[ | 一定流变性能的碳浆、聚酰亚胺、低温油墨、导电材料(金、银、铜等导电浆料)、环氧树脂、可消散有机物等 |
墨水要求 | 墨水具备较快的干燥速度、良好的黏附性、优异的稳定性、易生产加工 | 墨水具备良好的热塑加工性能,具备合适的模量和黏度,较低的热收缩率,较低的结晶度,较高的稳定性 | 墨水具备一定的黏度,同时具备“剪切稀化”的性能 |
优点 | 无须制作模板,固化过程无溶剂挥发,灵活设定打印效果 | 设备投入低、操作简单 | 打印材料的选择广泛,结构便于设计,无过多影响参数 |
缺点 | 干燥时间较长,墨水回收利用易变质 | 材料限制较大,打印结构表面粗糙,可能具备细胞毒性 | 设备成本高 |
应用 | 3D 制作和增值产品( 喷边、手机壳等) 、装饰建材、印刷电子、纺织、图像展示、陶瓷、木材、墙面装饰 | 零件制造、汽车、航天等领域广泛应用 | 生物医学、微电子器件、高性能材料等方面的应用 |
表2 常用3D打印法打印材料、墨水要求及优缺点
项目 | 喷墨打印法 | 熔融沉积成型 | 直写成型法 |
---|---|---|---|
打印材料 | 工程塑料、粉末、尼龙、光敏树脂,甚至是金属、陶瓷等[ | 丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚乳酸(PLA)、聚碳酸酯(PC)、耐冲击性聚苯乙烯(HIPS)、热塑性聚氨酯 (TPU)、聚醚醚酮 (PEEK)等[ | 一定流变性能的碳浆、聚酰亚胺、低温油墨、导电材料(金、银、铜等导电浆料)、环氧树脂、可消散有机物等 |
墨水要求 | 墨水具备较快的干燥速度、良好的黏附性、优异的稳定性、易生产加工 | 墨水具备良好的热塑加工性能,具备合适的模量和黏度,较低的热收缩率,较低的结晶度,较高的稳定性 | 墨水具备一定的黏度,同时具备“剪切稀化”的性能 |
优点 | 无须制作模板,固化过程无溶剂挥发,灵活设定打印效果 | 设备投入低、操作简单 | 打印材料的选择广泛,结构便于设计,无过多影响参数 |
缺点 | 干燥时间较长,墨水回收利用易变质 | 材料限制较大,打印结构表面粗糙,可能具备细胞毒性 | 设备成本高 |
应用 | 3D 制作和增值产品( 喷边、手机壳等) 、装饰建材、印刷电子、纺织、图像展示、陶瓷、木材、墙面装饰 | 零件制造、汽车、航天等领域广泛应用 | 生物医学、微电子器件、高性能材料等方面的应用 |
1 | 牟铭. 石墨烯材料处理生物难降解有机废水技术研究[D]. 北京: 钢铁研究总院, 2018. |
MU Ming. Study on the treatment of refractory organic wastewater by graphene materials[D]. Beijing: China Iron and Steel Research Institute, 2018. | |
2 | 刘阳, 顾平, 张光辉. 氧化石墨烯分离膜的制备及其水处理领域的应用进展[J]. 化工进展, 2017, 36(11): 4151-4159. |
LIU Yang, GU Ping, ZHANG Guanghui. Fabrication of graphene oxide-assisted membranes and its applications in water treatment and purification[J]. Chemical Industry and Engineering Progress, 2017, 36(11): 4151-4159. | |
3 | 金礼俊, 唐善法. 活性炭在污水净化应用中的研究进展[J]. 化学工程师, 2019, 33(9): 68-70, 90. |
JIN Lijun, TANG Shanfa. Research progress of activated carbon in wastewater purification applications[J]. Chemical Engineer, 2019, 33(9): 68-70, 90. | |
4 | KANTARLI I C, YANIK J. Activated carbon from leather shaving wastes and its application in removal of toxic materials[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 348-356. |
5 | GUO X F, CUI X Y, LI H S, et al. Purifying effect of biochar-zeolite constructed wetlands on arsenic-containing biogas slurry in large-scale pig farms[J]. Journal of Cleaner Production, 2021, 279: 123579. |
6 | REY V, RÍOS C A, VARGAS L Y, et al. Use of natural zeolite-rich tuff and siliceous sand for mine water treatment from abandoned gold mine tailings[J]. Journal of Geochemical Exploration, 2021, 220: 106660. |
7 | 邱军科, 王朋, 张迪, 等. 三维石墨烯基多孔碳材料的制备及对污染物的吸附性能研究进展[J]. 材料导报, 2020, 34(13):13028-13035. |
QIU Junke, WANG Peng, ZHANG Di, et al. Preparation of three-dimensional graphene-based porous carbon materials and their adsorption properties for pollutants: a review [J]. Materials Reports, 2020, 34(13): 13028-13035. | |
8 | HUANG X, QI X Y, BOEY F, et al. Graphene-based composites[J]. Chemical Society Reviews, 2012, 41(2): 666-686. |
9 | 孙怡然, 杨明轩, 于飞, 等. 石墨烯气凝胶吸附剂的制备及其在水处理中的应用[J]. 化学进展, 2015, 27(8): 1133-1146. |
SUN Yiran, YANG Mingxuan, YU Fei, et al. Synthesis of graphene aerogel adsorbents and their applications in water treatment[J]. Progress in Chemistry, 2015, 27(8): 1133-1146. | |
10 | 刘杰, 曾渊, 张俊, 等. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680. |
LIU Jie, ZENG Yuan, ZHANG Jun, et al. Preparation, structures and properties of three-dimensional graphene-based materials[J]. Progress in Chemistry, 2019, 31(5): 667-680. | |
11 | XIA X H, CHAO D L, ZHANG Y Q, et al. Three-dimensional graphene and their integrated electrodes[J]. Nano Today, 2014, 9(6): |
785-807. | |
12 | 迟彩霞, 刘越, 吴昊, 等. 石墨烯气凝胶的制备与应用研究进展[J]. 应用化工, 2018, 47(9): 2001-2004, 2009. |
CHI Caixia, LIU Yue, WU Hao, et al. Process in the preparation and application of graphene aerogels[J]. Applied Chemical Industry, 2018, 47(9): 2001-2004, 2009. | |
13 | 侯朝霞, 孔令西, 杨丽蓉. 聚苯乙烯微球的制备及构筑三维多孔石墨烯[J]. 沈阳大学学报(自然科学版), 2020, 32(1): 7-12. |
HOU Zhaoxia, KONG Lingxi, YANG Lirong. Preparation of polystyrene microspheres and construction of 3D porous graphene[J]. Journal of Shenyang University (Natural Science), 2020, 32(1): 7-12. | |
14 | 杨春, 赖艳琼, 张艳丽, 等. 一种蜂窝状三维石墨烯的制备及表征[J]. 云南民族大学学报(自然科学版), 2020, 29(1): 24-27, 58. |
YANG Chun, LAI Yanqiong, ZHANG Yanli, et al. Preparation and characterization of honeycomb-like three-dimensional graphene[J]. Journal of Yunnan Minzu University (Natural Sciences Edition), 2020, 29(1): 24-27, 58. | |
15 | ZHOU Y, HUANG Z Y, LIAO H J, et al. 3D porous graphene/NiCo2O4 hybrid film as an advanced electrode for supercapacitors[J].Applied Surface Science, 2020, 534: 147598. |
16 | 穆伊芳. 三维石墨烯材料的制备方法研究现状[J]. 化工设计通讯, 2020, 46(6): 150, 166. |
MU Yifang. Research status of three-dimensional graphene material preparation methods[J]. Chemical Engineering Design Communications, 2020, 46(6): 150, 166. | |
17 | 廖晨博. 还原自组装法制备超轻可压缩石墨烯气凝胶[D]. 长沙: 长沙理工大学, 2019. |
LIAO Chenbo. Preparation of ultralight and compressible graphene aerogel by reduction self-assembly method[D]. Changsha: Changsha University of Science & Technology, 2019. | |
18 | 李振环, 张永志. 界面自组装法制备高性能氧化石墨烯膜[J]. 天津工业大学学报, 2019, 38(1): 7-11. |
LI Zhenhuan, ZHANG Yongzhi. Praparation of high performance GO membrane by interface self-assembly[J]. Journal of Tianjin Polytechnic University, 2019, 38(1): 7-11. | |
19 | 周洋, 伏文, 陈春年. 一步水热法制备自组装氧化石墨烯凝胶及其吸附性能的研究[J]. 复旦学报(自然科学版), 2018, 57(6):789-793. |
ZHOU Yang, FU Wen, CHEN Chunnian. A single step hydrothermal synthesis of self-assembled graphene oxide hydrogels and its adsorption properties[J]. Journal of Fudan University (Natural Science), 2018, 57(6): 789-793. | |
20 | 周之燕, 王秀峰, 师杰, 等. 自组装法制备聚苯乙烯光子晶体的研究进展[J]. 材料导报, 2010, 24(21): 113-117. |
ZHOU Zhiyan, WANG Xiufeng, SHI Jie, et al. Research progress of polystyrene photonic crystal fabricated by the self-assembly method[J]. Materials Review, 2010, 24(21): 113-117. | |
21 | 李雪, 白延群, 孙悦, 等. 石墨烯气凝胶的制备方法及在二次电池中的应用研究进展[J]. 化工科技, 2020, 28(3): 78-86. |
LI Xue, BAI Yanqun, SUN Yue, et al. Progress in preparation of graphene aerogels and their application in secondary batteries[J]. Science & Technology in Chemical Industry, 2020, 28(3): 78-86. | |
22 | 常会, 范文娟, 曾成华, 等. 磁性壳聚糖/氧化石墨烯吸附材料的制备及其对Pb(Ⅱ)的吸附[J]. 冶金分析, 2018, 38(11):34-42. |
CHANG Hui, FAN Wenjuan, ZENG Chenghua, et al. Preparation of magnetic chitosan/graphene oxide composites and its adsorption performance to Pb(Ⅱ)[J]. Metallurgical Analysis, 2018, 38(11): 34-42. | |
23 | 张燚. Fe3O4磁性纳米粒子-氧化石墨烯复合材料的可控制备与应用[D]. 西安: 陕西师范大学, 2011. |
ZHANG Yi. Controlled synthesis and characterization of the structure and property of Fe3O4nanoparticle-graphene oxide composites[D]. Xi'an: Shaanxi Normal University, 2011. | |
24 | HU J Y, LI M, WANG L J, et al. Polymer brush-modified graphene oxide membrane with excellent structural stability for effective fractionation of textile wastewater[J]. Journal of Membrane Science, 2021, 618: 118698. |
25 | SATTI A, LARPENT P, GUN’KO Y. Improvement of mechanical properties of graphene oxide/poly(allylamine) composites by chemical crosslinking[J]. Carbon, 2010, 48(12): 3376-3381. |
26 | 张伟. 石墨烯基气凝胶载铂电催化剂的制备与氧气还原催化性能研究[D]. 北京: 北京化工大学, 2015. |
ZHANG Wei. Preparation of Pt/GA electrocatalysts and their oxygen reduction reaction performance[D]. Beijing: Beijing University of Chemical Technology, 2015. | |
27 | BANHART F, KOTAKOSKI J, KRASHENINNIKOV A V. Structural defects in graphene[J]. ACS Nano, 2011, 5(1): 26-41. |
28 | 张晓琴, 秦世煜, 姬忠莹, 等. 3D直书写打印聚合物及其复合材料[J]. 聊城大学学报(自然科学版), 2020, 33(3): 41-50, 56. |
ZHANG Xiaoqin, QIN Shiyu, JI Zhongying, et al. 3D direct ink writing of polymers and their composites[J]. Journal of Liaocheng University (Natural Science Edition), 2020, 33(3): 41-50, 56. | |
29 | 周昕瞳, 刘振星, 刘昌俊. 3D打印在催化和吸附材料制备领域的应用[J]. 化工进展, 2019, 38(1): 516-528. |
ZHOU Xintong, LIU Zhenxing, LIU Changjun. Three-dimensional printing for the preparation of catalyst and adsorbent[J]. Chemical Industry and Engineering Progress, 2019, 38(1): 516-528. | |
30 | BASARAN O A, GAO H J, BHAT P P. Nonstandard inkjets[J]. Annual Review of Fluid Mechanics, 2013, 45(1): 85-113. |
31 | LE H P. Progress and trends in ink-jet printing technology[J]. Journal of Imaging Science and Technology, 1998, 42(1): 49-62. |
32 | MARTIN G D, HOATH S D, HUTCHINGS I M. Inkjet printing - the physics of manipulating liquid jets and drops[J]. Journal of Physics: Conference Series, 2008, 105: 012001. |
33 | HUANG Z G, TANG Y, GUO H, et al. 3D printing of ceramics and graphene circuits-on-ceramics by thermal bubble inkjet technology and high temperature sintering[J]. Ceramics International, 2020, 46(8): 10096-10104. |
34 | LI D W, ZHANG H, ZHANG L, et al. Rapid synthesis of porous graphene microspheres through a three-dimensionally printed inkjet nozzle for selective pollutant removal from water[J]. ACS Omega, 2019, 4(24): 20509-20518. |
35 | 黄哲观. 基于喷墨3D打印的石墨烯复合材料的研究[D]. 合肥: 中国科学技术大学, 2020. |
HUANG Zheguan. Research on inkjet 3D printing of graphene composites[D]. Hefei: University of Science and Technology of China, 2020. | |
36 | 桑瑞娟. UV喷墨3D打印木材研究现状与发展前景[J]. 林业工程学报, 2020, 5(6): 20-28. |
SANG Ruijuan. Development and prospects of 3D wood texture manufactured by UV inkjet printing[J]. Journal of Forestry Engineering, 2020, 5(6): 20-28. | |
37 | 王梓燊. 基于聚苯胺/石墨烯复合材料的3D打印成型研究[D]. 厦门: 厦门大学, 2018. |
WANG Zishen. Development of 3D printing method for polyaniline/graphene composite materials[D]. Xiamen: Xiamen University, 2018. | |
38 | 侯清泉, 刘春生. FDM快速成型机加工工艺方法研究[J]. 制造技术与机床, 2008(1): 88-90. |
HOU Qingquan, LIU Chunsheng. Research on manufacturing technology and method for FDM rapid prototyping machine[J]. Manufacturing Technology & Machine Tool, 2008(1): 88-90. | |
39 | 吴海华, 蔡宇, 刘力, 等. 基于熔融沉积成型的多层石墨烯吸波体的快速制备及其性能[J]. 激光与光电子学进展, 2020, 57(1): 011602. |
WU Haihua, CAI Yu, LIU Li, et al. Rapid preparation and properties of multi-layer graphene absorber using fused deposition modeling[J]. Laser & Optoelectronics Progress, 2020, 57(1): 011602. | |
40 | 唐通鸣, 张政, 邓佳文, 等. 基于FDM的3D打印技术研究现状与发展趋势[J]. 化工新型材料, 2015, 43(6): 228-230, 234. |
TANG Tongming, ZHANG Zheng, DENG Jiawen, et al. Research status and trend of 3D printing technology based on FDM[J]. New Chemical Materials, 2015, 43(6): 228-230, 234. | |
41 | WU H H, XING L, CAI Y, et al. A study on the fused deposition modeling process of graphene/nano-Fe3O4 composite absorber and its absorbing properties of electromagnetic microwave[J]. Applied Sciences, 2020, 10(4): 1508. |
42 | ZHU D C, REN Y Y, LIAO G X, et al. Thermal and mechanical properties of polyamide 12/graphene nanoplatelets nanocomposites and parts fabricated by fused deposition modeling[J]. Journal of Applied Polymer Science, 2017, 134(39): 45332. |
43 | 冯东, 王博, 刘琦, 等. 高分子基功能复合材料的熔融沉积成型研究进展[J]. 复合材料学报, 2021, 38(5): 1371-1386. |
FENG Dong, WANG Bo, LIU Qi, et al. Research progress in manufacturing multifunctional polymer composite materials based on fused deposition modeling technology[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1371-1386 | |
44 | 张永, 周天瑞, 徐春晖. 熔融沉积快速成型工艺成型精度的影响因素及对策[J]. 南昌大学学报(工科版), 2007, 29(3): 252-255. |
ZHANG Yong, ZHOU Tianrui, XU Chunhui. Factors and countermeasures influencing the precision in FDM[J]. Journal of Nanchang University (Engineering & Technology), 2007, 29(3): 252-255. | |
45 | HARDIN J O, OBER T J, VALENTINE A D, et al. Microfluidic printheads for multimaterial 3D printing of viscoelastic inks[J]. Advanced Materials, 2015, 27(21): 3279-3284. |
46 | ROH S, PAREKH D P, BHARTI B, et al. 3D printing by multiphase silicone/water capillary inks[J]. Advanced Materials, 2017, 29(30): 1701554. |
47 | 黄凯. 三维石墨烯及其复合材料的制备与性能研究[D]. 上海: 中国科学院大学(中国科学院上海硅酸盐研究所), 2018. |
HUANG Kai. The study on preparation and properties of three dimensional graphene and graphene-based composites[D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018. | |
48 | 邓颖. 3D打印石墨烯超材料结构化设计与性能研究[D]. 兰州: 兰州大学, 2020. |
DENG Ying. Study on the structured design and performance of 3D printed graphene metamaterial[D]. Lanzhou: Lanzhou University, 2020. | |
49 | ROMAN J, NERI W, FIERRO V, et al. Lignin-graphene oxide inks for 3D printing of graphitic materials with tunable density[J]. Nano Today, 2020, 33: 100881. |
50 | GRATSON G M, XU M J, LEWIS J A. Direct writing of three-dimensional webs[J]. Nature, 2004, 428(6981): 386. |
51 | SMAY J E, GRATSON G M, SHEPHERD R F, et al. Directed colloidal assembly of 3D periodic structures[J]. Advanced Materials, 2002, 14(18): 1279-1283. |
52 | SMAY J E, CESARANO J, LEWIS J A. Colloidal inks for directed assembly of 3-D periodic structures[J]. Langmuir, 2002, 18(14): 5429-5437. |
53 | ARKOWSKI J, OBREMSKA M, KĘDZIERSKI K, et al. Applications for graphene and its derivatives in medical devices: current knowledge and future applications[J]. Advances in Clinical and Experimental Medicine, 2020, 29(12): 1497-1504. |
54 | MADURANI K A, SUPRAPTO S, MACHRITA N I, et al. Progress in graphene synthesis and its application: history, challenge and the future outlook for research and industry[J]. ECS Journal of Solid State Science and Technology, 2020, 9(9): 093013. |
55 | ZHU Y W, MURALI S, CAI W W, et al. Graphene and graphene oxide: synthesis, properties, and applications[J]. Advanced Materials, 2010, 22(35): 3906-3924. |
56 | 崔亚亚, 吕生华. 石墨烯材料的吸附性能研究进展[J]. 广东化工, 2014, 41(12): 97-98. |
CUI Yaya, Shenghua LYU. Research development on the adsorption of graphene materials[J]. Guangdong Chemical Industry, 2014, 41(12): 97-98. | |
57 | ZHANG H N, CHANG Q, JIANG Y, et al. Synthesis of KMnO4-treated magnetic graphene oxide nanocomposite (Fe3O4@GO/MnO x ) and its application for removing of Cu2+ ions from aqueous solution[J]. Nanotechnology, 2018, 29(13): 135706. |
58 | ZHANG H N, CHANG Q, HAN J P, et al. A facile syntheses of two engineered poly(vinyl alcohol) macroporous hydrogel beads for the application of Cu(Ⅱ) and Pb(Ⅱ) removal: batch and fixed bed column[J]. Materials Research Express, 2019, 6(9): 095315. |
59 | STANKOVICH S, DIKIN D A, PINER R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon, 2007, 45(7): 1558-1565. |
60 | QUINTANILLA A, CARBAJO J, CASAS J A, et al. Graphene-based nanostructures as catalysts for wet peroxide oxidation treatments: from nanopowders to 3D printed porous monoliths[J]. Catalysis Today, 2020, 356: 197-204. |
61 | ZHOU G, WANG K P, LIU H W, et al. Three-dimensional polylactic acid@graphene oxide/chitosan sponge bionic filter: highly efficient adsorption of crystal violet dye[J]. International Journal of Biological Macromolecules, 2018, 113: 792-803. |
62 | 王志龙, 韩宗蒲, 张笑, 等. 3D打印多功能滤膜用于医疗废水处理[Z]. 武汉: 2020年中华口腔医学会口腔材料专业委员会第十五次全国口腔材料学术年会, 2020. |
WANG Zhilong, HAN Zongpu, ZHANG Xiao, et al. Application of 3D printing multifunctional filter membrane in medical wastewater treatment [Z]. Wuhan: The 15th National Annual Conference on Oral Materials of the Professional Committee of Oral materials of Chinese stomatology Association in 2020, 2020. | |
63 | 徐晓榕. 基于PLA/小球藻复合材料3D打印水处理反应器制备与吸附性能研究[D]. 福州: 福建师范大学, 2019. |
XU Xiaorong. Preparation and adsorption capability of 3D printing PLA/chlorella composites-based water treatment reactor[D]. Fuzhou: Fujian Normal University, 2019. | |
64 | 魏秋实. 二氧化钛的表面改性和复合改性及其在水处理中的应用研究[D]. 广州: 华南理工大学, 2018. |
WEI Qiushi. Surface modification and composite modification of titanium dioxide and its application in water treatment[D]. Guangzhou: South China University of Technology, 2018. | |
65 | 徐丽, 刘双宇, 陈新, 等. 三维石墨烯电极材料在锂离子电池中的应用[J]. 智能电网, 2017, 5(1): 94-98. |
XU Li, LIU Shuangyu, CHEN Xin, et al. Application of three-dimensional graphene electrode material in lithium ion battery[J]. Smart Grid, 2017, 5(1): 94-98. | |
66 | NATHAN-WALLESER T, LAZAR I M, FABRITIUS M, et al. 3D micro-extrusion of graphene-based active electrodes: towards high-rate AC line filtering performance electrochemical capacitors[J]. Advanced Functional Materials, 2014, 24(29): 4706-4716. |
67 | 3D打印石墨烯气凝胶制成超级电容器电极[J]. 山东陶瓷, 2018, 41(5): 24. |
3D printing graphene aerogels to make super capacitor electrodes[J]. Shandong Ceramics, 2018, 41(5): 24. | |
68 | FU K, YAO Y G, DAI J Q, et al. Progress in 3D printing of carbon materials for energy-related applications[J]. Advanced Materials, 2017, 29(9): 1603486. |
69 | 胡圣飞, 徐成成, 张荣, 等. 聚合物基柔性导电应力应变复合材料的研究进展[J]. 高分子材料科学与工程, 2017, 33(12): 156-162. |
HU Shengfei, XU Chengcheng, ZHANG Rong, et al. Progress in flexible conductive stress-strain materials[J]. Polymer Materials Science & Engineering, 2017, 33(12): 156-162. | |
70 | 陈小军, 胡翠雯, 崔子怡, 等. 直写3D打印GNPs-MWCNT导电聚合物复合材料的制备及性能[J]. 机械工程材料, 2020, 44(11): 83-91. |
CHEN Xiaojun, HU Cuiwen, CUI Ziyi, et al. Preparation and performance of GNPs-MWCNT conductive polymer composite materials by direct writing 3D printing[J]. Materials for Mechanical Engineering, 2020, 44(11): 83-91. | |
71 | MONNE M A, ENUKA E, WANG Z, et al. Inkjet printed graphene-based field-effect transistors on flexible substrate[C]//SPIE Nanoscience + Engineering. Proc SPIE 10349. San Diego: Low-Dimensional Materials and Devices, 2017: 10349. |
72 | BROWNE M P, URBANOVA V, PLUTNAR J, et al. Inherent impurities in 3D-printed electrodes are responsible for catalysis towards water splitting[J]. Journal of Materials Chemistry A, 2020, 8(3): 1120-1126. |
73 | GRECO E, SHANG J, ZHU J L, et al. Synthesis of polyacetylene-like modified graphene oxide aerogel and its enhanced electrical properties[J]. ACS Omega, 2019, 4(25): 20948-20954. |
74 | 熊财梓, 李多生, 叶寅, 等. 三维网状石墨烯的合成及其吸附性能研究进展[J]. 功能材料, 2020, 51(8): 8066-8071. |
XIONG Caizi, LI Duosheng, YE Yin, et al. Progress in synthesis and adsorption properties of three-dimensional reticulated graphene[J]. Journal of Functional Materials, 2020, 51(8): 8066-8071. | |
75 | 岳焕娟. 三维石墨烯材料制备及在废水处理中应用[D]. 绵阳: 西南科技大学, 2018. |
YUE Huanjuan. Preparation of three-dimensional graphene material and its application in waste water treatment adsorption properties[D]. Mianyang: Southwest University of Science and Technology, 2018. |
[1] | 王莹, 韩云平, 李琳, 李衍博, 李慧丽, 颜昌仁, 李彩侠. 城市污水厂病毒气溶胶逸散特征研究现状与未来展望[J]. 化工进展, 2023, 42(S1): 439-446. |
[2] | 高彦静. 单原子催化技术国际研究态势分析[J]. 化工进展, 2023, 42(9): 4667-4676. |
[3] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[4] | 李润蕾, 王子彦, 王志苗, 李芳, 薛伟, 赵新强, 王延吉. CuO-CeO2/TiO 2 高效催化CO低温氧化反应性能[J]. 化工进展, 2023, 42(8): 4264-4274. |
[5] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[6] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[7] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[8] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[9] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[10] | 杨家添, 唐金铭, 梁恣荣, 黎胤宏, 胡华宇, 陈渊. 新型淀粉基高吸水树脂抑尘剂的制备及其应用[J]. 化工进展, 2023, 42(6): 3187-3196. |
[11] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
[12] | 刘厚励, 顾中浩, 阳康, 张莉. 3D打印槽道结构槽宽对池沸腾传热特性的影响[J]. 化工进展, 2023, 42(5): 2282-2288. |
[13] | 陈明星, 王新亚, 张威, 肖长发. 纤维基耐高温空气过滤材料研究进展[J]. 化工进展, 2023, 42(5): 2439-2453. |
[14] | 张浩月, 李春丽, 徐博, 李筱贺, 仝铃, 邱广明. 分段取样法研究改进Hummers法制备GO结构特性及其机理[J]. 化工进展, 2023, 42(5): 2606-2615. |
[15] | 于捷, 张文龙. 锂离子电池隔膜的发展现状与进展[J]. 化工进展, 2023, 42(4): 1760-1768. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |