1 |
詹明秀. 水泥窑协同处置固废二 英排放特性和生成机理研究[D]. 杭州: 浙江大学, 2017.
|
|
ZHAN Mingxiu. Research on the emission characteristic and formation mechanism of PCDD/Fs from cement kiln during solid waste co-disposal[D]. Hangzhou: Zhejiang University, 2017.
|
2 |
XIAO H P, RU Y, PENG Z, et al. Destruction and formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during pretreatment and co-processing of municipal solid waste incineration fly ash in a cement kiln[J]. Chemosphere, 2018, 210: 779-788.
|
3 |
VICZEK S A, ALDRIAN A, POMBERGER R, et al. Determination of the material-recyclable share of SRF during co-processing in the cement industry[J]. Resources, Conservation and Recycling, 2020, 156: 104696.
|
4 |
ASHRAF M S, GHOULEH Z, SHAO Y X. Production of eco-cement exclusively from municipal solid waste incineration residues[J]. Resources, Conservation and Recycling, 2019, 149: 332-342.
|
5 |
KOSAJAN V, WEN Z G, FEI F, et al. The feasibility analysis of cement kiln as an MSW treatment infrastructure: from a life cycle environmental impact perspective[J]. Journal of Cleaner Production, 2020, 267: 122113.
|
6 |
DIAZ-LOYA I, JUENGER M, SERAJ S, et al. Extending supplementary cementitious material resources: reclaimed and remediated fly ash and natural pozzolans[J]. Cement and Concrete Composites, 2019, 101: 44-51.
|
7 |
GENON G, BRIZIO E. Perspectives and limits for cement kilns as a destination for RDF[J]. Waste Management, 2008, 28(11): 2375-2385.
|
8 |
BERRY E E, MACDONALD L P. Experimental burning of used automotive crankcase oil in a dry-process cement kiln[J]. Journal of Hazardous Materials, 1975, 1(2): 137-156.
|
9 |
ZABANIOTOU A, THEOFILOU C. Green energy at cement kiln in Cyprus—Use of sewage sludge as a conventional fuel substitute[J]. Renewable and Sustainable Energy Reviews, 2008, 12(2): 531-541.
|
10 |
GALVEZ-MARTOS J L, SCHOENBERGER H. An analysis of the use of life cycle assessment for waste co-incineration in cement kilns[J]. Resources, Conservation and Recycling, 2014, 86: 118-131.
|
11 |
郭新干. 水泥窑协同处置固体废物分析探讨[J]. 陶瓷, 2020(11): 29-31.
|
|
GUO Xingan. Analysis and discussion on co-processing of solid waste in cement kiln[J]. Ceramics, 2020(11): 29-31.
|
12 |
王彩云, 赵玉潮, 万迎峰, 等. 钢铁炉窑协同处置危险废物类别的适宜性探讨[J]. 工业安全与环保, 2018, 44(6): 95-98, 102.
|
|
WANG Caiyun, ZHAO Yuchao, WAN Yingfeng, et al. Discussion on the suitability of collaborative disposal of hazardous waste categories in iron and steel furnace[J]. Industrial Safety and Environmental Protection, 2018, 44(6): 95-98, 102.
|
13 |
WONG G, FAN X H, GAN M, et al. Resource utilization of municipal solid waste incineration fly ash in iron ore sintering process: a novel thermal treatment[J]. Journal of Cleaner Production, 2020, 263: 121400.
|
14 |
SINGH P K, AVALA LAVA K, KATIYAR P K, et al. Agglomeration behaviour of steel plants solid waste and its effect on sintering performance[J]. Journal of Materials Research and Technology, 2017, 6(3): 289-296.
|
15 |
ZHOU H, MA P N, LAI Z Y, et al. Harmless treatment of waste selective catalytic reduction catalysts during iron ore sintering process[J]. Journal of Cleaner Production, 2020, 275: 122954.
|
16 |
BABICH A, SENK D, KNEPPER M, et al. Conversion of injected waste plastics in blast furnace[J]. Ironmaking & Steelmaking, Taylor & Francis, 2016, 43(1): 11-21.
|
17 |
KIM D, SHIN S, SOHN S, et al. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies[J]. Journal of Hazardous Materials, 2002, 94(3): 213-222.
|
18 |
DE ASSIS C F C, TENÓRIO J A S, ASSIS P S, et al. Experimental simulation and analysis of agricultural waste injection as an alternative fuel for blast furnace[J]. Energy & Fuels, 2014, 28(11): 7268-7273.
|
19 |
SEKINE Y, FUKUDA K, KATO K, et al. CO2 reduction potentials by utilizing waste plastics in steel works[J]. The International Journal of Life Cycle Assessment, 2009, 14(2): 122-136.
|
20 |
DIEZ M A, ALVAREZ R, CIMADEVILLA J L G. Briquetting of carbon-containing wastes from steelmaking for metallurgical coke production[J]. Fuel, 2013, 114: 216–223.
|
21 |
ZHOU J N, SONG W M, LI Y J, et al. High-quality syngas production: the green and efficient utilization of waste tire and waste heat from the steelmaking converter process[J]. Waste Management, 2021, 131: 98-107.
|
22 |
BARICOVÁ D, PRIBULOVÁ A, BUĽKO B, et al. Recycling of the steelmaking by-products into the oxygen converter charge[J]. New Trends in Production Engineering, 2019, 2(2): 1-11.
|
23 |
ASANUMA M, ARIYAMA T, SATO M, et al. Development of waste plastics injection process in blast furnace[J]. ISIJ International, 2000, 40(3): 244-251.
|
24 |
TRINKEL V, KIEBERGER N, BÜRGLER T, et al. Influence of waste plastic utilisation in blast furnace on heavy metal emissions[J]. Journal of Cleaner Production, 2015, 94: 312-320.
|
25 |
NOMURA S. Use of waste plastics in coke oven: a review[J]. Journal of Sustainable Metallurgy, 2015, 1(1): 85-93.
|
26 |
张垒, 刘尚超, 张道权, 等. 烧结炼铁协同处置含铬污泥的应用研究[J]. 烧结球团, 2018, 43(5): 61-64.
|
|
ZHANG Lei, LIU Shangchao, ZHANG Daoquan, et al. Application research on co-disposal of chromium-containing sludge in sintering and ironmaking[J]. Sintering and Pelletizing, 2018 43(5): 61-64.
|
27 |
李建, 毛晓明, 胡德生. 焦化工艺协同处置轧钢含油污泥的基础研究[J]. 宝钢技术, 2018(2): 39-45.
|
|
LI Jian, MAO Xiaoming, HU Desheng. Foundational research on the treatment of oily sludge by coking process[J]. Baosteel Technology, 2018(2): 39-45.
|
28 |
陈永军. 焦油渣配型煤炼焦工艺[J]. 山东冶金, 2018, 40(3): 69, 71.
|
|
CHEN Yongjun. Coking process with tar residue and briquette[J]. Shandong Metallurgy, 2018, 40(3): 69, 71.
|
29 |
刘剑平, 唐丽萍. 转炉焚烧废油漆涂料桶研究[J]. 宝钢技术, 2017(1): 39-42.
|
|
LIU Jianping, TANG Liping. Research of converter burning waste paint bucket[J]. Baosteel Technology, 2017(1): 39-42.
|
30 |
李洋洋. 火电厂协同处置污泥环境安全及运行工况影响研究[D]. 北京: 清华大学, 2011.
|
|
LI Yangyang. Effects of sludge cofiring on environmental security and processing stability of coal-fired power plants[D]. Beijing: Tsinghua University, 2011.
|
31 |
翁焕新, 苏闽华, 马学文, 等. 烟气干化污泥及其对霾的源头控制作用[J]. 科学通报, 2015, 60(30): 2890-2899.
|
|
WENG Huanxin, SU Minhua, MA Xuewen, et al. Sludge drying using flue gas and its role in haze source control[J]. Chinese Science Bulletin, 2015, 60(30): 2890-2899.
|
32 |
CAMPBELL P E, MCMULLAN J T, WILLIAMS B C, et al. Co-combustion of coal and textiles in a small-scale circulating fluidised bed boiler in Germany[J]. Fuel Processing Technology, 2000, 67(2): 115-129.
|
33 |
NUNES L J R, MATIAS J C O, CATALÃO J P S. Biomass waste co-firing with coal applied to the Sines Thermal Power Plant in Portugal[J]. Fuel, 2014, 132: 153-157.
|
34 |
NIMMO W, SINGH S, GIBBS B M, et al. The evaluation of waste tyre pulverised fuel for NO x reduction by reburning[J]. Fuel, 2008, 87(13): 2893-2900.
|
35 |
张晴, 莫华, 徐海红, 等. 燃煤电厂掺烧废弃物现状及环境管理建议[J]. 环境工程, 2020, 38(6): 202-207.
|
|
ZHANG Qing, MO Hua, XU Haihong, et al. Present situation of co-combustion of waste and coal in power plants and suggestions on environmental management[J]. Environmental Engineering, 2020, 38(6): 202-207.
|
36 |
井新经, 陈运, 张海龙, 等. 生物质耦合发电技术及发电量计算方法[J]. 热力发电, 2019, 48(12): 31-37.
|
|
JING Xinjing, CHEN Yun, ZHANG Hailong, et al. Biomass coupled power generation technology and power generation calculation methods[J]. Thermal Power Generation, 2019, 48(12): 31-37.
|
37 |
张世鑫, 蔡芳龙, 陈玉洪, 等. 大型CFB锅炉掺烧生物质及城市固废可行性分析[J]. 中国资源综合利用, 2017, 35(7): 64-68.
|
|
ZHANG Shixin, CAI Fanglong, CHEN Yuhong, et al. Feasibility analysis of large CFB boiler mixed burning biomass fuels and “urban solid waste”[J]. China Resources Comprehensive Utilization, 2017, 35(7): 64-68.
|
38 |
GUO Q H, ZHANG Z Q, HE Q, et al. Characteristics of high-carbon-content slag and utilization for coal-water slurry preparation[J]. Energy & Fuels, 2020, 34(11): 14058-14064.
|
39 |
WANG R K, ZHAO Z H, YIN Q Q, et al. Additive adsorption behavior of sludge and its influence on the slurrying ability of coal-sludge-slurry and petroleum coke-sludge-slurry[J]. Applied Thermal Engineering, 2018, 128: 1555-1564.
|
40 |
KUZNETSOV G V, MALYSHEV D Y, KOSTOREVA Z A, et al. The ignition of the bio water-coal fuel particles based on coals of different degree metamorphism[J]. Energy, 2020, 201: 117701.
|
41 |
NYASHINA G S, SHLEGEL N E, VERSHININA K Y, et al. Industrial waste as part of coal-water slurry fuels[J]. Energy & Fuels, 2018, 32(11): 11398-11410.
|
42 |
WANG R K, LIU J Z, LYU Y, et al. Sewage sludge disruption through sonication to improve the co-preparation of coal-sludge slurry fuel: the effects of sonic frequency[J]. Applied Thermal Engineering, 2016, 99: 645-651.
|
43 |
WANG R K, ZHAO Z H, LIU J Z, et al. Enhancing the storage stability of petroleum coke slurry by producing biogas from sludge fermentation[J]. Energy, 2016, 113: 319-327.
|
44 |
WANG J Q, LIU J Z, JIN Y Q, et al. Study on the slurry ability and combustion behaviour of coal-bioferment residue of drugs-slurry[J]. The Canadian Journal of Chemical Engineering, 2018, 96(4): 838-844.
|
45 |
WANG S N, LIU J Z, PISUPATI S V, et al. Dispersion mechanism of coal water slurry prepared by mixing various high-concentration organic waste liquids[J]. Fuel, 2021, 287: 119340.
|
46 |
LI D D, LIU J Z, WANG S N, et al. Study on coal water slurries prepared from coal chemical wastewater and their industrial application[J]. Applied Energy, 2020, 268: 114976.
|
47 |
李雪冰. 德士古气化炉协同处置危险废物的污染物降解与排放研究[D]. 北京: 中国环境科学研究院, 2018.
|
|
LI Xuebing. Degradation and emission of pollutants during co-processing of hazardous waste in Texaco gasifier[D]. Beijing: Chinese Research Academy of Environmental Sciences, 2018.
|
48 |
任金锁, 丁满福. 晋华炉加压煤气化技术综述[J]. 中国化工装备, 2021, 23(2): 3-7, 23.
|
|
REN Jinsuo, DING Manfu. Review of Jinhua Gasifier pressurized coal gasification technology[J]. China Chemical Industry Equipment, 2021, 23(2): 3-7, 23.
|
49 |
王永安, 周志江, 代松涛. 有机合成浆在煤气化装置的应用分析[J]. 广州化工, 2020, 48(4): 104-105, 123.
|
|
WANG Yongan, ZHOU Zhijiang, DAI Songtao. Application analysis of organic synthetic coal water slurry in coal gasification device[J]. Guangzhou Chemical Industry, 48(4): 104-105, 123.
|
50 |
DONG J, CHI Y, TANG Y J, et al. Partitioning of heavy metals in municipal solid waste pyrolysis, gasification, and incineration[J]. Energy & Fuels, American Chemical Society, 2015, 29(11): 7516-7525.
|
51 |
Waste casification & pyrolysis: risk high, low yield processes for waste management[R]. Global Alliance for Incinerator Alternatives, 2017.
|
52 |
VADILLO V, SÁNCHEZ-ONETO J, PORTELA J R, et al. Problems in supercritical water oxidation process and proposed solutions[J]. Industrial & Engineering Chemistry Research, 2013, 52(23): 7617-7629.
|
53 |
GARCÍA-RODRÍGUEZ Y, MATO F A, MARTÍN A, et al. Energy recovery from effluents of supercritical water oxidation reactors[J]. The Journal of Supercritical Fluids, 2015, 104: 1-9.
|
54 |
WANG Y F, ZHU H M, JIANG X G, et al. Study on the evolution and transformation of Cl during co-incineration of a mixture of rectification residue and raw meal of a cement kiln[J]. Waste Management, 2019, 84: 112-118.
|