化工进展 ›› 2022, Vol. 41 ›› Issue (5): 2243-2255.DOI: 10.16085/j.issn.1000-6613.2021-1244
孙逊1,2(), 赵越1,2, 玄晓旭1,2, 赵珊3, YOON Joon Yong4, 陈颂英1,2
收稿日期:
2021-06-15
修回日期:
2021-08-08
出版日期:
2022-05-05
发布日期:
2022-05-24
通讯作者:
孙逊
作者简介:
孙逊(1989—),男,博士,副研究员,博士生导师,研究方向为水力空化反应器机理与应用。E-mail:基金资助:
SUN Xun1,2(), ZHAO Yue1,2, XUAN Xiaoxu1,2, ZHAO Shan3, YOON Joon Yong4, CHEN Songying1,2
Received:
2021-06-15
Revised:
2021-08-08
Online:
2022-05-05
Published:
2022-05-24
Contact:
SUN Xun
摘要:
水力空化(HC)是一种利用声化学效应(即空泡溃灭时释放出的巨大能量)的高效、绿色化工过程强化技术,是国内外的研究热点。该技术具有设备造价低、可放大性强、可与其他物理及化学方法高效耦合等优点,工业应用前景广泛。本文介绍了HC现象及其特性;归纳了近年来HC技术在有机废水处理、水消毒与生物燃料制备等代表性应用的研究、应用进展以及作用机理,展示了其工业应用的潜力;总结了用于诱发HC现象的水力空化反应器的发展过程与研究现状;最后,结合发展趋势与作者的研究经历,归纳了国内外在HC研究方面存在的问题,指出了其未来发展方向,为HC技术的发展与工业应用探索提供建设性意见。
中图分类号:
孙逊, 赵越, 玄晓旭, 赵珊, YOON Joon Yong, 陈颂英. 基于水力空化的化工过程强化研究进展[J]. 化工进展, 2022, 41(5): 2243-2255.
SUN Xun, ZHAO Yue, XUAN Xiaoxu, ZHAO Shan, YOON Joon Yong, CHEN Songying. Advances in process intensification based on hydrodynamic cavitation[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2243-2255.
年度/年 | 处理量/L | HCR | 协同手段 | 操作条件 | 时间/min | 降解率/% | 参考文献 |
---|---|---|---|---|---|---|---|
2008 | 40 | Swirling reactor | H2O2∶100mg/L | pin=0.6MPa,Cinitial=5mg/L, Tinitial=40℃,pH=5.4 | 180 | 87 | [ |
2009 | 25 | Swirling reactor | H2O2∶150mg/L | pin=0.6MPa,Cinitial=10mg/L, Tinitial=50℃,pH=3 | 180 | 99.1 | [ |
2010 | 4 | Venturi | H2O2∶200mg/L | pin=4.8bar,Cinitial=10mg/L, Tinitial=30℃,pH=2.5 | 120 | 99.9 | [ |
2013 | 30 | Orifice | 铁片 | pin=5.8bar,Cinitial=2mg/L, Tinitial=25℃,pH=3 | 240 | 87 | [ |
2016 | 50 | Ecowirl reactor | NaOCl∶4mg/L | pin=2bar,Cinitial=3mg/L, Tinitial=(19±1)℃,pH=4 | 169 | 94 | [ |
2017 | 30 | Venturi | Fenton(H2O2∶30mg/L,FeSO4∶5mg/L) | pin=10MPa,Cinitial=33mg/L, Tinitial=26℃,pH=3 | 120 | 99.72 | [ |
2018 | 10 | Orifice | H2O2∶6mL/L,水凝胶∶25g, 埃洛石黏土∶0.5g | pin=6bar,Cinitial=70mg/L, Tinitial=N/A,pH=7.62 | 120 | 65 | [ |
2018 | 20 | Venturi | AC∶220W | pin=0.4MPa,Cinitial=20μmol/L, Tinitial=25℃,pH=N/A | 120 | 33 | [ |
2020 | 5 | Venturi | TiO2∶0.5mg/L | pin=3bar,Cinitial=10mg/L, Tinitial=45℃,pH=3 | 150 | 91.1 | [ |
2021 | 4 | Venturi | — | pin=0.4MPa,Cinitial=10mg/L, Tinitial=25℃,pH=3 | 120 | 38.7 | [ |
表1 基于HC降解罗丹明B的代表性研究
年度/年 | 处理量/L | HCR | 协同手段 | 操作条件 | 时间/min | 降解率/% | 参考文献 |
---|---|---|---|---|---|---|---|
2008 | 40 | Swirling reactor | H2O2∶100mg/L | pin=0.6MPa,Cinitial=5mg/L, Tinitial=40℃,pH=5.4 | 180 | 87 | [ |
2009 | 25 | Swirling reactor | H2O2∶150mg/L | pin=0.6MPa,Cinitial=10mg/L, Tinitial=50℃,pH=3 | 180 | 99.1 | [ |
2010 | 4 | Venturi | H2O2∶200mg/L | pin=4.8bar,Cinitial=10mg/L, Tinitial=30℃,pH=2.5 | 120 | 99.9 | [ |
2013 | 30 | Orifice | 铁片 | pin=5.8bar,Cinitial=2mg/L, Tinitial=25℃,pH=3 | 240 | 87 | [ |
2016 | 50 | Ecowirl reactor | NaOCl∶4mg/L | pin=2bar,Cinitial=3mg/L, Tinitial=(19±1)℃,pH=4 | 169 | 94 | [ |
2017 | 30 | Venturi | Fenton(H2O2∶30mg/L,FeSO4∶5mg/L) | pin=10MPa,Cinitial=33mg/L, Tinitial=26℃,pH=3 | 120 | 99.72 | [ |
2018 | 10 | Orifice | H2O2∶6mL/L,水凝胶∶25g, 埃洛石黏土∶0.5g | pin=6bar,Cinitial=70mg/L, Tinitial=N/A,pH=7.62 | 120 | 65 | [ |
2018 | 20 | Venturi | AC∶220W | pin=0.4MPa,Cinitial=20μmol/L, Tinitial=25℃,pH=N/A | 120 | 33 | [ |
2020 | 5 | Venturi | TiO2∶0.5mg/L | pin=3bar,Cinitial=10mg/L, Tinitial=45℃,pH=3 | 150 | 91.1 | [ |
2021 | 4 | Venturi | — | pin=0.4MPa,Cinitial=10mg/L, Tinitial=25℃,pH=3 | 120 | 38.7 | [ |
年度/年 | 处理量/L | HCR | 其他手段 | 操作条件 | 时间/min | 消毒率/% | 参考文献 |
---|---|---|---|---|---|---|---|
2006 | 18 | Orifice | — | pin=1500kPa,Cinitial=N/A,Tinitial=32℃ | 251 | 57.8① | [ |
2007 | 4 | LWR | O3∶6.42~7.49mg/L,以5L/min 的流量在第0和第90min分别 通入15min | Pin=1500psi,Cinitial=108~109CFU/mL,Tinitial=(35±5)℃ | 180 | 71.2 | [ |
2008 | 50 | Orifice | — | pin =100kPa,Cinitial≈107CFU/mL,Tinitial=N/A | 120 | 32.7 | [ |
2009 | 2 | Rotating disk | — | Einput=490W/L,Cinitial=N/A,Tinitial=N/A | 3 | 75② | [ |
2015 | 40 | Orifice | — | Pin=12MPa,Cinitial≈107CFU/mL,Tinitial=33℃ | 30 | 100 | [ |
2018 | 4 | Venturi | — | pin=0.2bar,Cinitial≈107CFU/mL,Tinitial=23℃ | 120 | 75.4 | [ |
2018 | 2 | ARHCR | — | N=9025r/min,Cinitial≈107CFU/mL,Tinitial=23℃ | 150 | 99.95 | [ |
2018 | 0.25 | ARHCR | — | N=3000r/min,Cinitial=105CFU/mL,T<58℃ | 10 | 100 | [ |
2018 | 60 | ARHCR | — | N=3600r/min,Cinitial=108CFU/mL,Tinitial=23℃ | 14 | 100 | [ |
2020 | 21 | Orifice | — | pdischarge=7.5bar,Cinitial=6×105CFU/mL,Tinitial=N/A | 360 | 99.4 | [ |
表2 HC灭活E. coli的代表性研究
年度/年 | 处理量/L | HCR | 其他手段 | 操作条件 | 时间/min | 消毒率/% | 参考文献 |
---|---|---|---|---|---|---|---|
2006 | 18 | Orifice | — | pin=1500kPa,Cinitial=N/A,Tinitial=32℃ | 251 | 57.8① | [ |
2007 | 4 | LWR | O3∶6.42~7.49mg/L,以5L/min 的流量在第0和第90min分别 通入15min | Pin=1500psi,Cinitial=108~109CFU/mL,Tinitial=(35±5)℃ | 180 | 71.2 | [ |
2008 | 50 | Orifice | — | pin =100kPa,Cinitial≈107CFU/mL,Tinitial=N/A | 120 | 32.7 | [ |
2009 | 2 | Rotating disk | — | Einput=490W/L,Cinitial=N/A,Tinitial=N/A | 3 | 75② | [ |
2015 | 40 | Orifice | — | Pin=12MPa,Cinitial≈107CFU/mL,Tinitial=33℃ | 30 | 100 | [ |
2018 | 4 | Venturi | — | pin=0.2bar,Cinitial≈107CFU/mL,Tinitial=23℃ | 120 | 75.4 | [ |
2018 | 2 | ARHCR | — | N=9025r/min,Cinitial≈107CFU/mL,Tinitial=23℃ | 150 | 99.95 | [ |
2018 | 0.25 | ARHCR | — | N=3000r/min,Cinitial=105CFU/mL,T<58℃ | 10 | 100 | [ |
2018 | 60 | ARHCR | — | N=3600r/min,Cinitial=108CFU/mL,Tinitial=23℃ | 14 | 100 | [ |
2020 | 21 | Orifice | — | pdischarge=7.5bar,Cinitial=6×105CFU/mL,Tinitial=N/A | 360 | 99.4 | [ |
年度/年 | 处理量/L | HCR | 温度/℃ | 醇,摩尔比 | 催化剂,质量分数/% | 时间/min | 产率(质量分数)/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
2008 | 10 | Orifice | 28 | MeOH,1∶10 | H2SO4,1 | 90 | 92① | [ |
2013 | 10 | Orifice | 60 | MeOH,1∶6 | KOH,1 | 10 | >95① | [ |
2014 | 15 | Venturi | <64.7 | MeOAC,1∶12 | CH3OK,1 | 30 | 89.24 | [ |
2015 | 50 | Orifice | 60 | MeOH,1∶6 | KOH,1 | 15 | 98.1① | [ |
2016 | 7.5 | ARHCR | 55 | MeOH,1∶0.25(体积比) | NaOH,5.67(g/L) | 15+15 | 99① | [ |
2017 | 0.3 | HSH | 65 | MeOH,1∶6 | H2SO4,1 | N/A | 88 | [ |
50 | MeOH,1∶10 | CaO,1 | 30 | |||||
2017 | N/A | ARHCR | 50 | MeOH,1∶12 | KOH,3 | 120 | 97 | [ |
2018 | 4② | Venturi | 63 | MeOH,1∶6 | KOH,1.1 | 8 | 95.6±0.8 | [ |
2019 | 10 | Orifice | 35 ± 3 | MeOH,1∶6.8 | NaOH,1 | 5 | 99① | [ |
表3 以烹饪废油为原料利用HC制备生物柴油的代表性研究
年度/年 | 处理量/L | HCR | 温度/℃ | 醇,摩尔比 | 催化剂,质量分数/% | 时间/min | 产率(质量分数)/% | 参考文献 |
---|---|---|---|---|---|---|---|---|
2008 | 10 | Orifice | 28 | MeOH,1∶10 | H2SO4,1 | 90 | 92① | [ |
2013 | 10 | Orifice | 60 | MeOH,1∶6 | KOH,1 | 10 | >95① | [ |
2014 | 15 | Venturi | <64.7 | MeOAC,1∶12 | CH3OK,1 | 30 | 89.24 | [ |
2015 | 50 | Orifice | 60 | MeOH,1∶6 | KOH,1 | 15 | 98.1① | [ |
2016 | 7.5 | ARHCR | 55 | MeOH,1∶0.25(体积比) | NaOH,5.67(g/L) | 15+15 | 99① | [ |
2017 | 0.3 | HSH | 65 | MeOH,1∶6 | H2SO4,1 | N/A | 88 | [ |
50 | MeOH,1∶10 | CaO,1 | 30 | |||||
2017 | N/A | ARHCR | 50 | MeOH,1∶12 | KOH,3 | 120 | 97 | [ |
2018 | 4② | Venturi | 63 | MeOH,1∶6 | KOH,1.1 | 8 | 95.6±0.8 | [ |
2019 | 10 | Orifice | 35 ± 3 | MeOH,1∶6.8 | NaOH,1 | 5 | 99① | [ |
1 | 孙宏伟, 陈建峰. 我国化工过程强化技术理论与应用研究进展[J]. 化工进展, 2011, 30(1): 1-15. |
SUN Hongwei, CHEN Jianfeng. Advances in fundamental study and application of chemical process intensification technology in China[J]. Chemical Industry and Engineering Progress, 2011, 30(1): 1-15. | |
2 | 董正亚, 陈光文, 赵帅南, 等. 声化学微反应器——超声和微反应器协同强化[J]. 化工学报, 2018, 69(1): 102-115. |
DONG Zhengya, CHEN Guangwen, ZHAO Shuainan, et al. Sonochemical microreactor—Synergistic intensification of ultrasound and microreactor[J]. CIESC Journal, 2018, 69(1): 102-115. | |
3 | BHAT Akash P, GOGATE Parag R. Cavitation-based pre-treatment of wastewater and waste sludge for improvement in the performance of biological processes: a review[J]. Journal of Environmental Chemical Engineering, 2021, 9(2): 104743. |
4 | 季斌, 程怀玉, 黄彪, 等. 空化水动力学非定常特性研究进展及展望[J]. 力学进展, 2019, 49(1): 201906. |
JI Bin, CHENG Huaiyu, HUANG Biao, et al. Research progresses and prospects of unsteady hydrodynamics characteristics for cavitation[J]. Advances in Mechanics, 2019, 49(1): 201906. | |
5 | PANDIT Aniruddha B, JOSHI J B. Hydrolysis of fatty oils: effect of cavitation[J]. Chemical Engineering Science, 1993, 48(19): 3440-3442. |
6 | WU Zhilin, TAGLIAPIETRA Silvia, GIRAUDO Alessadro, et al. Harnessing cavitational effects for green process intensification[J]. Ultrasonics Sonochemistry, 2019, 52: 530-546. |
7 | POKHREL Nimesh, VABBINA Phani Kiran, PALA Nezih. Sonochemistry: science and engineering[J]. Ultrasonics Sonochemistry, 2016, 29: 104-128. |
8 | SUPPONEN Outi, KOBEL Philippe, OBRESCHKOW Danail, et al. The inner world of a collapsing bubble[J]. Physics of Fluids, 2015, 27(9): 091113. |
9 | DIJKINK Rory, Claus-Dieter OHL. Measurement of cavitation induced wall shear stress[J]. Applied Physics Letters, 2008, 93(25): 254107. |
10 | HOLZFUSS Joachim, Matthias RÜGGEBERG, BILLO Andreas. Shock wave emissions of a sonoluminescing bubble[J]. Physical Review Letters, 1998, 81(24): 5434-5437. |
11 | VOGEL A, LAUTERBORN W, TIMM R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary[J]. Journal of Fluid Mechanics, 1989, 206: 299-338. |
12 | PHILIPP A, LAUTERBORN W. Cavitation erosion by single laser-produced bubbles[J]. Journal of Fluid Mechanics, 1998, 361: 75-116. |
13 | SUSLICK Kenneth S, HAMMERTON David A, CLINE Raymond E. Sonochemical hot spot[J]. Journal of the American Chemical Society, 1986, 108(18): 5641-5642. |
14 | SUSLICK Kenneth S. Sonochemistry[J]. Science, 1990, 247(4949): 1439-1445. |
15 | ADEWUYI Yusuf G. Sonochemistry: environmental science and engineering applications[J]. Industrial & Engineering Chemistry Research, 2001, 40(22): 4681-4715. |
16 | 吕效平, 丁德胜, 张萍. 超声化工过程强化[M]. 北京: 化学工业出版社, 2020. |
Xiaoping LYU, DING Desheng, ZHANG Ping. Ultrasonic chemical process intensification[M]. Beijing: Chemical Industry Publishing Press, 2020. | |
17 | Michał GĄGOL, PRZYJAZNY Andrzej, BOCZKAJ Grzegorz. Wastewater treatment by means of advanced oxidation processes based on cavitation: a review[J]. Chemical Engineering Journal, 2018, 338: 599-627. |
18 | FEDOROV Kirill, SUN Xun, BOCZKAJ Grzegorz. Combination of hydrodynamic cavitation and SR-AOPs for simultaneous degradation of BTEX in water[J]. Chemical Engineering Journal, 2021,417: 128081. |
19 | WANG Jingang, WANG Xikui, GUO Peiquan, et al. Degradation of reactive brilliant red K-2BP in aqueous solution using swirling jet-induced cavitation combined with H2O2 [J]. Ultrasonics Sonochemistry, 2011, 18(2): 494-500. |
20 | BASIRI PARSA Jalal, EBRAHIMZADEH ZONOUZIAN Seyyed Alireza. Optimization of a heterogeneous catalytic hydrodynamic cavitation reactor performance in decolorization of Rhodamine B: application of scrap iron sheets[J]. Ultrasonics Sonochemistry, 2013, 20(6): 1442-1449. |
21 | LI Pan, SONG Yuan, WANG Shuai, et al. Enhanced decolorization of methyl orange using zero-valent copper nanoparticles under assistance of hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2015, 22: 132-138. |
22 | WANG Xikui, WANG Jingang, GUO Peiquan, et al. Chemical effect of swirling jet-induced cavitation: degradation of Rhodamine B in aqueous solution[J]. Ultrasonics Sonochemistry, 2008, 15(4): 357-363. |
23 | WANG Xikui, WANG Jingang, GUO Peiquan, et al. Degradation of rhodamine B in aqueous solution by using swirling jet-induced cavitation combined with H2O2 [J]. Journal of Hazardous Materials, 2009, 169(1): 486-491. |
24 | MISHRA Kashyap P, GOGATE Parag R. Intensification of degradation of Rhodamine B using hydrodynamic cavitation in the presence of additives[J]. Separation and Purification Technology, 2010, 75(3): 385-391. |
25 | MANCUSO Giuseppe, LANGONE Michela, LAEZZA Marco, et al. Decolourization of Rhodamine B: a swirling jet-induced cavitation combined with NaOCl[J]. Ultrasonics Sonochemistry, 2016, 32: 18-30. |
26 | TAO Yuequn, CAI Jun, HUAI Xiulan, et al. A novel device for hazardous substances degradation based on double-cavitating-jets impingement: parameters optimization and efficiency assessment[J]. Journal of Hazardous Materials, 2017, 335: 188-196. |
27 | BETHI Bhaskar, MANASA V, SRINIJA K, et al. Intensification of Rhodamine-B dye removal using hydrodynamic cavitation coupled with hydrogel adsorption[J]. Chemical Engineering and Processing Process Intensification, 2018, 134: 51-57. |
28 | YI Chunhai, LU Qianqian, WANG Yun, et al. Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation[J]. Ultrasonics Sonochemistry, 2018, 43: 156-165. |
29 | LI Guanshu, YI Ludong, WANG Jun, et al. Hydrodynamic cavitation degradation of Rhodamine B assisted by Fe3+-doped TiO2: mechanisms, geometric and operation parameters[J]. Ultrasonics Sonochemistry, 2020, 60: 104806. |
30 | YE Yufang, ZHU Ying, LU Na, et al. Treatment of Rhodamine B with cavitation technology: comparison of hydrodynamic cavitation with ultrasonic cavitation[J]. RSC Advances, 2021, 11(9): 5096-5106. |
31 | JOSHI Saurabh M, GOGATE Parag R. Intensification of industrial wastewater treatment using hydrodynamic cavitation combined with advanced oxidation at operating capacity of 70 L[J]. Ultrasonics Sonochemistry, 2019, 52: 375-381. |
32 | THANEKAR Pooja, PANDA Mihir, GOGATE Parag R. Degradation of carbamazepine using hydrodynamic cavitation combined with advanced oxidation processes[J]. Ultrasonics Sonochemistry, 2018, 40: 567-576. |
33 | CHOI Jongbok, CUI Mingcan, LEE Yonghyeon, et al. Hydrodynamic cavitation and activated persulfate oxidation for degradation of bisphenol A: kinetics and mechanism[J]. Chemical Engineering Journal, 2018, 338: 323-332. |
34 | WANG Xiaoning, JIA Jinping, WANG Yalin. Combination of photocatalysis with hydrodynamic cavitation for degradation of tetracycline[J]. Chemical Engineering Journal, 2017, 315: 274-282. |
35 | PANDA Debabrata, MANICKAM Sivakumar. Hydrodynamic cavitation assisted degradation of persistent endocrine-disrupting organochlorine pesticide Dicofol: optimization of operating parameters and investigations on the mechanism of intensification[J]. Ultrasonics Sonochemistry, 2019, 51: 526-532. |
36 | JAWALE Rajashree H, GOGATE Parag R. Novel approaches based on hydrodynamic cavitation for treatment of wastewater containing potassium thiocyanate[J]. Ultrasonics Sonochemistry, 2019, 52: 214-223. |
37 | BARIK Arati J, GOGATE Parag R. Degradation of 4-chloro 2-aminophenol using a novel combined process based on hydrodynamic cavitation, UV photolysis and ozone[J]. Ultrasonics Sonochemistry, 2016, 30: 70-78. |
38 | RAJORIYA Sunil, BARGOLE Swapnil, SAHARAN Virendra Kumar. Degradation of a cationic dye (Rhodamine 6G) using hydrodynamic cavitation coupled with other oxidative agents: reaction mechanism and pathway[J]. Ultrasonics Sonochemistry, 2017, 34: 183-194. |
39 | CHAKINALA Anand G, GOGATE Parag R, BURGESS Arthur E, et al. Treatment of industrial wastewater effluents using hydrodynamic cavitation and the advanced Fenton process[J]. Ultrasonics Sonochemistry, 2008, 15(1): 49-54. |
40 | BADVE Mandar, GOGATE Parag, PANDIT Aniruddha, et al. Hydrodynamic cavitation as a novel approach for wastewater treatment in wood finishing industry[J]. Separation and Purification Technology, 2013, 106: 15-21. |
41 | THANEKAR Pooja, GOGATE Parag R. Combined hydrodynamic cavitation based processes as an efficient treatment option for real industrial effluent[J]. Ultrasonics Sonochemistry, 2019, 53: 202-213. |
42 | PATIL Vishal V, GOGATE Parag R, BHAT Akash P, et al. Treatment of laundry wastewater containing residual surfactants using combined approaches based on ozone, catalyst and cavitation[J]. Separation and Purification Technology, 2020, 239: 116594. |
43 | MUKHERJEE Anupam, MULLICK Aditi, TEJA Ravi, et al. Performance and energetic analysis of hydrodynamic cavitation and potential integration with existing advanced oxidation processes: a case study for real life greywater treatment[J]. Ultrasonics Sonochemistry, 2020, 66: 105116. |
44 | WANG Baowei, SU Huijuan, ZHANG Bo. Hydrodynamic cavitation as a promising route for wastewater treatment: a review[J]. Chemical Engineering Journal, 2021, 412: 128685. |
45 | MARMOTTANT Philippe, HILGENFELDT Sascha. Controlled vesicle deformation and lysis by single oscillating bubbles[J]. Nature, 2003, 423(6936): 153-156. |
46 | SUN Xun, WANG Zhengquan, XUAN Xiaoxu, et al. Disinfection characteristics of an advanced rotational hydrodynamic cavitation reactor in pilot scale[J]. Ultrasonics Sonochemistry, 2021, 73: 105543. |
47 | SUN Xun, XUAN Xiaoxu, JI Li, et al. A novel continuous hydrodynamic cavitation technology for the inactivation of pathogens in milk[J]. Ultrasonics Sonochemistry, 2021, 71: 105382. |
48 | MANE Maya B, BHANDARI Vinay M, BALAPURE Kshama, et al. A novel hybrid cavitation process for enhancing and altering rate of disinfection by use of natural oils derived from plants[J]. Ultrasonics Sonochemistry, 2020, 61: 104820. |
49 | BALASUNDARAM B, HARRISON S T L. Study of physical and biological factors involved in the disruption of E. coli by hydrodynamic cavitation[J]. Biotechnology Progress, 2006, 22(3): 907-913. |
50 | CERECEDO Luis M, DOPAZO Cesar, Rafael GOMEZ-LUS. Water disinfection by hydrodynamic cavitation in a rotor-stator device[J]. Ultrasonics Sonochemistry, 2018, 48: 71-78. |
51 | XIE Li, TERADA Akihiko, HOSOMI Masaaki. Disentangling the multiple effects of a novel high pressure jet device upon bacterial cell disruption[J]. Chemical Engineering Journal, 2017, 323: 105-113. |
52 | LI Pan, SONG Yuan, YU Shuili. Removal of Microcystis aeruginosa using hydrodynamic cavitation: performance and mechanisms[J]. Water Research, 2014, 62: 241-248. |
53 | KOSEL Janez, Ion GUTIéRREZ-AGUIRRE, Nejc RAČKI, et al. Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation[J]. Water Research, 2017, 124: 465-471. |
54 | CHAND Rashmi, BREMNER David H, NAMKUNG Kyu C, et al. Water disinfection using the novel approach of ozone and a liquid whistle reactor[J]. Biochemical Engineering Journal, 2007, 35(3): 357-364. |
55 | ARROJO S, BENITO Y, MARTíNEZ TARIFA A. A parametrical study of disinfection with hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2008, 15(5): 903-908. |
56 | MEZULE L, TSYFANSKY S, YAKUSHEVICH V, et al. A simple technique for water disinfection with hydrodynamic cavitation: effect on survival of Escherichia coli [J]. Desalination, 2009, 248(1): 152-159. |
57 | DALFRÉ FILHO José Gilberto, ASSIS Maiara Pereira, GENOVEZ Ana Inés Borri. Bacterial inactivation in artificially and naturally contaminated water using a cavitating jet apparatus[J]. Journal of Hydro-environment Research, 2015, 9(2): 259-267. |
58 | Andrej ŠARC, KOSEL Janez, STOPAR David, et al. Removal of bacteria Legionella pneumophila, Escherichia coli, and Bacillus subtilis by (super)cavitation[J]. Ultrasonics Sonochemistry, 2018, 42: 228-236. |
59 | SUN Xun, PARK Jong Jin, KIM Hyun Soo, et al. Experimental investigation of the thermal and disinfection performances of a novel hydrodynamic cavitation reactor[J]. Ultrasonics Sonochemistry, 2018, 49: 13-23. |
60 | BURZIO E, BERSANI F, CARIDI G C A, et al. Water disinfection by orifice-induced hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2020, 60: 104740. |
61 | ZHOU Xiaoqin, ZHAO Junyuan, LI Zifu, et al. Influence of ultrasound enhancement on chlorine dioxide consumption and disinfection by-products formation for secondary effluents disinfection[J]. Ultrasonics Sonochemistry, 2016, 28: 376-381. |
62 | ZUPANC Mojca, Žiga PANDUR, STEPIŠNIK PERDIH Tadej, et al. Effects of cavitation on different microorganisms: the current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research[J]. Ultrasonics Sonochemistry, 2019, 57: 147-165. |
63 | SUN Xun, LIU Jingting, JI Li, et al. A review on hydrodynamic cavitation disinfection: the current state of knowledge[J]. Science of the Total Environment, 2020, 737: 139606. |
64 | KELKAR Mandar A, GOGATE Parag R, PANDIT Aniruddha B. Intensification of esterification of acids for synthesis of biodiesel using acoustic and hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2008, 15(3): 188-194. |
65 | GHAYAL Dyneshwar, PANDIT Aniruddha B, RATHOD Virendra K. Optimization of biodiesel production in a hydrodynamic cavitation reactor using used frying oil[J]. Ultrasonics Sonochemistry, 2013, 20(1): 322-328. |
66 | MADDIKERI Ganesh L, GOGATE Parag R, PANDIT Aniruddha B. Intensified synthesis of biodiesel using hydrodynamic cavitation reactors based on the interesterification of waste cooking oil[J]. Fuel, 2014, 137: 285-292. |
67 | CHUAH Lai Fatt, YUSUP Suzana, AZIZ Abdul Rashid ABD, et al. Intensification of biodiesel synthesis from waste cooking oil (Palm Olein) in a Hydrodynamic Cavitation Reactor: effect of operating parameters on methyl ester conversion[J]. Chemical Engineering and Processing: Process Intensification, 2015, 95: 235-240. |
68 | CRUDO Daniele, BOSCO Valentina, Giuliano CAVAGLIà, et al. Biodiesel production process intensification using a rotor-stator type generator of hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2016, 33: 220-225. |
69 | JOSHI Saurabh, GOGATE Parag R, MOREIRA Paulo F, et al. Intensification of biodiesel production from soybean oil and waste cooking oil in the presence of heterogeneous catalyst using high speed homogenizer[J]. Ultrasonics Sonochemistry, 2017, 39: 645-653. |
70 | MOHOD Ashish V, GOGATE Parag R, VIEL Gabriel, et al. Intensification of biodiesel production using hydrodynamic cavitation based on high speed homogenizer[J]. Chemical Engineering Journal, 2017, 316: 751-757. |
71 | CHITSAZ Hamidreza, OMIDKHAH Mohammadreza, GHOBADIAN Barat, et al. Optimization of hydrodynamic cavitation process of biodiesel production by response surface methodology[J]. Journal of Environmental Chemical Engineering, 2018, 6(2): 2262-2268. |
72 | BARGOLE Swapnil, GEORGE Suja, KUMAR SAHARAN Virendra. Improved rate of transesterification reaction in biodiesel synthesis using hydrodynamic cavitating devices of high throat perimeter to flow area ratios[J]. Chemical Engineering and Processing Process Intensification, 2019, 139: 1-13. |
73 | TAN Shiou Xuan, Steven LIM, Hwai Chyuan ONG, et al. State of the art review on development of ultrasound-assisted catalytic transesterification process for biodiesel production[J]. Fuel, 2019, 235: 886-907. |
74 | JI Jianbing, WANG Jianli, LI Yongchao, et al. Preparation of biodiesel with the help of ultrasonic and hydrodynamic cavitation[J]. Ultrasonics, 2006, 44: e411-e414. |
75 | CHUAH Lai Fatt, AZIZ Abdul Rashid Abd, YUSUP Suzana, et al. Performance and emission of diesel engine fuelled by waste cooking oil methyl ester derived from palm olein using hydrodynamic cavitation[J]. Clean Technologies and Environmental Policy, 2015, 17(8): 2229-2241. |
76 | SIVARAMAKRISHNAN Ramachandran, INCHAROENSAKDI Aran. Microalgae as feedstock for biodiesel production under ultrasound treatment: a review[J]. Bioresource Technology, 2018, 250: 877-887. |
77 | TERÁN HILARES Ruly, KAMOEI Douglas Viana, AHMED Muhammad Ajaz, et al. A new approach for bioethanol production from sugarcane bagasse using hydrodynamic cavitation assisted-pretreatment and column reactors[J]. Ultrasonics Sonochemistry, 2018, 43: 219-226. |
78 | RAMIREZ-CADAVID David A, KOZYUK Oleg, MICHEL Frederick C. Improvement in commercial scale dry mill corn ethanol production using controlled flow cavitation and cellulose hydrolysis[J]. Biomass Conversion and Biorefinery, 2014, 4(3): 211-224. |
79 | TERÁN HILARES Ruly, RAMOS Lucas, SILVA Silvio Silvério DA, et al. Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment[J]. Critical Reviews in Biotechnology, 2018, 38(4): 483-493. |
80 | YAN Jingchen, AI Shuo, YANG Feng, et al. Study on mechanism of chitosan degradation with hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2020, 64: 105046. |
81 | MERZKIRCH Wolfgang, ROCKWELL Donald, TROPEA Cameron. Experimental fluid mechanics[M]. Springer International Publishing, 2015. |
82 | Ana KOVAČIČ, David ŠKUFCA, ZUPANC Mojca, et al. The removal of bisphenols and other contaminants of emerging concern by hydrodynamic cavitation: from lab-scale to pilot-scale[J]. Science of the Total Environment, 2020, 743: 140724. |
83 | Martin PETKOVŠEK, MLAKAR Matej, LEVSTEK Marjetka, et al. A novel rotation generator of hydrodynamic cavitation for waste-activated sludge disintegration[J]. Ultrasonics Sonochemistry, 2015, 26: 408-414. |
84 | MILLY P J, TOLEDO R T, HARRISON M A, et al. Inactivation of food spoilage microorganisms by hydrodynamic cavitation to achieve pasteurization and sterilization of fluid foods[J]. Journal of Food Science, 2007, 72(9): M414-M422. |
85 | SUN Xun, YOU Weibin, XUAN Xiaoxu, et al. Effect of the cavitation generation unit structure on the performance of an advanced hydrodynamic cavitation reactor for process intensifications[J]. Chemical Engineering Journal, 2021, 412: 128600. |
86 | KWON Woo Chul, YOON Joon Yong. Experimental study of a cavitation heat generator[J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2013, 227(1): 67-73. |
87 | KOSEL Janez, Matej ŠUŠTARŠIČ, Martin PETKOVŠEK, et al. Application of (super)cavitation for the recycling of process waters in paper producing industry[J]. Ultrasonics Sonochemistry, 2020, 64: 105002. |
88 | KOSEL Janez, Andrej ŠINKOVEC, DULAR Matevž. A novel rotation generator of hydrodynamic cavitation for the fibrillation of long conifer fibers in paper production[J]. Ultrasonics Sonochemistry, 2019, 59: 104721. |
89 | SUN Xun, JIA Xiaoqi, LIU Jingting, et al. Investigation on the characteristics of an advanced rotational hydrodynamic cavitation reactor for water treatment[J]. Separation and Purification Technology, 2020, 251: 117252. |
90 | Jurij GOSTIŠA, Brane ŠIROK, REPINC Sabina Kolbl, et al. Performance evaluation of a novel pilot-scale pinned disc rotating generator of hydrodynamic cavitation[J]. Ultrasonics Sonochemistry, 2021, 72: 105431. |
91 | BADVE Mandar P, ALPAR Tibor, PANDIT Aniruddha B, et al. Modeling the shear rate and pressure drop in a hydrodynamic cavitation reactor with experimental validation based on KI decomposition studies[J]. Ultrasonics Sonochemistry, 2015, 22: 272-277. |
92 | 刘影, 李先林, 陈泰然, 等. 内孔式旋转空化发生器的数值计算研究[J]. 北京理工大学学报, 2017, 37(1): 1-4, 14. |
LIU Ying, LI Xianlin, CHEN Tairan, et al. Numerical study on the cavitating flow in a rotary cavitation generator[J]. Transactions of Beijing Institute of Technology, 2017, 37(1): 1-4, 14. | |
93 | 王勇, 严骏, 王健, 等. 转子-定子型离心式水力空化发生器非定常空化形成机制[J]. 哈尔滨工程大学学报, 2018, 39(12): 1887-1893. |
WANG Yong, YAN Jun, WANG Jian, et al. Unsteady cavitation patterns in a rotor-stator centrifugal hydrodynamic cavitation generator[J]. Journal of Harbin Engineering University, 2018, 39(12): 1887-1893. | |
94 | SUN Xun, XUAN Xiaoxu, SONG Yongxing, et al. Experimental and numerical studies on the cavitation in an advanced rotational hydrodynamic cavitation reactor for water treatment[J]. Ultrasonics Sonochemistry, 2021, 70: 105311. |
[1] | 李洪, 孟莹, 李鑫钢, 高鑫. 蒸馏过程强化技术研究进展[J]. 化工进展, 2018, 37(04): 1212-1228. |
[2] | 刘国清, 李友凤, 曾令玮, 王占强, 谭谈, 曾坚贤. 超声化学辅助法制备纳米ZnS及其对水中铜离子的吸附性能[J]. 化工进展, 2017, 36(02): 750-755. |
[3] | 孙宏伟1,陈建峰2. 我国化工过程强化技术理论与应用研究进展 [J]. 化工进展, 2011, 30(1): 1-. |
[4] | 杨 强,黄剑锋. 超声化学法在纳米材料制备中的应用及其进展 [J]. 化工进展, 2010, 29(6): 1091-. |
[5] | 王亚勤,陆向红,俞云良,计建炳. 强化技术在生物柴油制备过程中的应用研究进展 [J]. 化工进展, 2009, 28(6): 942-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |