化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1503-1516.DOI: 10.16085/j.issn.1000-6613.2021-1330
阮敏1(), 孙宇桐1, 黄忠良2, 李辉2, 张轩2, 吴希锴1,2, 赵成1,2, 姚世蓉1,2, 张拴保1, 张巍1, 黄兢2()
收稿日期:
2021-06-24
修回日期:
2021-09-26
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
黄兢
作者简介:
阮敏(1979—),女,讲师,研究方向为固体废物资源化利用。E-mail: 基金资助:
RUAN Min1(), SUN Yutong1, HUANG Zhongliang2, LI Hui2, ZHANG Xuan2, WU Xikai1,2, ZHAO Cheng1,2, YAO Shirong1,2, ZHANG Shuanbao1, ZHANG Wei1, HUANG Jing2()
Received:
2021-06-24
Revised:
2021-09-26
Online:
2022-03-23
Published:
2022-03-28
Contact:
HUANG Jing
摘要:
在污泥的厌氧消化中,降低过程能耗与提高甲烷产量是实现污水处理系统“碳中和”的主要思路之一。热、化学、机械预处理是打破厌氧消化限速水解的有效手段,主要着眼于甲烷增产以形成更多的“碳补偿”。但从热力学角度,预处理是通过消耗电能、热能、化学能使有机物大量溶解,从而获得更多生物质能的过程,其本身作为一种能量输入形式增加了厌氧消化的能耗。以往的研究通常以污泥液相中有机物溶出、固相中有机物去除以及甲烷产量作为厌氧消化性能的评价指标,难以客观评估各类厌氧消化预处理的实际效益。本文从能源转换的角度出发,综述了各类污泥预处理方法的作用机理及对厌氧消化的抑制因子等方面的研究进展,对比了典型的热预处理、碱预处理、超声预处理及其联合处理分别在甲烷产量、净能量和净利润等指标上的研究结果,并在污泥厌氧消化效率评价基础上分析了上述预处理方法在能源和经济层面的可行性,为预处理方法和预处理条件的选择提供多维度依据。
中图分类号:
阮敏, 孙宇桐, 黄忠良, 李辉, 张轩, 吴希锴, 赵成, 姚世蓉, 张拴保, 张巍, 黄兢. 污泥预处理-厌氧消化体系的能源经济性评价[J]. 化工进展, 2022, 41(3): 1503-1516.
RUAN Min, SUN Yutong, HUANG Zhongliang, LI Hui, ZHANG Xuan, WU Xikai, ZHAO Cheng, YAO Shirong, ZHANG Shuanbao, ZHANG Wei, HUANG Jing. Energy economy evaluation of sludge pretreatment-anaerobic digestion system[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1503-1516.
抑制剂 | 适宜浓度/mg·L-1 | 弱抑制浓度/mg·L-1 | 强抑制浓度/mg·L-1 | 主要抑制效果 |
---|---|---|---|---|
<200 | 1500~3500 | >3500 | 减少50%甲烷产量 | |
<200 | 560~4051 | >4051~5734 | 降低甲烷菌56.1%活性 | |
约350 | 3500~5500 | >8000 | 抑制50%产乙酸 | |
<400 | 2500~4500 | >12000 | 抑制厌氧菌活性 | |
0 | <0.5 | >0.5 | 使酶失活 | |
2000~6000 | >6000 | 降低pH |
表1 常见的厌氧消化抑制剂
抑制剂 | 适宜浓度/mg·L-1 | 弱抑制浓度/mg·L-1 | 强抑制浓度/mg·L-1 | 主要抑制效果 |
---|---|---|---|---|
<200 | 1500~3500 | >3500 | 减少50%甲烷产量 | |
<200 | 560~4051 | >4051~5734 | 降低甲烷菌56.1%活性 | |
约350 | 3500~5500 | >8000 | 抑制50%产乙酸 | |
<400 | 2500~4500 | >12000 | 抑制厌氧菌活性 | |
0 | <0.5 | >0.5 | 使酶失活 | |
2000~6000 | >6000 | 降低pH |
热预处理 温度/℃ | 污泥停留时间=10天 | 污泥停留时间=20天 | ||
---|---|---|---|---|
90 | 16.2 | 55.2 | 10 | 29.5 |
125 | -6.8 | 57.2 | -2.3 | 29.7 |
155 | -46.3 | 39.0 | -13.1 | 29.5 |
表2 热预处理过程中回收与不回收热量所产生的净能量[77]
热预处理 温度/℃ | 污泥停留时间=10天 | 污泥停留时间=20天 | ||
---|---|---|---|---|
90 | 16.2 | 55.2 | 10 | 29.5 |
125 | -6.8 | 57.2 | -2.3 | 29.7 |
155 | -46.3 | 39.0 | -13.1 | 29.5 |
热预处理温度/℃ | 甲烷产量/m3 | 净利润/USD |
---|---|---|
50 | 370 | 78 |
70 | 368 | 67 |
90 | 386 | 45 |
表3 不同热预处理温度下的甲烷产量和净利润[80]
热预处理温度/℃ | 甲烷产量/m3 | 净利润/USD |
---|---|---|
50 | 370 | 78 |
70 | 368 | 67 |
90 | 386 | 45 |
-2030.8 | -582.9 | -541 | -1153.8 | 7.89 | -218.6 | -1464.1 | -319.8 | -455.7 | |
-934.2 | -146.5 | -146.1 | -574.6 | -19.7 | -27.3 | -747.4 | -109.3 | -171.7 |
表4 不同类型污泥在不同浓度下的净能量[95] (kJ·kg-1 TS)
-2030.8 | -582.9 | -541 | -1153.8 | 7.89 | -218.6 | -1464.1 | -319.8 | -455.7 | |
-934.2 | -146.5 | -146.1 | -574.6 | -19.7 | -27.3 | -747.4 | -109.3 | -171.7 |
超声时间/min | 甲烷产量/m3 | 净利润/USD |
---|---|---|
1 | 374 | 54 |
5 | 391 | -14 |
10 | 404 | -112 |
表5 超声预处理的甲烷产量和净利润[91]
超声时间/min | 甲烷产量/m3 | 净利润/USD |
---|---|---|
1 | 374 | 54 |
5 | 391 | -14 |
10 | 404 | -112 |
1 | 中华人民共和国生态环境部. 2019年中国生态环境统计年报[EB/OL]. [2021-08-27]. . |
2 | LIN W Y, NG W C, WONG B S E, et al. Evaluation of sewage sludge incineration ash as a potential land reclamation material[J]. Journal of Hazardous Materials, 2018, 357: 63-72. |
3 | 刘云兴, 罗海斌. 中国城市污水厂污泥处理技术的现状及发展研究[J]. 环境科学与管理, 2013, 38(7): 94-97. |
LIU Yunxing, LUO Haibin. Current status and development of Chinese urban sewage sludge treatment technologies[J]. Environmental Science and Management, 2013, 38(7): 94-97. | |
4 | 张杞蓉, 普晓晶. 中国城市污水厂污泥处置现状研究[J]. 环境科学与管理, 2015, 40(4): 86-89. |
ZHANG Qirong, PU Xiaojing. Current status of China’s urban sewage plant sludge disposal[J]. Environmental Science and Management, 2015, 40(4): 86-89. | |
5 | RAMACHANDRAN A, RUSTUM R, ADELOYE A J. Anaerobic digestion process modeling using Kohonen self-organising maps[J]. Heliyon, 2019, 5(4): e01511. |
6 | SHI Y, HUANG J, ZENG G, et al. Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: an overview[J]. Chemosphere, 2017, 180: 396-411. |
7 | 戴晓虎, 张辰, 章林伟, 等. 碳中和背景下污泥处理处置与资源化发展方向思考[J]. 给水排水, 2021, 57(3): 1-5. |
DAI Xiaohu, ZHANG Chen, ZHANG Linwei, et al. Thoughes on the development direction of sludge treatment and resource recovery under the background of carbon neutrality[J]. Water & Wastewater Engineering, 2021, 57(3): 1-5. | |
8 | TAO Z, WANG D, YAO F, et al. Influence of low voltage electric field stimulation on hydrogen generation from anaerobic digestion of waste activated sludge[J]. Science of the Total Environment, 2020, 704: 135849. |
9 | CHEN J, TYAGI R D, LI J, et al. Economic assessment of biodiesel production from wastewater sludge[J]. Bioresource Technology, 2018, 253: 41-48. |
10 | BASUVARAJ M, FEIN J, LISS S N. Protein and polysaccharide content of tightly and loosely bound extracellular polymeric substances and the development of a granular activated sludge floc[J]. Water Research, 2015, 82: 104-117. |
11 | SEVIOUR T, YUAN Z, LOOSDRECHT M C M VAN, et al. Aerobic sludge granulation: a tale of two polysaccharides?[J]. Water Research, 2012, 46(15): 4803-4813. |
12 | PATINVOH R J, OSADOLOR O A, CHANDOLIAS K, et al. Innovative pretreatment strategies for biogas production[J]. Bioresource Technology, 2017, 224: 13-24. |
13 | PASSOS F, ORTEGA V, DONOSO-BRAVO A. Thermochemical pretreatment and anaerobic digestion of dairy cow manure: experimental and economic evaluation[J]. Bioresource Technology, 2017, 227: 239-246. |
14 | KOR-BICAKCI G, ESKICIOGLU C. Recent developments on thermal municipal sludge pretreatment technologies for enhanced anaerobic digestion[J]. Renewable and Sustainable Energy Reviews, 2019, 110: 423-443. |
15 | KIM J, PARK C, KIM T H, et al. Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge[J]. Journal of Bioscience and Bioengineering, 2003, 95(3): 271-275. |
16 | WANG J, XUE Q, GUO T, et al. A review on CFD simulating method for biogas fermentation material fluid[J]. Renewable and Sustainable Energy Reviews, 2018, 97: 64-73. |
17 | 赵阳, 金刚, 汪辉. 不同污泥预处理方法对污泥厌氧消化产气量影响研究[J]. 资源节约与环保, 2015(9): 40-41. |
ZHAO Yang, JIN Gang, WANG Hui. Study on the influence of different sludge pretreatment methods on the gas production of sludge anaerobic digestion[J]. Resource Conservation and Environmental Protection, 2015(9): 40-41. | |
18 | THOMPSON T M, YOUNG B R, BAROUTIAN S. Efficiency of hydrothermal pretreatment on the anaerobic digestion of pelagic Sargassum for biogas and fertiliser recovery[J]. Fuel, 2020, 279: 118527. |
19 | LI W, FANG A, LIU B, et al. Effect of different co-treatments of waste activated sludge on biogas production and shaping microbial community in subsequent anaerobic digestion[J]. Chemical Engineering Journal, 2019, 378: 122098. |
20 | KIM D, JEONG E, OH S, et al. Combined (alkaline+ultrasonic) pretreatment effect on sewage sludge disintegration[J].Water Research, 2010, 44: 3093-3100. |
21 | RASAPOOR M, ADL M, BAROUTIAN S, et al. Energy performance evaluation of ultrasonic pretreatment of organic solid waste in a pilot-scale digester[J]. Ultrasonics Sonochemistry, 2019, 51: 517-525. |
22 | PASSOS F, SOLÉ M, GARCÍA J, et al. Biogas production from microalgae grown in wastewater: effect of microwave pretreatment[J]. Applied Energy, 2013, 108: 168-175. |
23 | PASSOS F, ASTALS S, FERRER I. Anaerobic digestion of microalgal biomass after ultrasound pretreatment[J]. Waste Management, 2014, 34(11): 2098-2103. |
24 | PASSOS F, UGGETTI E, CARRÈRE H, et al. Pretreatment of microalgae to improve biogas production: a review[J]. Bioresource Technology, 2014, 172: 403-412. |
25 | AGARWAL M, TARDIO J, MOHAN S V. Pyrolysis of activated sludge: energy analysis and its technical feasibility[J]. Bioresource Technology, 2015, 178: 70-75. |
26 | CHEN J L, ORTIZ R, STEELE T W J, et al. Toxicants inhibiting anaerobic digestion: a review[J]. Biotechnology Advances, 2014, 32(8): 1523-1534. |
27 | ROMERO-GÜIZA M S, MATA-ALVAREZ J, CHIMENOS J M, et al. The effect of magnesium as activator and inhibitor of anaerobic digestion[J]. Waste Management, 2016, 56: 137-142. |
28 | ERYILDIZ B, TAHERZADEH M J. Effect of pH, substrate loading, oxygen, and methanogens inhibitors on volatile fatty acid (VFA) production from Citrus waste by anaerobic digestion[J]. Bioresource Technology, 2020, 302: 122800. |
29 | PHUTTARO C, SAWATDEENARUNAT C, SURENDRA K C, et al. Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: influence of pretreatment temperatures, inhibitors and soluble organics on methane yield[J]. Bioresource Technology, 2019, 284: 128-138. |
30 | LIU X, XU Q, WANG D, et al. Thermal-alkaline pretreatment of polyacrylamide flocculated waste activated sludge: process optimization and effects on anaerobic digestion and polyacrylamide degradation[J]. Bioresource Technology, 2019, 281: 158-167. |
31 | NEUMANN P, GONZÁLEZ Z, VIDAL G. Sequential ultrasound and low-temperature thermal pretreatment: process optimization and influence on sewage sludge solubilization, enzyme activity and anaerobic digestion[J]. Bioresource Technology, 2017, 234: 178-187. |
32 | AVILA R, CARRERO E, CRIVILLÉS E, et al. Effects of low temperature thermal pretreatments in solubility and co-digestion of waste activated sludge and microalgae mixtures[J]. Algal Research, 2020, 50: 101965. |
33 | CHEN S, DONG B, DAI X, et al. Effects of thermal hydrolysis on the metabolism of amino acids in sewage sludge in anaerobic digestion[J]. Waste Management, 2019, 88: 309-318. |
34 | LI X, CHEN S, DONG B, et al. New insight into the effect of thermal hydrolysis on high solid sludge anaerobic digestion: conversion pathway of volatile sulphur compounds[J]. Chemosphere, 2020, 244: 125466. |
35 | STRONG P J, MCDONALD B, GAPES D J. Combined thermochemical and fermentative destruction of municipal biosolids: a comparison between thermal hydrolysis and wet oxidative pre-treatment[J]. Bioresource Technology, 2011, 102(9): 5520-5527. |
36 | LEE J, PARK K Y. Impact of hydrothermal pretreatment on anaerobic digestion efficiency for lignocellulosic biomass: influence of pretreatment temperature on the formation of biomass-degrading byproducts[J]. Chemosphere, 2020, 256: 127116. |
37 | WANG D, WANG Y, LIU X, et al. Heat pretreatment assists free ammonia to enhance hydrogen production from waste activated sludge[J]. Bioresource Technology, 2019, 283: 316-325. |
38 | ZHANG D, FENG Y, HUANG H, et al. Recalcitrant dissolved organic nitrogen formation in thermal hydrolysis pretreatment of municipal sludge[J]. Environment International, 2020, 138: 105629. |
39 | XU D, HAN X, CHEN H, et al. New insights into impact of thermal hydrolysis pretreatment temperature and time on sewage sludge: structure and composition of sewage sludge from sewage treatment plant[J]. Environmental Research, 2020, 191: 110122. |
40 | TOUTIAN V, BARJENBRUCH M, UNGER T, et al. Effect of temperature on biogas yield increase and formation of refractory COD during thermal hydrolysis of waste activated sludge[J]. Water Research, 2020, 171: 115383. |
41 | CESARO A, BELGIORNO V. Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions[J]. Chemical Engineering Journal, 2014, 240: 24-37. |
42 | ZOU X, YANG R, ZHOU X, et al. Effects of mixed alkali-thermal pretreatment on anaerobic digestion performance of waste activated sludge[J]. Journal of Cleaner Production, 2020, 259: 120940. |
43 | GÜELFO L A F, ÁLVAREZ-GALLEGO C, SALES D, et al. The use of thermochemical and biological pretreatments to enhance organic matter hydrolysis and solubilization from organic fraction of municipal solid waste (OFMSW)[J]. Chemical Engineering Journal, 2011, 168(1): 249-254. |
44 | GENG Y K, YUAN L, LIU T, et al. Thermal/alkaline pretreatment of waste activated sludge combined with a microbial fuel cell operated at alkaline pH for efficient energy recovery[J]. Applied Energy, 2020, 275: 115291. |
45 | CHEN Y, YANG H, ZOU H, et al. Effects of acid/alkali pretreatments on lignocellulosic biomass mono-digestion and its co-digestion with waste activated sludge[J]. Journal of Cleaner Production, 2020, 277: 123998. |
46 | WANG S, YU S, LU Q, et al. Development of an alkaline/acid pre-treatment and anaerobic digestion (APAD) process for methane generation from waste activated sludge[J]. Science of the Total Environment, 2020, 708: 134564. |
47 | LI Y, LIN L, LI X. Chemically enhanced primary sedimentation and acidogenesis of organics in sludge for enhanced nitrogen removal in wastewater treatment[J]. Journal of Cleaner Production, 2020, 244: 118705. |
48 | KUMAR A, SAMADDER S R. Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: a review[J]. Energy, 2020, 197: 117253. |
49 | ŞAHINKAYA S, SEVIMLI M F. Sono-thermal pre-treatment of waste activated sludge before anaerobic digestion[J]. Ultrasonics Sonochemistry, 2013, 20(1): 587-594. |
50 | PILLI S, BHUNIA P, YAN S, et al. Ultrasonic pretreatment of sludge: a review[J]. Ultrasonics Sonochemistry, 2011, 18(1): 1-18. |
51 | TIEHM A, NICKEL K, ZELLHORN M, et al. Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization[J]. Water Research, 2001, 35(8): 2003-2009. |
52 | TIEHM A, NICKEL K, NEIS U. The use of ultrasound to accelerate the anaerobic digestion of sewage sludge[J]. Water Science and Technology, 1997, 36(11): 121-128. |
53 | MARTÍN M Á, GONZÁLEZ I, SERRANO A, et al. Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge[J]. Journal of Environmental Management, 2015, 147: 330-337. |
54 | LE L T, LEE S, BUI X T, et al. Suppression of nitrite-oxidizing bacteria under the combined conditions of high free ammonia and low dissolved oxygen concentrations for mainstream partial nitritation[J]. Environmental Technology & Innovation, 2020, 20: 101135. |
55 | YAN M, TREU L, CAMPANARO S, et al. Effect of ammonia on anaerobic digestion of municipal solid waste: inhibitory performance, bioaugmentation and microbiome functional reconstruction[J]. Chemical Engineering Journal, 2020, 401: 126159. |
56 | LI X, XIONG N, WANG X, et al. New insight into volatile sulfur compounds conversion in anaerobic digestion of excess sludge: influence of free ammonia nitrogen and thermal hydrolysis pretreatment[J]. Journal of Cleaner Production, 2020, 277: 123366. |
57 | BOZKURT Y C, APUL O G. Critical review for microwave pretreatment of waste-activated sludge prior to anaerobic digestion[J]. Current Opinion in Environmental Science & Health, 2020, 14: 1-9. |
58 | LIU Jianwei, ZHAO Mengfei, Chen LYU, et al. The effect of microwave pretreatment on anaerobic co-digestion of sludge and food waste: performance, kinetics and energy recovery[J]. Environmental Research, 2020, 189: 109856. |
59 | APPELS L, BAEYENS J, DEGRÈVE J, et al. Principles and potential of the anaerobic digestion of waste-activated sludge[J]. Progress in Energy and Combustion Science, 2008, 34(6): 755-781. |
60 | AHRING B K, PETER W. Sensitivity of thermophilic methanogenic bacteria to heavy metals[J]. Current Microbiology, 1985, 12(5): 273-276. |
61 | 徐俊, 朱雯喆, 谢丽. 生物强化技术对厌氧消化特性影响研究进展[J]. 化工进展, 2019, 38(9): 4227-4237. |
XU Jun, ZHU Wenzhe, XIE Li. Effect of bioaugmentation on the performance of anaerobic digestion: a review[J]. Chemical Industry and Engineering Progress, 2019, 38(9): 4227-4237. | |
62 | ARIUNBAATAR J, PANICO A, FRUNZO L, et al. Enhanced anaerobic digestion of food waste by thermal and ozonation pretreatment methods[J]. Journal of Environmental Management, 2014, 146: 142-149. |
63 | 王磊, 谭学军, 王逸贤, 等. 热水解预处理剩余污泥的有机物分布及厌氧消化特性[J]. 环境工程, 2019, 37(3): 35-39. |
WANG Lei, TAN Xuejun, WANG Yixian, et al. Organic matter distribution and charactersics of excess sludge pretreated by thermal hydrolysis[J]. Environmental Engineering, 2019, 37(3): 35-39. | |
64 | LU D, SUN F, ZHOU Y. Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment[J]. Bioresource Technology, 2018, 266: 60-67. |
65 | NAZARI L, YUAN Z, SANTORO D, et al. Low-temperature thermal pre-treatment of municipal wastewater sludge: process optimization and effects on solubilization and anaerobic degradation[J]. Water Research, 2017, 113: 111-123. |
66 | 李海兵, 刘志英, 林承顺, 等. 微波预处理对剩余污泥生化处理的影响[J]. 环境工程学报, 2018, 12(4): 1254-1260. |
LI Haibing, LIU Zhiying, LIN Chengshun, et al. Effect of microwave pretreatment on biochemical treatment of waste actived sludge[J]. Chinese Journal of Environmental Engineering, 2018, 12(4): 1254-1260. | |
67 | EBENEZER A V, KALIAPPAN S, KUMAR S A, et al. Influence of deflocculation on microwave disintegration and anaerobic biodegradability of waste activated sludge[J]. Bioresource Technology, 2015, 185: 194-201. |
68 | 于潘芬. 不同预处理对污泥厌氧消化性能的影响研究[D]. 青岛: 青岛大学, 2019. |
YU Panfen. Study on the influence of different pretreatments on the performance of anaerobic digestion of sludge[D]. Qingdao: Qingdao University, 2019. | |
69 | KIM D, LEE J. Ultrasonic sludge disintegration for enhanced methane production in anaerobic digestion: effects of sludge hydrolysis efficiency and hydraulic retention time[J]. Bioprocess and Biosystem Engineering, 2012, 35: 289-296. |
70 | TYAGI V K, LO S L. Application of physico-chemical pretreatment methods to enhance the sludge disintegration and subsequent anaerobic digestion: an up to date review[J]. Reviews in Environmental Science and Bio-Technology, 2011, 10(3): 215-242. |
71 | XU H, HE P, YU G, et al. Effect of ultrasonic pretreatment on anaerobic digestion and its sludge dewaterability[J]. Journal of Environmental Sciences, 2011, 23(9): 1472-1478. |
72 | SAPKAITE I, BARRADO E, FDZ-POLANCO F, et al. Optimization of a thermal hydrolysis process for sludge pre-treatment[J]. Journal of Environmental Management, 2017, 192: 25-30. |
73 | ALZATE M E, MUNOZ R, ROGALLA F, et al. Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment[J]. Bioresource Technology, 2012,123: 488-494. |
74 | HAO X, CHEN Q, LOOSDRECHT M C M VAN, et al. Sustainable disposal of excess sludge: incineration without anaerobic digestion[J]. Water Research, 2020, 170: 115298. |
75 | GIANICO A, FIORIN D, TOSTI L A, et al. Innovative two-steps thermo-chemical pretreatment for sludge reduction and energy recovery: cost and energy assessment[J]. Water and Environment Journal, 2020, 34(S1): 540-550. |
76 | CHO S, PARK S, SEON J, et al. Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production[J]. Bioresource Technology, 2013, 143: 330-336. |
77 | LIU X, WANG Q, TANG Y, et al. Hydrothermal pretreatment of sewage sludge for enhanced anaerobic digestion: resource transformation and energy balance[J]. Chemical Engineering Journal, 2020, 21: 127430. |
78 | VOLSCHAN JUNIOR I, ALMEIDA R, CAMMAROTA M C. A review of sludge pretreatment methods and co-digestion to boost biogas production and energy self-sufficiency in wastewater treatment plants[J]. Journal of Water Process Engineering, 2021, 40: 101857. |
79 | PASSOS F, FERRER I. Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production[J]. Water Research, 2015, 68: 364-373. |
80 | KAVITHA S, BANU J R, PRIYA A A, et al. Liquefaction of food waste and its impacts on anaerobic biodegradability, energy ratio and economic feasibility[J]. Applied Energy, 2017, 208: 228-238. |
81 | XIAO B, TANG X, YI H, et al. Comparison of two advanced anaerobic digestions of sewage sludge with high-temperature thermal pretreatment and low-temperature thermal-alkaline pretreatment[J]. Bioresource Technology, 2020, 304: 122979. |
82 | KAVITHA S, BANU J R, SUBITHA G, et al. Impact of thermo-chemo-sonic pretreatment in solubilizing waste activated sludge for biogas production: energetic analysis and economic assessment[J]. Bioresource Technology, 2016, 219: 479-486. |
83 | PILLI S, MORE T, YAN S, et al. Anaerobic digestion of thermal pre-treated sludge at different solids concentrations-computation of mass-energy balance and greenhouse gas emissions[J]. Journal of Environmental Management, 2015, 157: 250-261. |
84 | YUAN T, CHENG Y, ZHANG Z, et al. Comparative study on hydrothermal treatment as pre-and post-treatment of anaerobic digestion of primary sludge: focus on energy balance, resources transformation and sludge dewaterability[J]. Applied Energy, 2019, 239: 171-180. |
85 | BISWAL B K, HUANG H, DAI J, et al. Impact of low-thermal pretreatment on physicochemical properties of saline waste activated sludge, hydrolysis of organics and methane yield in anaerobic digestion[J]. Bioresource Technology, 2020, 297: 122423. |
86 | LU J, GAVALA H N, SKIADAS I V, et al. Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step[J]. Journal of Environmental Management, 2008, 88(4): 881-889. |
87 | APPELS L, DEGRÈVE J, BRUGGEN B VAN DER, et al. Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion[J]. Bioresource Technology, 2010, 101(15): 5743-5748. |
88 | WANG L, LI A. Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: the dewatering performance and the characteristics of products[J]. Water Research, 2015, 68: 291-303. |
89 | CHEN R, YU X, DONG B, et al. Sludge-to-energy approaches based on pathways that couple pyrolysis with anaerobic digestion (thermal hydrolysis pre/post-treatment): energy efficiency assessment and pyrolysis kinetics analysis[J]. Energy, 2020, 190: 116240. |
90 | CANO R, PÉREZ-ELVIRA S I, FDZ-POLANCO F. Energy feasibility study of sludge pretreatments: a review[J]. Applied Energy, 2015, 149: 176-185. |
91 | LIU J, DONG L, DAI Q, et al. Enhanced anaerobic digestion of sewage sludge by thermal or alkaline-thermal pretreatments: influence of hydraulic retention time reduction[J]. International Journal of Hydrogen Energy, 2020, 45(4): 2655-2667. |
92 | PASSOS F, CARRETERO J, FERRER I. Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound[J]. Chemical Engineering Journal, 2015, 279: 667-672. |
93 | HOUTMEYERS S, DEGREVE J, WILLEMS K, et al. Comparing the influence of low power ultrasonic and microwave pretreatments on the solubilisation and semi-continuous anaerobic digestion of waste activated sludge[J]. Bioresource Technology, 2014, 171: 44-49. |
94 | AKGUL D, CELLA M A, ESKICIOGLU C. Influences of low-energy input microwave and ultrasonic pretreatments on single-stage and temperature-phased anaerobic digestion (TPAD) of municipal wastewater sludge[J]. Energy, 2017, 123: 271-282. |
95 | PILLUI S, YAN S, TYAGI R D, et al. Anaerobic digestion of ultrasonicated sludge at different solids concentrations-computation of mass-energy balance and greenhouse gas emissions[J]. Journal of Environmental Management, 2016, 166: 374-386. |
96 | KIM D, LEE K, PARK K Y. Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment[J]. International Biodeterioration & Biodegradation, 2015, 101: 42-46. |
97 | ŞAHINKAYA S, SEVIMLI M F. Synergistic effects of sono-alkaline pretreatment on anaerobic biodegradability of waste activated sludge[J]. Journal of Industrial and Engineering Chemistry, 2013, 19(1): 197-206. |
98 | DHAR B R, NAKHLA G, RAY M B. Techno-economic evaluation of ultrasound and thermal pretreatments for enhanced anaerobic digestion of municipal waste activated sludge[J]. Waste Management, 2012, 32(3): 542-549. |
99 | CHEN H, YI H, LI H, et al. Effects of thermal and thermal-alkaline pretreatments on continuous anaerobic sludge digestion: performance, energy balance and, enhancement mechanism[J]. Renewable Energy, 2020, 147: 2409-2416. |
100 | KAVITHA S, KANNAH R Y, YEOM I T, et al. Combined thermo-chemo-sonic disintegration of waste activated sludge for biogas production[J]. Bioresource Technology, 2015, 197: 383-392. |
[1] | 赵景超, 谭明. 表面活性剂对电渗析减量化工业含盐废水的影响[J]. 化工进展, 2023, 42(S1): 529-535. |
[2] | 王大为, 毕春梦, 秦永丽, 蒋永荣, 谢华宾, 毛宇昆, 苗雪岩. 硫酸盐还原活性污泥矿化固定酸性矿山废水中的镉[J]. 化工进展, 2023, 42(10): 5509-5519. |
[3] | 朱义浩, 赵白航, 王淳, 张雨晴, 杨海山. 改性煤矸石基沸石对水中腐殖酸的吸附性能[J]. 化工进展, 2023, 42(10): 5531-5537. |
[4] | 张会霞, 周立山, 张程蕾, 钱光磊, 谢陈鑫, 朱令之. Bi2S3/TiO2纳米锥光阳极的制备及其光电催化降解土霉素[J]. 化工进展, 2023, 42(10): 5548-5557. |
[5] | 许中硕, 周盼盼, 王宇晖, 黄威, 宋新山. 硫铁矿介导的自养反硝化研究进展[J]. 化工进展, 2023, 42(9): 4863-4871. |
[6] | 陈翔宇, 卞春林, 肖本益. 温度分级厌氧消化工艺的研究进展[J]. 化工进展, 2023, 42(9): 4872-4881. |
[7] | 王琦, 寇丽红, 王冠宇, 王吉坤, 刘敏, 李兰廷, 王昊. 焦化废水生物出水中可溶解性有机物的分子识别[J]. 化工进展, 2023, 42(9): 4984-4993. |
[8] | 龚鹏程, 严群, 陈锦富, 温俊宇, 苏晓洁. 铁酸钴复合碳纳米管活化过硫酸盐降解铬黑T的性能及机理[J]. 化工进展, 2023, 42(7): 3572-3581. |
[9] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[10] | 朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048. |
[11] | 李白雪, 信欣, 朱羽蒙, 刘琴, 刘鑫. SASD-A体系构建及进水不同S/N对脱氮工艺的影响机制[J]. 化工进展, 2023, 42(6): 3261-3271. |
[12] | 曾天续, 张永显, 严渊, 刘宏, 马娇, 党鸿钟, 吴新波, 李维维, 陈永志. 羟胺对硝化菌活性及其动力学参数的影响[J]. 化工进展, 2023, 42(6): 3272-3280. |
[13] | 杨自强, 李风海, 郭卫杰, 马名杰, 赵薇. 市政污泥热处理过程中磷迁移转化的研究进展[J]. 化工进展, 2023, 42(4): 2081-2090. |
[14] | 朱紫旋, 陈俊江, 张星星, 李祥, 刘文如, 吴鹏. 基于短程反硝化厌氧氨氧化新型污水生物脱氮工艺的研究进展[J]. 化工进展, 2023, 42(4): 2091-2100. |
[15] | 王玉, 余广炜, 江汝清, 黎长江, 林佳佳, 邢贞娇. 餐厨厌氧沼渣生物炭吸附盐酸环丙沙星[J]. 化工进展, 2023, 42(4): 2160-2170. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |