化工进展 ›› 2022, Vol. 41 ›› Issue (2): 862-873.DOI: 10.16085/j.issn.1000-6613.2021-0463
收稿日期:
2021-03-08
修回日期:
2021-03-25
出版日期:
2022-02-05
发布日期:
2022-02-23
通讯作者:
成少安
作者简介:
戴绍铃(1995—),男,硕士研究生,研究方向为电化学高级氧化。E-mail:基金资助:
DAI Shaoling(), YU Zhen, LI Yihang, CHENG Shao’an()
Received:
2021-03-08
Revised:
2021-03-25
Online:
2022-02-05
Published:
2022-02-23
Contact:
CHENG Shao’an
摘要:
蓝色TiO2具有出色的电催化活性,被认为是降解有机污染物的最有潜力的阳极材料之一。然而蓝色TiO2的电催化活性受表面形貌和界面性质的影响较大。本文采用冰水浴阳极氧化和阴极还原制备了由纳米颗粒、多孔层、纳米管阵列依次堆叠的多层纳米结构蓝色TiO2,并探究了其电化学氧化性能。与无冰水浴辅助制备的相比,该方法制备的蓝色TiO2具有更多的Ti3+含量、更大的活性面积和良好的电子传输能力,可有效降解亚甲基蓝(97.7%,120min,20mA/cm2)和实际废水(COD在180min内被完全去除)。自由基淬灭实验结果表明,添加Na2SO4能促进蓝色TiO2产生羟基自由基和硫酸根自由基,而污染物的降解主要依赖于羟基自由基的氧化作用,硫酸根自由基仅在高Na2SO4浓度、低电流密度和高初始pH条件下有较大贡献。通过冰水浴阳极氧化制备的蓝色TiO2的使用寿命是无冰水浴制备的2.4倍,表明这种多层纳米结构有利于提高蓝色TiO2的稳定性。
中图分类号:
戴绍铃, 于桢, 李逸航, 成少安. 多层纳米结构蓝色TiO2的电化学氧化性能和稳定性[J]. 化工进展, 2022, 41(2): 862-873.
DAI Shaoling, YU Zhen, LI Yihang, CHENG Shao’an. Hierarchically nanostructured blue TiO2 with enhanced electrochemical oxidation performance and stability[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 862-873.
电极 | 制备方法 | CMB/mg·L-1 | V/L | η/% | i/A·cm-2 | S/cm2 | t/min | Y/×10-3mg·C-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
Ti/SnO2-Sb | 直流电沉积 | 100 | 0.10 | 89.6 | 0.02 | 4 | 240 | 7.78 | [ |
Ti/SnO2-Sb-Ce | 直流电沉积 | 10 | 0.20 | 89.6 | 0.04 | 6 | 240 | 6.67 | [ |
Ti/SnO2-Sb | 溶胶-凝胶法 | 50 | 0.05 | 43.8 | 0.02 | 2 | 100 | 4.56 | [ |
Ti/IrO2-RuO2 | — | 100 | 0.15 | 98.0 | 0.10 | 6 | 30 | 13.61 | [ |
石墨阳极 | — | 50 | 0.50 | 72.5 | 0.01 | 22 | 60 | 22.89 | [ |
蓝色TiO2 | 电化学还原 | 100 | 0.10 | 96.7 | 0.02 | 4 | 90 | 22.38 | 本研究 |
表1 不同电极电化学降解MB的性能比较
电极 | 制备方法 | CMB/mg·L-1 | V/L | η/% | i/A·cm-2 | S/cm2 | t/min | Y/×10-3mg·C-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|---|
Ti/SnO2-Sb | 直流电沉积 | 100 | 0.10 | 89.6 | 0.02 | 4 | 240 | 7.78 | [ |
Ti/SnO2-Sb-Ce | 直流电沉积 | 10 | 0.20 | 89.6 | 0.04 | 6 | 240 | 6.67 | [ |
Ti/SnO2-Sb | 溶胶-凝胶法 | 50 | 0.05 | 43.8 | 0.02 | 2 | 100 | 4.56 | [ |
Ti/IrO2-RuO2 | — | 100 | 0.15 | 98.0 | 0.10 | 6 | 30 | 13.61 | [ |
石墨阳极 | — | 50 | 0.50 | 72.5 | 0.01 | 22 | 60 | 22.89 | [ |
蓝色TiO2 | 电化学还原 | 100 | 0.10 | 96.7 | 0.02 | 4 | 90 | 22.38 | 本研究 |
44 | DUAN Tigang, WEN Qing, CHEN Ye, et al. Enhancing electrocatalytic performance of Sb-doped SnO2 electrode by compositing nitrogen-doped graphene nanosheets[J]. Journal of Hazardous Materials, 2014, 280: 304-314. |
45 | SONG Guanjun, YANG Jian, LI Wenxiang, et al. Electrolytic treatment of methylene blue solution with Ti-based IrO2-RuO2 anode[J]. Environmental Protection of Chemical Industry, 2012, 32(3): 205-208. |
46 | JAWAD NOOR H, NAJIM SARMAD T. Removal of methylene blue by direct electrochemical oxidation method using a graphite anode[J]. IOP Conference Series Materials Science and Engineering, 2018, 454(1): 012023. |
47 | CAI Jingju, ZHOU Minghua, YANG Weiliu, et al. Degradation and mechanism of 2,4-dichlorophenoxyacetic acid (2,4-D) by thermally activated persulfate oxidation[J]. Chemosphere, 2018, 212: 784-793. |
48 | ZHANG Hui, WANG Zhe, LIU Chiachi, et al. Removal of COD from landfill leachate by an electro/Fes/peroxydisulfate process[J]. Chemical Engineering Journal, 2014, 250: 76-82. |
49 | LIANG Chengju, WANG Zih Sin, BRUELL Clifford J, et al. Influence of pH on persulfate oxidation of TCE at ambient temperatures[J]. Chemosphere, 2007, 66(1): 106-113. |
50 | CHEN Luchuan, LEI Chaojun, LI Zhongjian, et al. Electrochemical activation of sulfate by BDD anode in basic medium for efficient removal of organic pollutants[J]. Chemosphere, 2018, 210: 516-523. |
51 | YANG Y, KAO L C, LIU Y, et al. Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment[J]. ACS Catal., 2018, 8(5): 4278-4287. |
1 | 桂新安, 杨海真. 高级氧化技术在垃圾渗滤液处理中的应用[J]. 环境科学与管理, 2007, 32(2): 58-63. |
GUI Xin’an, YANG Haizhen. Application of advanced oxidation processes in the treatment of landfill leachate[J]. Environmental Science and Management, 2007, 32(2): 58-63. | |
2 | GHERNAOUT Djame, ELBOUGHDIRI Noureddine, GHAREBA Saad, et al. Electrochemical advanced oxidation processes (EAOPs) for disinfecting water-fresh perspectives[J]. Open Access Library Journal, 2020, 7(4): 1-12. |
3 | Carlos MARTINEZ-HUITLE, RODRIGO Manuel, SIRES Ignasi, et al. Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review[J]. Chemical Reviews, 2015, 115(24): 13362-13407. |
4 | 宋日海, 魏刚, 熊蓉春, 等. 废水处理用催化电极的研究与应用[J]. 水处理技术, 2006, 32(12): 4-9. |
SONG Rihai, WEI Gang, XIONG Rongchun, et al. Research and application of catalytic electrode for wastewater treatment[J]. Technology of Water Treatment, 2006, 32(12): 4-9. | |
5 | BRILLAS Enric, MARTINEZ-HUITLE Carlos A. Synthetic diamond films: preparation, electrochemistry, characterization, and applications[M]. Germany: John Wiley & Sons, Inc., 2011. |
6 | TRASATTI Sergio. Electrocatalysis: understanding the success of DSA[J]. Electrochimica Acta, 2000, 45(15): 2377-85. |
7 | 孔德生, 吕文华, 冯媛媛, 等. DSA电极电催化性能研究及尚待深入探究的几个问题[J]. 化学进展, 2009, 21(6): 1107-1117. |
KONG Desheng, Wenhua LYU, FENG Yuanyuan, et al. Advances and some problems in electrocatalysis of DSA electrodes[J]. Progress in Chemistry, 2009, 21(6): 1107-1117. | |
8 | 刘峻峰, 冯玉杰, 吕江维, 等. 含Mn中间层提高钛基SnO2电催化电极的稳定性[J]. 材料研究学报, 2008, 22(6): 593-598. |
LIU Junfeng, FENG Yujie, Jiangwei LYU, et al. Enhancing service life of SnO2 electrode by introducing an interlayer containing Mn element[J]. Chinese Journal of Materials Resarch, 2008, 22(6): 593-598. | |
9 | KIM Choonsoo, KIM Seonghwan, CHOI Jusol, et al. Blue TiO2 nanotube array as an oxidant generating novel anode material fabricated by simple cathodic polarization[J]. Electrochimica Acta, 2014, 141: 113-119. |
10 | GAN Ling, WU Yifan, SONG Haiou, et al. Self-doped TiO2 nanotube arrays for electrochemical mineralization of phenols[J]. Chemosphere, 2019, 226: 329-339. |
11 | FANG Wenzhang, XING Mingyang, ZHANG Jinlong, et al. A new approach to prepare Ti3+ self-doped TiO2via NaBH4 reduction and hydrochloric acid treatment[J]. Applied Catalysis B: Environmental, 2014, 160/161(1): 240-246. |
12 | WANG Zhou, YANG Chongyin, LIN Tianquan, et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania[J]. Energy & Environmental Science, 2013, 6(10): 3007-3014. |
13 | MAO Chengyu, ZUO Fan, HOU Yang, et al. In situ preparation of a Ti3+ self-doped TiO2 film with enhanced activity as photoanode by N2H4 reduction[J]. Angewandte Chemie International Edition, 2014, 53(39): 10485-10489. |
14 | CHEN Xiaobo, LIU Lei, YU Peter Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750. |
15 | LI Zhen, DING Youting, KANG Weijun, et al. Reduction mechanism and capacitive properties of highly electrochemically reduced TiO2 nanotube arrays[J]. Electrochimica Acta, 2015, 161: 40-47. |
16 | ZHANG Aiqin, GONG Feilong, XIAO Yuanhua, et al. Electrochemical reductive doping and interfacial impedance of TiO2 nanotube arrays in aqueous and aprotic solvents[J]. Journal of the Electrochemical Society, 2017, 164(2): 91-96. |
17 | GENG Ping, CHEN Guohua. Antifouling ceramic membrane electrode modified by Magnéli Ti4O7 for electro-microfiltration of humic acid[J]. Separation and Purification Technology, 2017, 185: 61-71. |
18 | WANG Fang, DING Xian, SHI Ruyue, et al. Facile synthesis of Ti4O7 on hollow carbon spheres with enhanced polysulfide binding for high-performance lithium–sulfur batteries[J]. Journal of Materials Chemistry A, 2019, 7(17): 10494-10504. |
19 | YOU Shijie, LIU Bo, GAO Yifan, et al. Monolithic porous Magnéli-phase Ti4O7 for electro-oxidation treatment of industrial wastewater[J]. Electrochimica Acta, 2016, 214: 326-335. |
20 | MOHAJERNIA S, HEJAZI S, MAZARE A, et al. Photoelectrochemical H2 generation from suboxide TiO2 nanotubes: visible-light absorption versus conductivity[J]. Chemistry, 2017, 23: 12406-12411. |
21 | LIU Gang, YANG Huagui, PAN Jian, et al. Titanium dioxide crystals with tailored facets[J]. Chemical Reviews, 2014, 114(19): 9559-9612. |
22 | CHANG Xin, THIND Sapanbir S, CHEN Aicheng, et al. Electrocatalytic enhancement of salicylic acid oxidation at electrochemically reduced TiO2 nanotubes[J]. ACS Catalysis, 2014, 4(8): 2616-2622. |
23 | CHANG Xin, ZALM Joshua Van Der, THIND Sapanbir S, et al. Electrochemical oxidation of lignin at electrochemically reduced TiO2 nanotubes[J]. Journal of Electroanalytical Chemistry, 2020, 863: 114049. |
24 | WU Hui, LI Dongdong, ZHU Xufei, et al. High-performance and renewable supercapacitors based on TiO2 nanotube array electrodes treated by an electrochemical doping approach[J]. Electrochimica Acta, 2014, 116: 129-136. |
25 | YANG Yang, HOFFMANN Michael R. Synthesis and stabilization of blue-black TiO2 nanotube arrays for electrochemical oxidant generation and wastewater treatment[J]. Environ. Sci. Technol., 2016, 50(21): 11888-11894. |
26 | CAI Jingju, ZHOU Minghua, PAN Yuwei, et al. Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on blue-TiO2 nanotubes anode[J]. Applied Catalysis B: Environmental, 2019, 257(15): 117902. |
27 | 宁成云, 王玉强, 郑华德, 等. 阳极氧化法制备二氧化钛纳米管阵列的研究[J]. 化学研究与应用, 2010, 22(1): 14-17. |
NING Chengyun, WANG Yuqiang, ZHENG Huade, et al. Study on preparation of TiO2 nanotube arrays by anodizing process[J]. Chemical Research and Application, 2010, 22(1): 14-17. | |
28 | WANG Jun, LIN Zhiqun. Anodic formation of ordered TiO2 nanotube arrays: effects of electrolyte temperature and anodization potential[J]. Journal of Physical Chemistry C, 2009, 113(10): 4026-4030. |
29 | TRASATTI Sergio, PETRII Oleg. Real surface area measurements in electrochemistry[J]. Journal of Electroanalytical Chemistry, 1992, 327(1): 353-376. |
30 | VOIRY Damien, CHHOWALLA Manish, GOGOTSI Yury, et al. Best practices for reporting electrocatalytic performance of nanomaterials[J]. ACS Nano, 2018, 12(10): 9635-9638. |
31 | SANTOS D, PACHECO M J, GOMES A, et al. Preparation of Ti/Pt/SnO2–Sb2O4 electrodes for anodic oxidation of pharmaceutical drugs[J]. Journal of Applied Electrochemistry, 2013, 43: 407-416 |
32 | HYAM Rajeshkumar S, CHOI Dukhyun. Effects of titanium foil thickness on TiO2 nanostructures synthesized by anodization[J]. RSC Advances, 2013, 3(19): 7057-7063. |
33 | ZHANG S Y, YU D L, LI D D, et al. Forming process of anodic TiO2 nanotubes under a preformed compact surface layer[J]. Journal of the Electrochemical Society, 2014, 161(10): 135-141. |
34 | SKELDON P, THOMPSON G E, GARCIA-VERGARA S J, et al. A tracer study of porous anodic alumina[J]. Electrochemical & Solid State Letters, 2006, 9(11): B47. |
35 | GARCIA-VERGARA S J, SKELDON P, THOMPSON G E, et al. A flow model of porous anodic film growth on aluminium[J]. Electrochimica Acta, 2007, 52(2): 681-687. |
36 | ALBELLA J M, MONTERO I, MARTINEZ-DUART J M, et al. A theory of avalanche breakdown during anodic oxidation[J]. Electrochimica Acta, 1987, 32(2): 255-258. |
37 | MAZZAROLO A, CURIONI M, VICENZO A, et al. Anodic growth of titanium oxide: electrochemical behaviour and morphological evolution[J]. Electrochimica Acta, 2012, 75: 288-295. |
38 | XU Xin, CAI Jingju, ZHOU Minghua, et al. Photoelectrochemical degradation of 2,4-dichlorophenoxyacetic acid using electrochemically self-doped blue TiO2 nanotube arrays with formic acid as electrolyte[J]. Journal of Hazardous Materials, 2019, 382: 121096. |
39 | MACAK J M, GONG B G, HUEPPE M, et al. Filling of TiO2 nanotubes by self-doping and electrodeposition[J]. Advanced Materials, 2007, 19(19): 3027-3031. |
40 | GHICOV Andrei, TSUCHIYA Hiroaki, HAHN Robert, et al. TiO2 nanotubes: H+ insertion and strong electrochromic effects[J]. Electrochemistry Communications, 2006, 8(4): 528-532. |
41 | YANG Yang, Licheng KAO, LIU Yuanyue, et al. Cobalt-doped black TiO2 nanotube array as a stable anode for oxygen evolution and electrochemical wastewater treatment[J]. ACS Catalysis, 2018, 8(5): 4278-4287. |
42 | SUN Yi, CHENG Shaoan, MAO Zhengzhong, et al. High electrochemical activity of a Ti/SnO2-Sb electrode electrodeposited using deep eutectic solvent[J]. Chemosphere, 2019, 239: 124715. |
43 | YANG Kun, Liu Yuyu, Qiao Jinli, et al. Electrodeposition preparation of Ce-doped Ti/SnO2-Sb electrodes by using selected addition agents for efficient electrocatalytic oxidation of methylene blue in water[J]. Separation & Purification Technology, 2017, 189(22): 459-466. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 许春树, 姚庆达, 梁永贤, 周华龙. 共价有机框架材料功能化策略及其对Hg(Ⅱ)和Cr(Ⅵ)的吸附性能研究进展[J]. 化工进展, 2023, 42(S1): 461-478. |
[5] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[6] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[7] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[8] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[9] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[10] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[11] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[12] | 杨静, 李博, 李文军, 刘晓娜, 汤刘元, 刘月, 钱天伟. 焦化污染场地中萘降解菌的分离及降解特性[J]. 化工进展, 2023, 42(8): 4351-4361. |
[13] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[14] | 储甜甜, 刘润竹, 杜高华, 马嘉浩, 张孝阿, 王成忠, 张军营. 有机胍催化脱氢型RTV硅橡胶的制备和可降解性能[J]. 化工进展, 2023, 42(7): 3664-3673. |
[15] | 陆洋, 周劲松, 周启昕, 王瑭, 刘壮, 李博昊, 周灵涛. CeO2/TiO2吸附剂煤气脱汞产物的浸出规律[J]. 化工进展, 2023, 42(7): 3875-3883. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |