化工进展 ›› 2022, Vol. 41 ›› Issue (3): 1494-1502.DOI: 10.16085/j.issn.1000-6613.2021-1789
王建斌1(), 陈云2, 王可华2, 于学鹏2, 陈聪1, 刘建忠1(
)
收稿日期:
2021-08-20
修回日期:
2021-11-29
出版日期:
2022-03-23
发布日期:
2022-03-28
通讯作者:
刘建忠
作者简介:
王建斌(1997—),男,博士研究生,研究方向为废弃物能源化和资源化。E-mail:基金资助:
WANG Jianbin1(), CHEN Yun2, WANG Kehua2, YU Xuepeng2, CHEN Cong1, LIU Jianzhong1(
)
Received:
2021-08-20
Revised:
2021-11-29
Online:
2022-03-23
Published:
2022-03-28
Contact:
LIU Jianzhong
摘要:
采用工业窑炉协同处置固废技术,借助工业窑炉的高温环境彻底转化分解固废,有效控制二英、重金属等二次污染,同时可节省固废专用处置设施的投资及运行费用,为工业生产替代部分所需化石燃料或生产原料,是一种科学处置固废的有效途径。本文介绍了水泥窑、钢铁冶炼窑炉、电厂燃煤锅炉、水煤浆气化炉等工业窑炉协同处置固废技术,综述了工业窑炉协同处置固废的技术研究和工程应用现状,结合固废自身特征与各行业工业窑炉特性分析其固废适用性。对比常见的固废非热处理技术、固废热处理技术,指出工业窑炉协同处置固废技术具有固废消纳潜力大、资源化利用水平高、环保效益好、无邻避效应等优点。最后对固废协同处置领域的未来发展作出了展望,水泥窑协同处置固废是率先实现行业标准、技术规范、法律法规等规定走向成熟的固废协同处置技术,而钢铁冶炼窑炉、电厂燃煤锅炉、水煤浆气化炉协同处置固废技术则更具技术优化空间和发展潜力。
中图分类号:
王建斌, 陈云, 王可华, 于学鹏, 陈聪, 刘建忠. 工业窑炉协同处置固废研究进展[J]. 化工进展, 2022, 41(3): 1494-1502.
WANG Jianbin, CHEN Yun, WANG Kehua, YU Xuepeng, CHEN Cong, LIU Jianzhong. Co-processing of solid waste in industrial kilns: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1494-1502.
1 |
詹明秀. 水泥窑协同处置固废二![]() |
ZHAN Mingxiu. Research on the emission characteristic and formation mechanism of PCDD/Fs from cement kiln during solid waste co-disposal[D]. Hangzhou: Zhejiang University, 2017. | |
2 | XIAO H P, RU Y, PENG Z, et al. Destruction and formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during pretreatment and co-processing of municipal solid waste incineration fly ash in a cement kiln[J]. Chemosphere, 2018, 210: 779-788. |
3 | VICZEK S A, ALDRIAN A, POMBERGER R, et al. Determination of the material-recyclable share of SRF during co-processing in the cement industry[J]. Resources, Conservation and Recycling, 2020, 156: 104696. |
4 | ASHRAF M S, GHOULEH Z, SHAO Y X. Production of eco-cement exclusively from municipal solid waste incineration residues[J]. Resources, Conservation and Recycling, 2019, 149: 332-342. |
5 | KOSAJAN V, WEN Z G, FEI F, et al. The feasibility analysis of cement kiln as an MSW treatment infrastructure: from a life cycle environmental impact perspective[J]. Journal of Cleaner Production, 2020, 267: 122113. |
6 | DIAZ-LOYA I, JUENGER M, SERAJ S, et al. Extending supplementary cementitious material resources: reclaimed and remediated fly ash and natural pozzolans[J]. Cement and Concrete Composites, 2019, 101: 44-51. |
7 | GENON G, BRIZIO E. Perspectives and limits for cement kilns as a destination for RDF[J]. Waste Management, 2008, 28(11): 2375-2385. |
8 | BERRY E E, MACDONALD L P. Experimental burning of used automotive crankcase oil in a dry-process cement kiln[J]. Journal of Hazardous Materials, 1975, 1(2): 137-156. |
9 | ZABANIOTOU A, THEOFILOU C. Green energy at cement kiln in Cyprus—Use of sewage sludge as a conventional fuel substitute[J]. Renewable and Sustainable Energy Reviews, 2008, 12(2): 531-541. |
10 | GALVEZ-MARTOS J L, SCHOENBERGER H. An analysis of the use of life cycle assessment for waste co-incineration in cement kilns[J]. Resources, Conservation and Recycling, 2014, 86: 118-131. |
11 | 郭新干. 水泥窑协同处置固体废物分析探讨[J]. 陶瓷, 2020(11): 29-31. |
GUO Xingan. Analysis and discussion on co-processing of solid waste in cement kiln[J]. Ceramics, 2020(11): 29-31. | |
12 | 王彩云, 赵玉潮, 万迎峰, 等. 钢铁炉窑协同处置危险废物类别的适宜性探讨[J]. 工业安全与环保, 2018, 44(6): 95-98, 102. |
WANG Caiyun, ZHAO Yuchao, WAN Yingfeng, et al. Discussion on the suitability of collaborative disposal of hazardous waste categories in iron and steel furnace[J]. Industrial Safety and Environmental Protection, 2018, 44(6): 95-98, 102. | |
13 | WONG G, FAN X H, GAN M, et al. Resource utilization of municipal solid waste incineration fly ash in iron ore sintering process: a novel thermal treatment[J]. Journal of Cleaner Production, 2020, 263: 121400. |
14 | SINGH P K, AVALA LAVA K, KATIYAR P K, et al. Agglomeration behaviour of steel plants solid waste and its effect on sintering performance[J]. Journal of Materials Research and Technology, 2017, 6(3): 289-296. |
15 | ZHOU H, MA P N, LAI Z Y, et al. Harmless treatment of waste selective catalytic reduction catalysts during iron ore sintering process[J]. Journal of Cleaner Production, 2020, 275: 122954. |
16 | BABICH A, SENK D, KNEPPER M, et al. Conversion of injected waste plastics in blast furnace[J]. Ironmaking & Steelmaking, Taylor & Francis, 2016, 43(1): 11-21. |
17 | KIM D, SHIN S, SOHN S, et al. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies[J]. Journal of Hazardous Materials, 2002, 94(3): 213-222. |
18 | DE ASSIS C F C, TENÓRIO J A S, ASSIS P S, et al. Experimental simulation and analysis of agricultural waste injection as an alternative fuel for blast furnace[J]. Energy & Fuels, 2014, 28(11): 7268-7273. |
19 | SEKINE Y, FUKUDA K, KATO K, et al. CO2 reduction potentials by utilizing waste plastics in steel works[J]. The International Journal of Life Cycle Assessment, 2009, 14(2): 122-136. |
20 | DIEZ M A, ALVAREZ R, CIMADEVILLA J L G. Briquetting of carbon-containing wastes from steelmaking for metallurgical coke production[J]. Fuel, 2013, 114: 216–223. |
21 | ZHOU J N, SONG W M, LI Y J, et al. High-quality syngas production: the green and efficient utilization of waste tire and waste heat from the steelmaking converter process[J]. Waste Management, 2021, 131: 98-107. |
22 | BARICOVÁ D, PRIBULOVÁ A, BUĽKO B, et al. Recycling of the steelmaking by-products into the oxygen converter charge[J]. New Trends in Production Engineering, 2019, 2(2): 1-11. |
23 | ASANUMA M, ARIYAMA T, SATO M, et al. Development of waste plastics injection process in blast furnace[J]. ISIJ International, 2000, 40(3): 244-251. |
24 | TRINKEL V, KIEBERGER N, BÜRGLER T, et al. Influence of waste plastic utilisation in blast furnace on heavy metal emissions[J]. Journal of Cleaner Production, 2015, 94: 312-320. |
25 | NOMURA S. Use of waste plastics in coke oven: a review[J]. Journal of Sustainable Metallurgy, 2015, 1(1): 85-93. |
26 | 张垒, 刘尚超, 张道权, 等. 烧结炼铁协同处置含铬污泥的应用研究[J]. 烧结球团, 2018, 43(5): 61-64. |
ZHANG Lei, LIU Shangchao, ZHANG Daoquan, et al. Application research on co-disposal of chromium-containing sludge in sintering and ironmaking[J]. Sintering and Pelletizing, 2018 43(5): 61-64. | |
27 | 李建, 毛晓明, 胡德生. 焦化工艺协同处置轧钢含油污泥的基础研究[J]. 宝钢技术, 2018(2): 39-45. |
LI Jian, MAO Xiaoming, HU Desheng. Foundational research on the treatment of oily sludge by coking process[J]. Baosteel Technology, 2018(2): 39-45. | |
28 | 陈永军. 焦油渣配型煤炼焦工艺[J]. 山东冶金, 2018, 40(3): 69, 71. |
CHEN Yongjun. Coking process with tar residue and briquette[J]. Shandong Metallurgy, 2018, 40(3): 69, 71. | |
29 | 刘剑平, 唐丽萍. 转炉焚烧废油漆涂料桶研究[J]. 宝钢技术, 2017(1): 39-42. |
LIU Jianping, TANG Liping. Research of converter burning waste paint bucket[J]. Baosteel Technology, 2017(1): 39-42. | |
30 | 李洋洋. 火电厂协同处置污泥环境安全及运行工况影响研究[D]. 北京: 清华大学, 2011. |
LI Yangyang. Effects of sludge cofiring on environmental security and processing stability of coal-fired power plants[D]. Beijing: Tsinghua University, 2011. | |
31 | 翁焕新, 苏闽华, 马学文, 等. 烟气干化污泥及其对霾的源头控制作用[J]. 科学通报, 2015, 60(30): 2890-2899. |
WENG Huanxin, SU Minhua, MA Xuewen, et al. Sludge drying using flue gas and its role in haze source control[J]. Chinese Science Bulletin, 2015, 60(30): 2890-2899. | |
32 | CAMPBELL P E, MCMULLAN J T, WILLIAMS B C, et al. Co-combustion of coal and textiles in a small-scale circulating fluidised bed boiler in Germany[J]. Fuel Processing Technology, 2000, 67(2): 115-129. |
33 | NUNES L J R, MATIAS J C O, CATALÃO J P S. Biomass waste co-firing with coal applied to the Sines Thermal Power Plant in Portugal[J]. Fuel, 2014, 132: 153-157. |
34 | NIMMO W, SINGH S, GIBBS B M, et al. The evaluation of waste tyre pulverised fuel for NO x reduction by reburning[J]. Fuel, 2008, 87(13): 2893-2900. |
35 | 张晴, 莫华, 徐海红, 等. 燃煤电厂掺烧废弃物现状及环境管理建议[J]. 环境工程, 2020, 38(6): 202-207. |
ZHANG Qing, MO Hua, XU Haihong, et al. Present situation of co-combustion of waste and coal in power plants and suggestions on environmental management[J]. Environmental Engineering, 2020, 38(6): 202-207. | |
36 | 井新经, 陈运, 张海龙, 等. 生物质耦合发电技术及发电量计算方法[J]. 热力发电, 2019, 48(12): 31-37. |
JING Xinjing, CHEN Yun, ZHANG Hailong, et al. Biomass coupled power generation technology and power generation calculation methods[J]. Thermal Power Generation, 2019, 48(12): 31-37. | |
37 | 张世鑫, 蔡芳龙, 陈玉洪, 等. 大型CFB锅炉掺烧生物质及城市固废可行性分析[J]. 中国资源综合利用, 2017, 35(7): 64-68. |
ZHANG Shixin, CAI Fanglong, CHEN Yuhong, et al. Feasibility analysis of large CFB boiler mixed burning biomass fuels and “urban solid waste”[J]. China Resources Comprehensive Utilization, 2017, 35(7): 64-68. | |
38 | GUO Q H, ZHANG Z Q, HE Q, et al. Characteristics of high-carbon-content slag and utilization for coal-water slurry preparation[J]. Energy & Fuels, 2020, 34(11): 14058-14064. |
39 | WANG R K, ZHAO Z H, YIN Q Q, et al. Additive adsorption behavior of sludge and its influence on the slurrying ability of coal-sludge-slurry and petroleum coke-sludge-slurry[J]. Applied Thermal Engineering, 2018, 128: 1555-1564. |
40 | KUZNETSOV G V, MALYSHEV D Y, KOSTOREVA Z A, et al. The ignition of the bio water-coal fuel particles based on coals of different degree metamorphism[J]. Energy, 2020, 201: 117701. |
41 | NYASHINA G S, SHLEGEL N E, VERSHININA K Y, et al. Industrial waste as part of coal-water slurry fuels[J]. Energy & Fuels, 2018, 32(11): 11398-11410. |
42 | WANG R K, LIU J Z, LYU Y, et al. Sewage sludge disruption through sonication to improve the co-preparation of coal-sludge slurry fuel: the effects of sonic frequency[J]. Applied Thermal Engineering, 2016, 99: 645-651. |
43 | WANG R K, ZHAO Z H, LIU J Z, et al. Enhancing the storage stability of petroleum coke slurry by producing biogas from sludge fermentation[J]. Energy, 2016, 113: 319-327. |
44 | WANG J Q, LIU J Z, JIN Y Q, et al. Study on the slurry ability and combustion behaviour of coal-bioferment residue of drugs-slurry[J]. The Canadian Journal of Chemical Engineering, 2018, 96(4): 838-844. |
45 | WANG S N, LIU J Z, PISUPATI S V, et al. Dispersion mechanism of coal water slurry prepared by mixing various high-concentration organic waste liquids[J]. Fuel, 2021, 287: 119340. |
46 | LI D D, LIU J Z, WANG S N, et al. Study on coal water slurries prepared from coal chemical wastewater and their industrial application[J]. Applied Energy, 2020, 268: 114976. |
47 | 李雪冰. 德士古气化炉协同处置危险废物的污染物降解与排放研究[D]. 北京: 中国环境科学研究院, 2018. |
LI Xuebing. Degradation and emission of pollutants during co-processing of hazardous waste in Texaco gasifier[D]. Beijing: Chinese Research Academy of Environmental Sciences, 2018. | |
48 | 任金锁, 丁满福. 晋华炉加压煤气化技术综述[J]. 中国化工装备, 2021, 23(2): 3-7, 23. |
REN Jinsuo, DING Manfu. Review of Jinhua Gasifier pressurized coal gasification technology[J]. China Chemical Industry Equipment, 2021, 23(2): 3-7, 23. | |
49 | 王永安, 周志江, 代松涛. 有机合成浆在煤气化装置的应用分析[J]. 广州化工, 2020, 48(4): 104-105, 123. |
WANG Yongan, ZHOU Zhijiang, DAI Songtao. Application analysis of organic synthetic coal water slurry in coal gasification device[J]. Guangzhou Chemical Industry, 48(4): 104-105, 123. | |
50 | DONG J, CHI Y, TANG Y J, et al. Partitioning of heavy metals in municipal solid waste pyrolysis, gasification, and incineration[J]. Energy & Fuels, American Chemical Society, 2015, 29(11): 7516-7525. |
51 | Waste casification & pyrolysis: risk high, low yield processes for waste management[R]. Global Alliance for Incinerator Alternatives, 2017. |
52 | VADILLO V, SÁNCHEZ-ONETO J, PORTELA J R, et al. Problems in supercritical water oxidation process and proposed solutions[J]. Industrial & Engineering Chemistry Research, 2013, 52(23): 7617-7629. |
53 | GARCÍA-RODRÍGUEZ Y, MATO F A, MARTÍN A, et al. Energy recovery from effluents of supercritical water oxidation reactors[J]. The Journal of Supercritical Fluids, 2015, 104: 1-9. |
54 | WANG Y F, ZHU H M, JIANG X G, et al. Study on the evolution and transformation of Cl during co-incineration of a mixture of rectification residue and raw meal of a cement kiln[J]. Waste Management, 2019, 84: 112-118. |
[1] | 张杰, 王放放, 夏忠林, 赵光金, 马双忱. “双碳”目标下SF6排放现状、减排手段分析及未来展望[J]. 化工进展, 2023, 42(S1): 447-460. |
[2] | 邵博识, 谭宏博. 锯齿波纹板对挥发性有机物低温脱除过程强化模拟分析[J]. 化工进展, 2023, 42(S1): 84-93. |
[3] | 李梦圆, 郭凡, 李群生. 聚乙烯醇生产中回收工段第三、第四精馏塔的模拟与优化[J]. 化工进展, 2023, 42(S1): 113-123. |
[4] | 马伊, 曹世伟, 王家骏, 林立群, 邢延, 曹腾良, 卢峰, 赵振伦, 张志军. 低共熔溶剂回收废旧锂离子电池正极材料的研究进展[J]. 化工进展, 2023, 42(S1): 219-232. |
[5] | 钱思甜, 彭文俊, 张先明. PET熔融缩聚与溶液解聚形成环状低聚物的对比分析[J]. 化工进展, 2023, 42(9): 4808-4816. |
[6] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[7] | 张丽宏, 金要茹, 程芳琴. 煤气化渣资源化利用[J]. 化工进展, 2023, 42(8): 4447-4457. |
[8] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[9] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[10] | 高聪, 陈城虎, 陈修来, 刘立明. 代谢工程改造微生物合成生物基单体的进展与挑战[J]. 化工进展, 2023, 42(8): 4123-4135. |
[11] | 吕杰, 黄冲, 冯自平, 胡亚飞, 宋文吉. 基于余热回收的燃气热泵性能及控制系统[J]. 化工进展, 2023, 42(8): 4182-4192. |
[12] | 胡亚飞, 冯自平, 田佳垚, 宋文吉. 空气源燃气热泵系统多制热运行模式下余热回收特性[J]. 化工进展, 2023, 42(8): 4204-4211. |
[13] | 姜晶, 陈霄宇, 张瑞妍, 盛光遥. 载锰生物炭制备及其在环境修复中应用研究进展[J]. 化工进展, 2023, 42(8): 4385-4397. |
[14] | 侯殿保, 贺茂勇, 陈育刚, 杨海云, 李海民. 资源优化配置与循环经济在钾资源开发利用中的应用[J]. 化工进展, 2023, 42(6): 3197-3208. |
[15] | 刘宇龙, 姚俊虎, 舒闯闯, 佘跃惠. 磁性Fe3O4纳米颗粒的生物合成及其在提高采收率中的应用[J]. 化工进展, 2023, 42(5): 2464-2474. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 1196
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 421
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |