化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1503-1516.DOI: 10.16085/j.issn.1000-6613.2021-1330

• 减污降碳协同化工节能减排技术 • 上一篇    下一篇

污泥预处理-厌氧消化体系的能源经济性评价

阮敏1(), 孙宇桐1, 黄忠良2, 李辉2, 张轩2, 吴希锴1,2, 赵成1,2, 姚世蓉1,2, 张拴保1, 张巍1, 黄兢2()   

  1. 1.长沙理工大学能源与动力工程学院, 湖南 长沙 410114
    2.湖南省林业科学院省部共建木本油料资源利用 国家重点实验室, 湖南 长沙 410004
  • 收稿日期:2021-06-24 修回日期:2021-09-26 出版日期:2022-03-23 发布日期:2022-03-28
  • 通讯作者: 黄兢
  • 作者简介:阮敏(1979—),女,讲师,研究方向为固体废物资源化利用。E-mail: maggie_rm@163.com
  • 基金资助:
    国家自然科学基金(51808216);湖南省自然科学基金(2019JJ50665);长沙市科技计划国际合作项目(kq1907082);湖南省林业科技计划(XLK201908);湖湘青年英才计划(2018RS3109)

Energy economy evaluation of sludge pretreatment-anaerobic digestion system

RUAN Min1(), SUN Yutong1, HUANG Zhongliang2, LI Hui2, ZHANG Xuan2, WU Xikai1,2, ZHAO Cheng1,2, YAO Shirong1,2, ZHANG Shuanbao1, ZHANG Wei1, HUANG Jing2()   

  1. 1.School of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, Hunan, China
    2.State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, Hunan, China
  • Received:2021-06-24 Revised:2021-09-26 Online:2022-03-23 Published:2022-03-28
  • Contact: HUANG Jing

摘要:

在污泥的厌氧消化中,降低过程能耗与提高甲烷产量是实现污水处理系统“碳中和”的主要思路之一。热、化学、机械预处理是打破厌氧消化限速水解的有效手段,主要着眼于甲烷增产以形成更多的“碳补偿”。但从热力学角度,预处理是通过消耗电能、热能、化学能使有机物大量溶解,从而获得更多生物质能的过程,其本身作为一种能量输入形式增加了厌氧消化的能耗。以往的研究通常以污泥液相中有机物溶出、固相中有机物去除以及甲烷产量作为厌氧消化性能的评价指标,难以客观评估各类厌氧消化预处理的实际效益。本文从能源转换的角度出发,综述了各类污泥预处理方法的作用机理及对厌氧消化的抑制因子等方面的研究进展,对比了典型的热预处理、碱预处理、超声预处理及其联合处理分别在甲烷产量、净能量和净利润等指标上的研究结果,并在污泥厌氧消化效率评价基础上分析了上述预处理方法在能源和经济层面的可行性,为预处理方法和预处理条件的选择提供多维度依据。

关键词: 净能量, 净利润, 厌氧消化预处理, 抑制因子, 能源经济性

Abstract:

Under the background of "carbon neutralization", sludge treatment and disposal is an important field of emission reduction. Anaerobic digestion is one of the key technologies of sludge safety disposal and energy recovery. As a low-carbon technology, the carbon emission of anaerobic digestion is mainly the result of the balance between the "energy source carbon emission" produced by energy consumption in the process of treatment and the "carbon compensation" formed by biomass energy (such as methane) produced after treatment and disposal. Therefore, reducing energy consumption and improving methane production are the main ideas to realize "carbon neutralization". Thermal, chemical, and mechanical pretreatment are effective means to break the rate-limiting hydrolysis of anaerobic digestion, mainly focusing on increasing methane production to form more "carbon compensation". However, from the perspective of thermodynamics, pretreatment is the process of dissolving a large amount of organic matter through the consumption of electric, heat, and chemical energy, thereby obtaining more biomass energy. As an energy input form, pretreatment increases the energy consumption of anaerobic digestion. The inhibitory factors produced in the process prevent the solubilized organic matter from being completely converted into methane. Increasing methane production is usually difficult to balance this part of the energy consumption. Therefore, the selection of low energy consumption pretreatment methods can effectively reduce carbon emissions. Previous studies usually used methane production as the evaluation index of anaerobic digestion performance, which was difficult to objectively evaluate the actual benefits of various anaerobic digestion pretreatments. In this paper, the mechanism of various sludge pretreatment methods and their inhibitory factors on anaerobic digestion were reviewed. The research results of typical thermal pretreatment, alkali pretreatment, ultrasonic pretreatment and combined treatment on methane production, net energy and net profit were compared. Based on the evaluation of anaerobic digestion efficiency of sludge, the feasibility of the above pretreatment methods at the energy and economic levels was analyzed, which provides multi-dimensional basis for the selection of pretreatment methods and intensity.

Key words: net energy production, net cost, anaerobic digestion pretreatment, inhibitor, energy economy

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn