化工进展 ›› 2025, Vol. 44 ›› Issue (7): 3938-3949.DOI: 10.16085/j.issn.1000-6613.2024-0803
• 材料科学与技术 • 上一篇
唐轩1,2(
), 白晓炜1,2, 张飞飞1,2, 李晋平1,2, 杨江峰1,2(
)
收稿日期:2024-05-13
修回日期:2024-08-05
出版日期:2025-07-25
发布日期:2025-08-04
通讯作者:
杨江峰
作者简介:唐轩(1993—),男,博士研究生,研究方向为分子筛的合成与气体吸附分离。E-mail:tangxuanchina@163.com。
基金资助:
TANG Xuan1,2(
), BAI Xiaowei1,2, ZHANG Feifei1,2, LI Jinping1,2, YANG Jiangfeng1,2(
)
Received:2024-05-13
Revised:2024-08-05
Online:2025-07-25
Published:2025-08-04
Contact:
YANG Jiangfeng
摘要:
面对能源短缺与温室效应加剧的全球性挑战,开发基于分子筛分原理的气体分离技术对降低能源消耗和缓解温室效应具有重要意义。这种筛分技术在烟气中实现CO2捕集以及从天然气中脱除N2方面展现出较大潜力,由于CO2、N2和CH4分子之间的物理性质相似,实现这3种气体的有效分子筛分充满挑战。本文基于沸石骨架(包括刚性骨架和柔性骨架)的灵活性及其筛分特征,将分子筛分归纳为3种分离机制:尺寸筛分机制(基于分子尺寸差异最常见的筛分方式)、分子陷阱门机制以及骨架呼吸-门控阳离子协同机制。本文全面阐述了沸石骨架类型、骨架刚(柔)性以及孔隙阻塞基团(包括平衡阳离子的类型、数量和位置)和其与CO2、N2和CH4气体筛分分离性能之间的构效关系。
中图分类号:
唐轩, 白晓炜, 张飞飞, 李晋平, 杨江峰. 沸石分子筛用于CO2-N2-CH4筛分分离的研究进展[J]. 化工进展, 2025, 44(7): 3938-3949.
TANG Xuan, BAI Xiaowei, ZHANG Feifei, LI Jinping, YANG Jiangfeng. Research progress on zeolite for CO2-N2-CH4 sieving separation[J]. Chemical Industry and Engineering Progress, 2025, 44(7): 3938-3949.
| 气体分子 | 分子量 | 沸点/K | 极化率/cm3 | 偶极矩/esu·cm | 四极矩/esu·cm2 | 动力学直径/Å |
|---|---|---|---|---|---|---|
| CO2 | 44 | 216.6 | 29.11×10-25 | 0 | 4.30×10-26 | 3.30 |
| N2 | 28 | 77.3 | 17.40×10-25 | 0 | 1.52×10-26 | 3.64 |
| CH4 | 16 | 111.7 | 25.93×10-25 | 0 | 0 | 3.80 |
表1 CO2、N2和CH4的部分物化性质[34]
| 气体分子 | 分子量 | 沸点/K | 极化率/cm3 | 偶极矩/esu·cm | 四极矩/esu·cm2 | 动力学直径/Å |
|---|---|---|---|---|---|---|
| CO2 | 44 | 216.6 | 29.11×10-25 | 0 | 4.30×10-26 | 3.30 |
| N2 | 28 | 77.3 | 17.40×10-25 | 0 | 1.52×10-26 | 3.64 |
| CH4 | 16 | 111.7 | 25.93×10-25 | 0 | 0 | 3.80 |
| 筛分机制 | 窗口灵活性 | 特点 | 最大窗口环数 | 拓扑结构 | 骨架密度 | 典型材料 |
|---|---|---|---|---|---|---|
| 尺寸筛分机制 | 刚性 | 孔隙阻塞基团的类型、数量和位置 | 8 | KFI | 15.0T/1000Å3(1.49g/cm3) | K-ZK-5 |
| 10 | HEU | 17.5T/1000Å3(1.75g/cm3) | Na+和Ca2+型斜发沸石 | |||
| 12 | MOR | 17.0T/1000Å3(1.69g/cm3) | 铁掺杂的丝光沸石 | |||
| 分子陷阱门机制 | 刚性 | 客体分子和孔隙阻塞基团相互作用的差异 | 8 | CHA | 15.1T/1000Å3(1.50g/cm3) | K-chabazite和Cs-chabazite |
| MWF | 16.1T/1000Å3(1.60g/cm3) | NaTEA-ZSM-25和K-ZSM-25 | ||||
| LTA | 14.2T/1000Å3(1.41g/cm3) | |Na10.2KCs0.8|-LTA和NaK-ZK-4 | ||||
| 骨架呼吸-门控阳离子协同机制 | 柔性 | 柔性窗口协同孔隙阻塞基团迁移 | 8 | — | 2.20g/cm3 | Sr-ETS-4和Ba-ETS-4 |
| MER | 16.4T/1000Å3(1.63g/cm3) | Na-MER-2.3、K-MER-2.3和Rb-MER-2.3 | ||||
| GIS | 16.4T/1000Å3(1.64g/cm3) | Na-GIS-2.8和Na-GIS-3.0 | ||||
| PHI | 16.4T/1000Å3(1.63g/cm3) | Cs-PHI-2.5 | ||||
| RHO | 14.5T/1000Å3(1.44g/cm3) | Na-RHO、K-RHO和Cs-RHO |
表2 不同筛分机制所对应沸石材料汇总
| 筛分机制 | 窗口灵活性 | 特点 | 最大窗口环数 | 拓扑结构 | 骨架密度 | 典型材料 |
|---|---|---|---|---|---|---|
| 尺寸筛分机制 | 刚性 | 孔隙阻塞基团的类型、数量和位置 | 8 | KFI | 15.0T/1000Å3(1.49g/cm3) | K-ZK-5 |
| 10 | HEU | 17.5T/1000Å3(1.75g/cm3) | Na+和Ca2+型斜发沸石 | |||
| 12 | MOR | 17.0T/1000Å3(1.69g/cm3) | 铁掺杂的丝光沸石 | |||
| 分子陷阱门机制 | 刚性 | 客体分子和孔隙阻塞基团相互作用的差异 | 8 | CHA | 15.1T/1000Å3(1.50g/cm3) | K-chabazite和Cs-chabazite |
| MWF | 16.1T/1000Å3(1.60g/cm3) | NaTEA-ZSM-25和K-ZSM-25 | ||||
| LTA | 14.2T/1000Å3(1.41g/cm3) | |Na10.2KCs0.8|-LTA和NaK-ZK-4 | ||||
| 骨架呼吸-门控阳离子协同机制 | 柔性 | 柔性窗口协同孔隙阻塞基团迁移 | 8 | — | 2.20g/cm3 | Sr-ETS-4和Ba-ETS-4 |
| MER | 16.4T/1000Å3(1.63g/cm3) | Na-MER-2.3、K-MER-2.3和Rb-MER-2.3 | ||||
| GIS | 16.4T/1000Å3(1.64g/cm3) | Na-GIS-2.8和Na-GIS-3.0 | ||||
| PHI | 16.4T/1000Å3(1.63g/cm3) | Cs-PHI-2.5 | ||||
| RHO | 14.5T/1000Å3(1.44g/cm3) | Na-RHO、K-RHO和Cs-RHO |
| [1] | GAO Wanlin, LIANG Shuyu, WANG Rujie, et al. Industrial carbon dioxide capture and utilization: State of the art and future challenges[J]. Chemical Society Reviews, 2020, 49(23): 8584-8686. |
| [2] | WELSBY Dan, PRICE James, Steve PYE, et al. Unextractable fossil fuels in a 1.5℃ world[J]. Nature, 2021, 597(7875): 230-234. |
| [3] | DEAN Joshua F, MIDDELBURG Jack J, Thomas RÖCKMANN, et al. Methane feedbacks to the global climate system in a warmer world[J]. Reviews of Geophysics, 2018, 56(1): 207-250. |
| [4] | SHOLL David S, LIVELY Ryan P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435-437. |
| [5] | CUI Wengang, HU Tongliang, BU Xianhe. Metal-organic framework materials for the separation and purification of light hydrocarbons[J]. Advanced Materials, 2020, 32(3): 1806445. |
| [6] | WU Yaqi, WECKHUYSEN Bert M. Separation and purification of hydrocarbons with porous materials[J]. Angewandte Chemie International Edition, 2021, 60(35): 18930-18949. |
| [7] | BAI Ruobing, SONG Xiaowei, YAN Wenfu, et al. Low-energy adsorptive separation by zeolites[J]. National Science Review, 2022, 9(9): nwac064. |
| [8] | SIEGELMAN Rebecca L, KIM Eugene J, LONG Jeffrey R. Porous materials for carbon dioxide separations[J]. Nature Materials, 2021, 20(8): 1060-1072. |
| [9] | HUDSON Matthew R, QUEEN Wendy L, MASON Jarad A, et al. Unconventional, highly selective CO2 adsorption in zeolite SSZ-13[J]. Journal of the American Chemical Society, 2012, 134(4): 1970-1973. |
| [10] | VASUDEVAN Suraj, FAROOQ Shamsuzzaman, KARIMI Iftekhar A, et al. Energy penalty estimates for CO2 capture: Comparison between fuel types and capture-combustion modes[J]. Energy, 2016, 103: 709-714. |
| [11] | CHOI Sunho, DRESE Jeffrey H, JONES Christopher W. Adsorbent materials for carbon dioxide capture from large anthropogenic point sources[J]. ChemSusChem, 2009, 2(9): 796-854. |
| [12] | PENG Qilong, CHEN Yu, FANG Diyi, et al. Enhancing size-selective adsorption of CO2/CH4 on ETS-4 via ion-exchange coupled with thermal treatment[J]. Industrial & Engineering Chemistry Research, 2023, 62(23): 9313-9324. |
| [13] | ZHOU Sheng, SHEKHAH Osama, Adrian RAMÍREZ, et al. Asymmetric pore windows in MOF membranes for natural gas valorization[J]. Nature, 2022, 606(7915): 706-712. |
| [14] | SHANG Jin, LI Gang, GU Qinfen, et al. Temperature controlled invertible selectivity for adsorption of N2 and CH4 by molecular trapdoor chabazites[J]. Chemical Communications, 2014, 50(35): 4544-4546. |
| [15] | HU Peng, WANG Hao, XIONG Chao, et al. Probing the node chemistry of a metal-organic framework to achieve ultrahigh hydrophobicity and highly efficient CO2/CH4 separation[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(47): 15897-15907. |
| [16] | CHEN Zhenhe, DENG Shubo, WEI Haoran, et al. Activated carbons and amine-modified materials for carbon dioxide capture—A review[J]. Frontiers of Environmental Science & Engineering, 2013, 7(3): 326-340. |
| [17] | DING Meili, LIU Xi, MA Pan, et al. Porous materials for capture and catalytic conversion of CO2 at low concentration[J]. Coordination Chemistry Reviews, 2022, 465: 214576. |
| [18] | LIU Jiaqi, TANG Xuan, LIANG Xiaowu, et al. Superhydrophobic zeolitic imidazolate framework with suitable SOD cage for effective CH4/N2 adsorptive separation in humid environments[J]. AIChE Journal, 2022, 68(5): e17589. |
| [19] | XU Shuang, LI Wencui, WANG Chengtong, et al. Self-pillared ultramicroporous carbon nanoplates for selective separation of CH4/N2 [J]. Angewandte Chemie International Edition, 2021, 60(12): 6339-6343. |
| [20] | WANG Shaomin, WU Pengchao, FU Jianwei, et al. Heteroatom-doped porous carbon microspheres with ultramicropores for efficient CH4/N2 separation with ultra-high CH4 uptake[J]. Separation and Purification Technology, 2021, 274: 119121. |
| [21] | DU Shengjun, WU Ying, WANG Xingjie, et al. Facile synthesis of ultramicroporous carbon adsorbents with ultra-high CH4 uptake by in situ ionic activation[J]. AIChE Journal, 2020, 66(7): e16231. |
| [22] | WANG Shaomin, SHIVANNA Mohana, YANG Qingyuan. Nickel-based metal-organic frameworks for coal-bed methane purification with record CH4/N2 selectivity[J]. Angewandte Chemie International Edition, 2022, 61(15): e202201017. |
| [23] | NIU Zheng, CUI Xili, PHAM Tony, et al. A metal-organic framework based methane nano-trap for the capture of coal-mine methane[J]. Angewandte Chemie International Edition, 2019, 58(30): 10138-10141. |
| [24] | JARAMILLO David E, REED Douglas A, JIANG Henry Z H, et al. Selective nitrogen adsorption via backbonding in a metal-organic framework with exposed vanadium sites[J]. Nature Materials, 2020, 19(5): 517-521. |
| [25] | YOON Ji Woong, CHANG Hyunju, LEE Seung Joon, et al. Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites[J]. Nature Materials, 2017, 16(5): 526-531. |
| [26] | SADEGHI POUYA Ehsan, FARMAHINI Amir H, SADEGHI Paria, et al. Improving separation of CH4 and N2 by adsorption on zeolite Y ion-exchanged with ammonium cations: An experimental and Grand-Canonical Monte Carlo (GCMC) simulation investigation[J]. Chemical Engineering Science, 2024, 289: 119819. |
| [27] | TANG Xuan, WANG Yugao, WEI Mengni, et al. Synthesis of nanosized IM-5 zeolite and its CH4/N2 adsorption and separation[J]. Separation and Purification Technology, 2023, 318: 124003. |
| [28] | YANG Jiangfeng, LIU Jiaqi, LIU Puxu, et al. K-chabazite zeolite nanocrystal aggregates for highly efficient methane separation[J]. Angewandte Chemie International Edition, 2022, 61(8): e202116850. |
| [29] | ZHANG Qiang, YU Jihong, CORMA Avelino. Applications of zeolites to C1 chemistry: Recent advances, challenges, and opportunities[J]. Advanced Materials, 2020, 32(44): 2002927. |
| [30] | ZHOU Yu, ZHANG Jianlin, WANG Lei, et al. Self-assembled iron-containing mordenite monolith for carbon dioxide sieving[J]. Science, 2021, 373(6552): 315-320. |
| [31] | CHAI Yuchao, HAN Xue, LI Weiyao, et al. Control of zeolite pore interior for chemoselective alkyne/olefin separations[J]. Science, 2020, 368(6494): 1002-1006. |
| [32] | LI Yi, YU Jihong. Emerging applications of zeolites in catalysis, separation and host-guest assembly[J]. Nature Reviews Materials, 2021, 6(12): 1156-1174. |
| [33] | FARAMAWY S, ZAKI T, SAKR A A E. Natural gas origin, composition, and processing: A review[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 34-54. |
| [34] | LI Jianrong, KUPPLER Ryan J, ZHOU Hongcai. Selective gas adsorption and separation in metal-organic frameworks[J]. Chemical Society Reviews, 2009, 38(5): 1477-1504. |
| [35] | ACKLEY Mark W, YANG Ralph T. Adsorption characteristics of high-exchange clinoptilolites[J]. Industrial & Engineering Chemistry Research, 1991, 30(12): 2523-2530. |
| [36] | ACKLEY Mark W, YANG Ralph T. Diffusion in ion-exchanged clinoptilolites[J]. AIChE Journal, 1991, 37(11): 1645-1656. |
| [37] | KENNEDY D A, KHANAFER M, TEZEL F H. The effect of Ag+ cations on the micropore properties of clinoptilolite and related adsorption separation of CH4 and N2 gases[J]. Microporous and Mesoporous Materials, 2019, 281: 123-133. |
| [38] | YANG Jiangfeng, SHANG Hua, KRISHNA Rajamani, et al. Adjusting the proportions of extra-framework K+ and Cs+ cations to construct a “molecular gate” on ZK-5 for CO2 removal[J]. Microporous and Mesoporous Materials, 2018, 268: 50-57. |
| [39] | SHANG Jin, LI Gang, SINGH Ranjeet, et al. Discriminative separation of gases by a “molecular trapdoor” mechanism in chabazite zeolites[J]. Journal of the American Chemical Society, 2012, 134(46): 19246-19253. |
| [40] | DE BAERDEMAEKER Trees, DE VOS Dirk. Trapdoors in zeolites[J]. Nature Chemistry, 2013, 5(2): 89-90. |
| [41] | SHANG Jin, LI Gang, SINGH Ranjeet, et al. Determination of composition range for “molecular trapdoor” effect in chabazite zeolite[J]. The Journal of Physical Chemistry C, 2013, 117(24): 12841-12847. |
| [42] | SMITH Luis J, ECKERT Hellmut, CHEETHAM Anthony K. Site preferences in the mixed cation zeolite, Li, Na-chabazite: A combined solid-state NMR and neutron diffraction study[J]. Journal of the American Chemical Society, 2000, 122(8): 1700-1708. |
| [43] | SAXTON Carl G, KRUTH Angela, CASTRO Maria, et al. Xenon adsorption in synthetic chabazite zeolites[J]. Microporous and Mesoporous Materials, 2010, 129(1/2): 68-73. |
| [44] | CALLIGARIS M, NARDIN G. Cation site location in hydrated chabazites. Crystal structure of barium- and cadmium- exchanged chabazites[J]. Zeolites, 1982, 2(3): 200-204. |
| [45] | Javier TORRES F, CIVALLERI Bartolomeo, TERENTYEV Alexander, et al. Theoretical study of molecular hydrogen adsorption in Mg-exchanged chabazite[J]. The Journal of Physical Chemistry C, 2007, 111(5): 1871-1873. |
| [46] | MORTIER W J, PLUTH J J, SMITH J V. Positions of cations and molecules in zeolites with the chabazite framework Ⅰ. Dehydrated Ca-exchanged chabazite[J]. Materials Research Bulletin, 1977, 12(1): 97-102. |
| [47] | CALLIGARIS M, NARDIN G, RANDACCIO L, et al. Cation-site location in a natural chabazite[J]. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 1982, 38(2): 602-605. |
| [48] | GUO Peng, SHIN Jiho, GREENAWAY Alex G, et al. A zeolite family with expanding structural complexity and embedded isoreticular structures[J]. Nature, 2015, 524(7563): 74-78. |
| [49] | ZHAO Jianhua, MOUSAVI Seyed Hesam, XIAO Gongkui, et al. Nitrogen rejection from methane via a “trapdoor” K-ZSM-25 zeolite[J]. Journal of the American Chemical Society, 2021, 143(37): 15195-15204. |
| [50] | ZHAO Jianhua, XIE Ke, SINGH Ranjeet, et al. Li+/ZSM-25 zeolite as a CO2 capture adsorbent with high selectivity and improved adsorption kinetics, showing CO2-induced framework expansion[J]. The Journal of Physical Chemistry C, 2018, 122(33): 18933-18941. |
| [51] | CHEUNG Ocean, WARDECKI Dariusz, BACSIK Zoltán, et al. Highly selective uptake of carbon dioxide on the zeolite |Na10.2KCs0.8|-LTA-a possible sorbent for biogas upgrading[J]. Physical Chemistry Chemical Physics, 2016, 18(24): 16080-16083. |
| [52] | CHEUNG Ocean, BACSIK Zoltán, Nicolas FIL, et al. Selective adsorption of CO2 on zeolites NaK-ZK-4 with Si/Al of 1.8—2.8[J]. ACS Omega, 2020, 5(39): 25371-25380. |
| [53] | KUZNICKI S M, BELL V A, NAIR S, et al. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules[J]. Nature, 2001, 412(6848): 720-724. |
| [54] | NAIR Sankar, TSAPATSIS Michael, TOBY Brian H, et al. A study of heat-treatment induced framework contraction in strontium-ETS-4 by powder neutron diffraction and vibrational spectroscopy[J]. Journal of the American Chemical Society, 2001, 123(51): 12781-12790. |
| [55] | MARATHE R P, MANTRI K, SRINIVASAN M P, et al. Effect of ion exchange and dehydration temperature on the adsorption and diffusion of gases in ETS-4[J]. Industrial & Engineering Chemistry Research, 2004, 43(17): 5281-5290. |
| [56] | MARATHE R P, FAROOQ S, SRINIVASAN M P. Modeling gas adsorption and transport in small-pore titanium silicates[J]. Langmuir, 2005, 21(10): 4532-4546. |
| [57] | MAJUMDAR B, BHADRA S J, MARATHE R P, et al. Adsorption and diffusion of methane and nitrogen in barium exchanged ETS-4[J]. Industrial & Engineering Chemistry Research, 2011, 50(5): 3021-3034. |
| [58] | KUZNICKI Steven M, BELL Valerie A, PETROVIC Ivan, et al. Small-pored crystalline titanium molecular sieve zeolites and their use in gas separation processes: US6068682[P]. 2000-05-30. |
| [59] | CHOI Hyun June, Donghui JO, MIN Jung Gi, et al. The origin of selective adsorption of CO2 on merlinoite zeolites[J]. Angewandte Chemie International Edition, 2021, 60(8): 4307-4314. |
| [60] | TANG Xuan, WEI Mengni, BAI Xiaowei, et al. Precise pore size modulation of K-MER zeolites for N2 trapping[J]. Separation and Purification Technology, 2024, 339: 126601. |
| [61] | CHOI Hyun June, HONG Suk Bong. Effect of framework Si/Al ratio on the mechanism of CO2 adsorption on the small-pore zeolite gismondine[J]. Chemical Engineering Journal, 2022, 433: 133800. |
| [62] | CHOI Hyun June, MIN Jung Gi, Sang Hyun AHN, et al. Framework flexibility-driven CO2 adsorption on a zeolite[J]. Materials Horizons, 2020, 7(6): 1528-1532. |
| [63] | CHOI Hyun June, BRUCE Elliott L, KENCANA Kevin S, et al. Highly cooperative CO2 adsorption via a cation crowding mechanism on a cesium-exchanged phillipsite zeolite[J]. Angewandte Chemie International Edition, 2023, 62(36): e202305816. |
| [64] | LEE Hwajun, SHIN Jiho, CHOI Wanuk, et al. PST-29: A missing member of the RHO family of embedded isoreticular zeolites[J]. Chemistry of Materials, 2018, 30(19): 6619-6623. |
| [65] | BALESTRA Salvador R G, HAMAD Said, Rabdel RUIZ-SALVADOR A, et al. Understanding nanopore window distortions in the reversible molecular valve zeolite RHO[J]. Chemistry of Materials, 2015, 27(16): 5657-5667. |
| [66] | LOZINSKA Magdalena M, MANGANO Enzo, MOWAT John P S, et al. Understanding carbon dioxide adsorption on univalent cation forms of the flexible zeolite Rho at conditions relevant to carbon capture from flue gases[J]. Journal of the American Chemical Society, 2012, 134(42): 17628-17642. |
| [67] | LOZINSKA Magdalena M, MOWAT John P S, WRIGHT Paul A, et al. Cation gating and relocation during the highly selective “trapdoor” adsorption of CO2 on univalent cation forms of zeolite rho[J]. Chemistry of Materials, 2014, 26(6): 2052-2061. |
| [68] | COUDERT François-Xavier, KOHEN Daniela. Molecular insight into CO2 “trapdoor” adsorption in zeolite Na-RHO[J]. Chemistry of Materials, 2017, 29(7): 2724-2730. |
| [1] | 张巍, 梁垚城, 伍乔, 付业昊, 尹艳山, 成珊, 阮敏, 刘涛, 周昭仪, 张凯凯, 李丹聪. 基于金属离子改性的Cu-SSZ-13催化剂在NH3-SCR脱硝中的应用[J]. 化工进展, 2025, 44(7): 3879-3891. |
| [2] | 王惠, 刘家旭. SSZ-39分子筛的合成及其NH3-SCR应用研究进展[J]. 化工进展, 2025, 44(7): 3892-3906. |
| [3] | 高姣姣, 颜诗宇, 杨太顺, 谢尚志, 杨艳娟, 徐晶. 不同晶型Al2O3负载Ru催化剂对聚乙烯氢解的影响[J]. 化工进展, 2025, 44(7): 3917-3927. |
| [4] | 付江, 孙姣霞, 付俊杰, 朱敏, 宋品学, 周怡宁, 樊建新. 疏水改性聚酯纤维织物的自清洁作用及油水分离性能[J]. 化工进展, 2025, 44(6): 3121-3131. |
| [5] | 姚如伟, 宋乐音, 牛琴琴, 李聪明. Na-S双助剂修饰铁基催化剂催化CO2加氢制C2+醇[J]. 化工进展, 2025, 44(6): 3154-3162. |
| [6] | 王恒, 卢春喜. 3.6Mt/a催化裂化旋风分离装置结构优选及运行效果分析[J]. 化工进展, 2025, 44(6): 3238-3246. |
| [7] | 张磊, 张新儒, 王永洪, 李晋平, 刘春波. 二维纳米材料混合基质膜在渗透汽化有机物分离的研究进展[J]. 化工进展, 2025, 44(6): 3324-3335. |
| [8] | 徐景东, 刘奔, 汪雪琴, 董鹏, 席志祥, 徐人威, 岳源源. FeCu-ZSM-5分子筛的绿色合成及其NH3-SCR性能[J]. 化工进展, 2025, 44(6): 3017-3030. |
| [9] | 李佩燚, 孙波龙, 刘瑞岩, 周歆尧, 刘瑞林, 胡园园, 徐功涛, 李新平. 海藻酸钠/二氧化钛复合多孔材料的制备及油水分离应用[J]. 化工进展, 2025, 44(6): 3053-3061. |
| [10] | 谢武强, 张岭, 贺杠, 蒋里锋, 郑晰瑞, 张和鹏. CoTBrPP-PTAB-Cu电催化还原CO2制甲烷[J]. 化工进展, 2025, 44(6): 3093-3100. |
| [11] | 柳永兵, 王亚军, 谷平, 张永民, 郭怀勇, 刘凯. 浆态床反应器中多相分离研究进展[J]. 化工进展, 2025, 44(6): 3345-3363. |
| [12] | 韩沛, 李金键, 柯天, 张治国, 鲍宗必, 任其龙, 杨启炜. 新型多孔材料吸附分离六氟化硫/氮气研究进展[J]. 化工进展, 2025, 44(6): 3592-3617. |
| [13] | 武敏, 廖亚龙, 贾小宝, 杨双宇. 强化黄铜矿细菌浸出的研究进展[J]. 化工进展, 2025, 44(6): 3618-3629. |
| [14] | 付沅峰, 范振忠, 臧鑫, 仝其雷, 刘金刚. 超亲水水下超疏油复合不锈钢网的制备及在油水分离中的应用[J]. 化工进展, 2025, 44(6): 3659-3670. |
| [15] | 陈彦君, 戴杰, 单军强, 张思欣, 计磊, 朱晨杰, 应汉杰. 我国纤维素乙醇的研究进展和发展趋势[J]. 化工进展, 2025, 44(5): 2541-2562. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |