| [1] |
LI Yu, ZHANG Jiawei, CHEN Qingguo, et al. Emerging of heterostructure materials in energy storage: A review[J]. Advanced Materials, 2021, 33(27): 2100855.
|
| [2] |
邓龙征. 磷酸铁锂正极材料制备及其应用的研究[D]. 北京: 北京理工大学, 2014.
|
|
DENG Longzheng. Study of synthesis and application on lithium iron phosphate cathode materials[D]. Beijing: Beijing Institute of Technology, 2014.
|
| [3] |
孙存思. 磷酸铁锂正极材料的改性研究[D]. 镇江: 江苏科技大学, 2021.
|
|
SUN Cunsi. Research on modification of lithium iron phosphate cathode material[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021.
|
| [4] |
WANG Shijie. Cobalt—Its recovery, recycling, and application[J]. JOM, 2006, 58(10): 47-50.
|
| [5] |
邓凡政, 石影, 陈岩. 用聚乙二醇-硫酸铵-铝试剂体系萃取分离铁(Ⅲ)、铝(Ⅲ)、铜(Ⅱ)、钴(Ⅱ)、镉(Ⅱ)、锰(Ⅱ)、镍(Ⅱ)[J]. 分析化学, 1997, 25(2): 215-218.
|
|
DENG Fanzheng, SHI Ying, CHEN Yan. Extraction separation of iron(Ⅲ), aluminum(Ⅲ), copper(Ⅱ), cobalt(Ⅱ), cadmium(Ⅱ), manganese(Ⅱ) and nickel(Ⅱ) using polyethylene glycol-ammonium sulfate-aluminon system[J]. Chinese Journal of Analytical Chemistry, 1997, 25(2): 215-218.
|
| [6] |
TEKE Mustafa, MERCIMEK Bedrettin, ÖZLER M. Ali,et al. Selective extraction of iron(Ⅲ) from aqueous nitrate solution in the presence of cobalt(Ⅱ), copper(Ⅱ) and nickel(Ⅱ) ions using bis(delta2-2-imidazolinyl)-5,5′-dioxime[J]. Analytical Sciences, 20(5): 853-856.
|
| [7] |
周学玺, 杜晓宁, 朱屯. 叔胺萃取分离钴(Ⅱ)、 铁(Ⅱ)[J]. 过程工程学报, 2001, 1(4): 360-364.
|
|
ZHOU Xuexi, DU Xiaoning, ZHU Tun. Solvent extractive separation of cobalt(Ⅱ) and iron(Ⅱ) with tertiary amine[J]. The Chinese Journal of Process Engineering, 2001, 1(4): 360-364.
|
| [8] |
赵永志, 帅国胜, 马莹. Aliquat336络合萃取NdFeB盐酸浸出液中铁、 钴的研究[J]. 中国稀土学报, 2022, 40(3): 450-458.
|
|
ZHAO Yongzhi, SHUAI Guosheng, MA Ying. Complex extraction of iron and cobalt with Aliquat336 in NdFeB hydrochloric acid leaching solution[J]. Journal of the Chinese Society of Rare Earths, 2022, 40(3): 450-458.
|
| [9] |
MILEVSKII N A, ZINOV’EVA I V, ZAKHODYAEVA Yu A, et al. Separation of Li(Ⅰ), Co(Ⅱ), Ni(Ⅱ), Mn(Ⅱ), and Fe(Ⅲ) from hydrochloric acid solution using a menthol-based hydrophobic deep eutectic solvent[J]. Hydrometallurgy, 2022, 207: 105777.
|
| [10] |
周学玺, 汪焕庆, 夏云龙, 等. 用季铵盐萃取分离钴铁锰[J]. 中国有色金属学报, 2000, 10(5): 723-727.
|
|
ZHOU Xuexi, WANG Huanqing, XIA Yunlong, et al. Solvent extractive separation of cobalt, iron and manganese with quaternary ammonium chloride[J]. The Chinese Journal of Nonferrous Metals, 2000, 10(5): 723-727.
|
| [11] |
王斌, 洪涛, 姜俊, 等. 一种高浓度钴铁浸出液的掺钴高压钴铁分离方法: CN112662871B[P]. 2022-07-08.
|
|
WANG Bin, HONG Tao, JIANG Jun, et al. A high-pressure cobalt iron separation method with cobalt doping for high concentration cobalt iron leaching solution: CN112662871B[P]. 2022-07-08.
|
| [12] |
王艳, 周春山. 含钴废渣硫酸化焙砂浸出液中钴、 铁、 锰分离研究[J]. 化学世界, 2001, 42(6): 289-290.
|
|
WANG Yan, ZHOU Chunshan. Study on the separation of cobalt, iron and manganese from the leach solution of sulphated calcined cobalt residue[J]. Huaxue Shijie (Chemical World), 2001, 42(6): 289-290.
|
| [13] |
李强. 氯盐体系中分离铁、 钴、 镍新方法的研究[J]. 有色金属, 1997(6): 22-24.
|
|
LI Qiang. A new method for separating iron, cobalt, and nickel in chloride salt systems[J]. Nonferrous Metals, 1997(6): 22-24.
|
| [14] |
BHATTACHARJEE S, GUPTA K K, CHAKRAVARTY S, et al. Separation of iron, nickel, and cobalt from sulphated leach liquor of low nickel lateritic oxide ore[J]. Separation Science and Technology, 2005, 39(2): 413-429.
|
| [15] |
王宪, 徐鲁荣, 陈丽丹, 等. 海藻生物吸附金属离子技术的特点和功能[J]. 台湾海峡, 2003, 22(1): 120-124.
|
|
WANG Xian, XU Lurong, CHEN Lidan, et al. Characteristics and function of macroalgae biosorption technology to metal ion[J]. Journal of Oceanography in Taiwan Strait, 2003, 22(1): 120-124.
|
| [16] |
陈胜文, 李洪, 刘利, 等. 磷酸铁的制备工艺及应用展望[J]. 化纤与纺织技术, 2021, 50(11): 37-39.
|
|
CHEN Shengwen, LI Hong, LIU Li, et al. Preparation process and application prospects of iron phosphate[J]. Chemical Fiber & Textile Technology, 2021, 50(11): 37-39.
|
| [17] |
宋晨豪, 王蒙蒙, 吕耀康, 等. 磷酸铁材料的制备方法研究进展[J]. 盐湖研究, 2025, 33(2): 108-114.
|
|
SONG Chenhao, WANG Mengmeng, Yaokang LYU, et al. Research progress in the preparation methods of Iron phosphate materials[J]. Journal of Salt Lake Research, 2025, 33(2): 108-114.
|
| [18] |
SONG Yuxuan, FU Zhongtian. Mini-review on the preparation of iron phosphate for batteries[J]. Energy & Fuels, 2024, 38(19): 18194-18207.
|
| [19] |
毕胜. 2023年中国钛白粉行业的现状、 未来及发展[J]. 钢铁钒钛, 2024, 45(1): 1-3.
|
|
BI Sheng. Status, future and development of China’s titanium dioxide industry in 2023[J]. Iron Steel Vanadium Titanium, 2024, 45(1): 1-3.
|
| [20] |
陈朝华, 刘长河. 钛白粉生产及应用技术[M]. 北京: 化学工业出版社, 2006.
|
|
CHEN Chaohua, LIU Changhe. Titanium dioxide production and application technology[M]. Beijing: Chemical Industry Press, 2006.
|
| [21] |
GUO Ju, FENG Yulong, MO Xinliang, et al. Preparation of LiFePO4 using iron(Ⅱ) sulfate as product from titanium dioxide slag purification process and its electrochemical properties[J]. International Journal of Electrochemical Science, 2021, 16(11): 211141.
|
| [22] |
孟素芬. 利用钛白副产硫酸亚铁制备电池级磷酸铁的工艺研究[J]. 广东化工, 2019, 46(19): 1-2.
|
|
MENG Sufen. The study on preparation of battery grade iron phosphate with titanium dioxide byproduct ferrous sulfate[J]. Guangdong Chemical Industry, 2019, 46(19): 1-2.
|
| [23] |
JIANG Yang, PENG Changhong, ZHOU Kanggen, et al. Recovery of iron from titanium white waste for the preparation of LiFePO4 battery[J]. Journal of Cleaner Production, 2023, 415: 137817.
|
| [24] |
DENG Lin, MA Guangqiang, CHEN Qiyuan. Preparation of iron phosphate battery materials from industrial ferrous sulfate waste by liquid phase method[J]. Integrated Ferroelectrics, 2023, 234(1): 67-78.
|
| [25] |
王郎郎, 张韶, 费政富, 等. 黄磷生产中固废处置与资源化利用研究进展[J]. 材料导报, 2024, 38(22): 203-210.
|
|
WANG Langlang, ZHANG Shao, FEI Zhengfu, et al. Research progress of solid waste disposal and resource utilization in yellow phosphorus production[J]. Materials Reports, 2024, 38(22): 203-210.
|
| [26] |
郭纪岐, 秦安瑞, 姚耀春, 等. 黄磷副产磷铁渣制备电池级磷酸铁[J]. 有色金属工程, 2023, 13(8): 9-15.
|
|
GUO Jiqi, QIN Anrui, YAO Yaochun, et al. Preparation of battery grade iron phosphate from yellow phosphorus by-product iron phosphide slag[J]. Nonferrous Metals Engineering, 2023, 13(8): 9-15.
|
| [27] |
XU Yangming, WANG Lanbin, XIE Wenjie, et al. A novel way to prepare battery-grade FePO4·2H2O from copper slag and life cycle assessment[J]. Separation and Purification Technology, 2024, 339: 126686.
|
| [28] |
XU Xianqing, GUO Zhengqi, TIAN Xiaoman, et al. Synergetic recovery of rutile and preparation of iron phosphate from titanium-extraction tailings by a co-leaching process[J]. Separation and Purification Technology, 2024, 344: 127234.
|
| [29] |
马毅, 沈文喆, 袁梅梅, 等. 磷铁渣制备电池级纳米磷酸铁[J]. 化工进展, 2019, 38(11): 5015-5023.
|
|
MA Yi, SHEN Wenzhe, YUAN Meimei, et al. Preparation of battery grade nano iron phosphate by using ferro-phosphorus as raw material[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 5015-5023.
|
| [30] |
YU Biying, ZHAO Zihao, ZHANG Shuai, et al. Technological development pathway for a low-carbon primary aluminum industry in China[J]. Technological Forecasting and Social Change, 2021, 173: 121052.
|
| [31] |
ZHANG Xuekai, ZHOU Kanggen, ZENG Dewen, et al. Preparation of battery-grade FePO4·2H2O using the stripping solution generated from resource recycling of bauxite residue[J]. Bulletin of Environmental Contamination and Toxicology, 2022, 109(1): 86-94.
|
| [32] |
JIANG Tao, TU Yikang, SU Zijian, et al. A novel value-added utilization process for pyrite cinder: Selective recovery of Cu/Co and synthesis of iron phosphate[J]. Hydrometallurgy, 2020, 193: 105314.
|
| [33] |
XU Ziyang, TAN Boren, ZHU Boyuan, et al. Sustainable utilization of Fe(Ⅲ) isolated from laterite hydrochloric acid lixivium via ultrasonic-assisted precipitation to synthesize LiFePO4/C for batteries[J]. Materials, 2024, 17(2): 342.
|