化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4594-4605.DOI: 10.16085/j.issn.1000-6613.2025-0672
• 反应器与过程装备的模拟与仿真 • 上一篇
高岩1(
), 李永帅1, 李高洋2, 潘慧2(
), 凌昊1(
)
收稿日期:2025-05-10
修回日期:2025-06-04
出版日期:2025-08-25
发布日期:2025-09-08
通讯作者:
潘慧,凌昊
作者简介:高岩(2000—),男,硕士研究生,研究方向为化工精馏过程。E-mail:adolph_gao@outlook.com。
基金资助:
GAO Yan1(
), LI Yongshuai1, LI Gaoyang2, PAN Hui2(
), LING Hao1(
)
Received:2025-05-10
Revised:2025-06-04
Online:2025-08-25
Published:2025-09-08
Contact:
PAN Hui, LING Hao
摘要:
Agrawal分壁精馏塔(Agrawal divided-wall column,ADWC)作为分隔壁精馏塔的一种改进构型,能够显著降低四组分分离的设备投资和操作投资,展现出良好的经济效益。本研究旨在针对ADWC在甲醇/乙醇/正丙醇/正丁醇(MEPB)四元醇体系分离中的动态控制问题展开研究。首先,分析ADWC的稳态构型特点。在此基础上,构建了三种控制结构,包括组成控制结构(CC)、温度控制结构(TC)以及组分-温度控制结构(CTC)。结果表明,CC结构能够有效处理±20%的进料扰动;TC结构因仅需温度检测器在工业中易于实施,但其仅能有效处理约±10%的扰动。CTC结构相较于CC结构具有更低的控制设备投资和更短的调节时间;相较TC结构具有优的控制性能和鲁棒性,是最具应用前景的控制方案。
中图分类号:
高岩, 李永帅, 李高洋, 潘慧, 凌昊. Agrawal分壁精馏塔的动态控制[J]. 化工进展, 2025, 44(8): 4594-4605.
GAO Yan, LI Yongshuai, LI Gaoyang, PAN Hui, LING Hao. Dynamic control for Agrawal divided-wall column[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4594-4605.
| 参数 | 数值 |
|---|---|
| 进料速率/kmol·s-1 | 1 |
| 进料成分 | 全部为25% |
| 进料塔板数 | 59 |
| 产品纯度/% | 99 |
| 塔顶压力/atm | 1 |
| 单板压力降/atm | 0.0068 |
| 模拟软件 | Aspen Plus |
| 总理论塔板数(包括冷凝器和再沸器) | 101 |
| 柱直径/m | 5.979 |
| 内部类型 | 筛板 |
| 冷凝器热负荷/MW | 57.506 |
| 再沸器热负荷/MW | 56.158 |
| 年总成本/106USD·a-1 | 11.287 |
表1 ADWC稳态参数和优化结果
| 参数 | 数值 |
|---|---|
| 进料速率/kmol·s-1 | 1 |
| 进料成分 | 全部为25% |
| 进料塔板数 | 59 |
| 产品纯度/% | 99 |
| 塔顶压力/atm | 1 |
| 单板压力降/atm | 0.0068 |
| 模拟软件 | Aspen Plus |
| 总理论塔板数(包括冷凝器和再沸器) | 101 |
| 柱直径/m | 5.979 |
| 内部类型 | 筛板 |
| 冷凝器热负荷/MW | 57.506 |
| 再沸器热负荷/MW | 56.158 |
| 年总成本/106USD·a-1 | 11.287 |
| 控制回路 | 被控变量 | 操作变量 | Kc | τI/ min | 被控变量设定值 |
|---|---|---|---|---|---|
| CC1 | 预分馏段底部乙醇摩尔分数 | QR | 0.106 | 77.88 | 0.0139 |
| CC2 | 塔顶产品中乙醇摩尔分数 | R | 0.086 | 130.68 | 0.0100 |
| CC3 | 上侧线流股中正丙醇摩尔分数 | FS1 | 0.119 | 52.80 | 0.0056 |
| CC4 | 塔釜产品中正丙醇摩尔分数 | FS2 | 0.202 | 100.32 | 0.0100 |
| CC5 | 中间塔5号塔板中正丙醇摩尔分数 | βLM | 0.128 | 48.84 | 0.1946 |
表2 CC结构组成控制器参数
| 控制回路 | 被控变量 | 操作变量 | Kc | τI/ min | 被控变量设定值 |
|---|---|---|---|---|---|
| CC1 | 预分馏段底部乙醇摩尔分数 | QR | 0.106 | 77.88 | 0.0139 |
| CC2 | 塔顶产品中乙醇摩尔分数 | R | 0.086 | 130.68 | 0.0100 |
| CC3 | 上侧线流股中正丙醇摩尔分数 | FS1 | 0.119 | 52.80 | 0.0056 |
| CC4 | 塔釜产品中正丙醇摩尔分数 | FS2 | 0.202 | 100.32 | 0.0100 |
| CC5 | 中间塔5号塔板中正丙醇摩尔分数 | βLM | 0.128 | 48.84 | 0.1946 |
| 控制回路 | 被控变量 | 操作变量 | Kc | τI/ min | 被控变量设定值/℃ |
|---|---|---|---|---|---|
| TC1 | 预分馏段33号塔板温度 | QR | 2.904 | 21.12 | 101.89 |
| TC2 | 主塔13号塔板温度 | R | 2.427 | 40.92 | 72.74 |
| TC3 | 主塔53号塔板温度 | FS1 | 2.947 | 40.92 | 93.50 |
| TC4 | 主塔94号塔板温度 | FS2 | 10.218 | 73.92 | 118.58 |
| TC5 | 中间塔29号塔板温度 | βLM | 3.357 | 71.28 | 87.17 |
表3 TC结构温度控制器参数
| 控制回路 | 被控变量 | 操作变量 | Kc | τI/ min | 被控变量设定值/℃ |
|---|---|---|---|---|---|
| TC1 | 预分馏段33号塔板温度 | QR | 2.904 | 21.12 | 101.89 |
| TC2 | 主塔13号塔板温度 | R | 2.427 | 40.92 | 72.74 |
| TC3 | 主塔53号塔板温度 | FS1 | 2.947 | 40.92 | 93.50 |
| TC4 | 主塔94号塔板温度 | FS2 | 10.218 | 73.92 | 118.58 |
| TC5 | 中间塔29号塔板温度 | βLM | 3.357 | 71.28 | 87.17 |
| 控制回路 | 被控变量 | 操作变量 | Kc | τI/ min | 被控变量设定值 |
|---|---|---|---|---|---|
| CC1 | 预分馏段底部乙醇摩尔分数 | QR | 0.209 | 52.80 | 0.0139 |
| TC2 | 主塔13号塔板温度 | R | 2.470 | 40.92 | 72.74℃ |
| TC3 | 主塔53号塔板温度 | FS1 | 3.154 | 35.64 | 93.50℃ |
| TC4 | 主塔94号塔板温度 | FS2 | 9.317 | 79.20 | 118.58℃ |
| TC5 | 中间塔29号塔板温度 | βLM | 3.597 | 69.96 | 87.17℃ |
表4 CTC结构控制器参数
| 控制回路 | 被控变量 | 操作变量 | Kc | τI/ min | 被控变量设定值 |
|---|---|---|---|---|---|
| CC1 | 预分馏段底部乙醇摩尔分数 | QR | 0.209 | 52.80 | 0.0139 |
| TC2 | 主塔13号塔板温度 | R | 2.470 | 40.92 | 72.74℃ |
| TC3 | 主塔53号塔板温度 | FS1 | 3.154 | 35.64 | 93.50℃ |
| TC4 | 主塔94号塔板温度 | FS2 | 9.317 | 79.20 | 118.58℃ |
| TC5 | 中间塔29号塔板温度 | βLM | 3.597 | 69.96 | 87.17℃ |
| 控制结构 | 扰动大小 | VM/mol | DM/mol | xS/mol | DS/mol | TS/h | TA/h |
|---|---|---|---|---|---|---|---|
| CC | ±20% | 0.4473 | 0.5427 | 0.9870 | 0.0030 | 19.07 | 17.07 |
| TC | ±10% | 0.9097 | 0.0803 | 0.9866 | 0.0034 | 14.68 | 12.68 |
| CTC | ±20% | 0.5712 | 0.4188 | 0.9857 | 0.0043 | 13.48 | 11.48 |
表5 控制结构结果对比
| 控制结构 | 扰动大小 | VM/mol | DM/mol | xS/mol | DS/mol | TS/h | TA/h |
|---|---|---|---|---|---|---|---|
| CC | ±20% | 0.4473 | 0.5427 | 0.9870 | 0.0030 | 19.07 | 17.07 |
| TC | ±10% | 0.9097 | 0.0803 | 0.9866 | 0.0034 | 14.68 | 12.68 |
| CTC | ±20% | 0.5712 | 0.4188 | 0.9857 | 0.0043 | 13.48 | 11.48 |
| [1] | DONAHUE Melissa M, ROACH Bailee J, DOWNS James J, et al. Dividing wall column control: Common practices and key findings[J]. Chemical Engineering and Processing: Process Intensification, 2016, 107: 106-115. |
| [2] | SHAH Vishesh H, AGRAWAL Rakesh. A matrix method for multicomponent distillation sequences[J]. AIChE Journal, 2010, 56(7): 1759-1775. |
| [3] | CHEN Zewei, AGRAWAL Rakesh. Classification and comparison of dividing walls for distillation columns[J]. Processes, 2020, 8(6): 699. |
| [4] | KONG Lingxun, MARAVELIAS Christos T. Expanding the scope of distillation network synthesis using superstructure-based methods[J]. Computers & Chemical Engineering, 2020, 133: 106650. |
| [5] | Joonjae RYU, MARAVELIAS Christos T. Efficient generalized shortcut distillation model with improved accuracy for superstructure-based process synthesis[J]. AIChE Journal, 2020, 66(11): e16994. |
| [6] | Hao LYU, LI Shihan, CUI Chengtian, et al. Superstructure modeling and stochastic optimization of side-stream extractive distillation processes for the industrial separation of benzene/cyclohexane/cyclohexene[J]. Separation and Purification Technology, 2021, 257: 117907. |
| [7] | Hao LYU, ZHANG Xiaodong, CUI Chengtian, et al. Adaptive superstructure for multiple-interconnection process synthesis: Eliminate unnecessary flowsheet predetermination to reduce complexity[J]. Chemical Engineering and Processing: Process Intensification, 2022, 171: 108731. |
| [8] | WANG Chao, WANG Chen, CUI Yue, et al. Economics and controllability of conventional and intensified extractive distillation configurations for acetonitrile/methanol/benzene mixtures[J]. Industrial & Engineering Chemistry Research, 2018, 57(31): 10551-10563. |
| [9] | SHI Xiaojing, ZHU Xiuyu, ZHAO Xiaoxiao, et al. Performance evaluation of different extractive distillation processes for separating ethanol/tert-butanol/water mixture[J]. Process Safety and Environmental Protection, 2020, 137: 246-260. |
| [10] | GÓMEZ-CASTRO F I, RODRÍGUEZ-ÁNGELES M A, SEGOVIA-HERNÁNDEZ J G, et al. Optimal designs of multiple dividing wall columns[J]. Chemical Engineering & Technology, 2011, 34(12): 2051-2058. |
| [11] | GUTIÉRREZ-ANTONIO C. Multiobjective stochastic optimization of dividing-wall distillation columns using a surrogate model based on neural networks[J]. Chemical and Biochemical Engineering Quarterly, 2016, 29(4): 491-504. |
| [12] | PANDIT Shubham R, JANA Amiya K. Transforming conventional distillation sequence to dividing wall column: Minimizing cost, energy usage and environmental impact through genetic algorithm[J]. Separation and Purification Technology, 2022, 297: 121437. |
| [13] | LI Min, CUI Yue, SHI Xiaojing, et al. Simulated annealing-based optimal design of energy efficient ternary extractive dividing wall distillation process for separating benzene-isopropanol-water mixtures[J]. Chinese Journal of Chemical Engineering, 2021, 33: 203-210. |
| [14] | ZHANG Haohao, LU Ping, DING Zhe, et al. Design optimization and control of dividing wall column for purification of trichlorosilane[J]. Chemical Engineering Science, 2022, 257: 117716. |
| [15] | JIA Shengkun, QIAN Xing, YUAN Xigang. Optimal design for dividing wall column using support vector machine and particle swarm optimization[J]. Chemical Engineering Research and Design, 2017, 125: 422-432. |
| [16] | VAN DUC LONG Nguyen, QYYUM Muhammad Abdul, QADEER Kinza, et al. Particle swarm optimization methodology for optimal distillation retrofit[J]. Journal of Chemical Engineering of Japan, 2019, 52(4): 333-341. |
| [17] | LIANG Mengkun, SONG Jiayin, ZHAO Kefan, et al. Optimization of dividing wall columns based on online Kriging model and improved particle swarm optimization algorithm[J]. Computers & Chemical Engineering, 2022, 166: 107978. |
| [18] | ASPRION Norbert, KAIBEL Gerd. Dividing wall columns: Fundamentals and recent advances[J]. Chemical Engineering and Processing: Process Intensification, 2010, 49(2): 139-146. |
| [19] | CHEN Chen, LU Jiangang. Nonlinear multivariable control of a dividing wall column using a different-factor full-form model-free adaptive controller[J]. Industrial & Engineering Chemistry Research, 2022, 61(4): 1897-1911. |
| [20] | LING Hao, LUYBEN William L. Temperature control of the BTX divided-wall column[J]. Industrial & Engineering Chemistry Research, 2010, 49(1): 189-203. |
| [21] | HORSCH Anna Sophia, HAMANN Dennis, EGGER Lisa Sophie, et al. Demonstration of applied linear model predictive control for an enzymatic reactive dividing wall column[J]. Chemical Engineering Research and Design, 2022, 178: 251-266. |
| [22] | GE Xiaolong, HAN Yicheng, LIU Pengfei, et al. Optimization and model-based control of sustainable ethyl-methyl carbonate and diethyl carbonate synthesis through reactive distillation[J]. Journal of Cleaner Production, 2022, 370: 133618. |
| [23] | KISS Anton A, REWAGAD Rohit R. Energy efficient control of a BTX dividing-wall column[J]. Computers & Chemical Engineering, 2011, 35(12): 2896-2904. |
| [24] | REWAGAD Rohit R, KISS Anton A. Dynamic optimization of a dividing-wall column using model predictive control[J]. Chemical Engineering Science, 2012, 68(1): 132-142. |
| [25] | RODRÍGUEZ HERNÁNDEZ Manuel, CHINEA-HERRANZ José A. Decentralized control and identified-model predictive control of divided wall columns[J]. Journal of Process Control, 2012, 22(9): 1582-1592. |
| [26] | WANG Jianxin, YU Na, CHEN Mengqi, et al. Composition control and temperature inferential control of dividing wall column based on model predictive control and PI strategies[J]. Chinese Journal of Chemical Engineering, 2018, 26(5): 1087-1101. |
| [27] | VAN DIGGELEN Ruben C, KISS Anton A, HEEMINK Arnold W. Comparison of control strategies for dividing-wall columns[J]. Industrial & Engineering Chemistry Research, 2010, 49(1): 288-307. |
| [28] | AGRAWAL Rakesh. Synthesis of distillation column configurations for a multicomponent separation[J]. Industrial & Engineering Chemistry Research, 1996, 35(4): 1059-1071. |
| [29] | GE Xiaolong, LIU Botong, LIU Botan, et al. Investigation of the operability for four-product dividing wall column with two partition walls[J]. Chinese Journal of Chemical Engineering, 2018, 26(8): 1670-1676. |
| [30] | LUKAČ G, HALVORSEN I J, OLUJIĆ Ž, et al. On controllability of a fully thermally coupled four-product dividing wall column[J]. Chemical Engineering Research and Design, 2019, 147: 367-377. |
| [31] | PISTIKOPOULOS Efstratios N, TIAN Yuhe, BINDLISH Rahul. Operability and control in process intensification and modular design: Challenges and opportunities[J]. AIChE Journal, 2021, 67(5): e17204. |
| [32] | VILLEGAS-URIBE Cristopher A, Rafael ALCÁNTARA-AVILA J, Nancy MEDINA-HERRERA, et al. Temperature control of a Kaibel, Agrawal and Sargent dividing-wall distillation columns[J]. Chemical Engineering and Processing: Process Intensification, 2021, 159: 108248. |
| [33] | VILLEGAS-URIBE Cristopher A, Nancy MEDINA-HERRERA, HERNÁNDEZ-MAGALLANES Javier A, et al. Optimal design and control of three simplified Sargent four-product dividing-wall columns[J]. Chemical Engineering and Processing—Process Intensification, 2022, 174: 108860. |
| [34] | Ulrich PREIßINGER, Lena-Marie RÄNGER, Thomas GRÜTZNER. Design considerations of a simplified multiple dividing wall column pilot plant[J]. ChemEngineering, 2019, 3(2): 34. |
| [35] | Ulrich PREIßINGER, Goran LUKAČ, Igor DEJANOVIĆ, et al. Impact of various feed properties on the performance of a control system for a multiple dividing wall column pilot plant[J]. ChemEngineering, 2021, 5(2): 29. |
| [36] | Ulrich PREIßINGER, Goran LUKAČ, Igor DEJANOVIĆ, et al. Investigation of control structures for a four-product laboratory multiple dividing-wall column using dynamic simulation[J]. Chemical Engineering & Technology, 2021, 44(2): 223-237. |
| [37] | 王志锋, 沈海涛, 潘蓉, 等. 分壁精馏塔分离四元醇体系的稳态研究[J]. 石油学报(石油加工), 2017, 33(1): 115-123. |
| WANG Zhifeng, SHEN Haitao, PAN Rong, et al. Steady-state behavior of four-product divided-wall columns for alcohols separation[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2017, 33(1): 115-123. | |
| [38] | LING Hao, QIU Jie, HUA Tao, et al. Remixing analysis of four-product dividing-wall columns[J]. Chemical Engineering & Technology, 2018, 41(7): 1359-1367. |
| [1] | 杨傲, 邓苇, 黎勇, 罗婧, 王梓霖, 张俊, 申威峰. 基于热力学拓扑理论的三塔变压精馏分离四氢呋喃/甲醇/乙醇多目标优化设计[J]. 化工进展, 2025, 44(8): 4582-4593. |
| [2] | 于安峰, 吴倩, 杨哲, 罗云, 王宇辰, 刘欢. 绿氢储输过程安全及材料失效机理研究进展[J]. 化工进展, 2025, 44(5): 2972-2983. |
| [3] | 崔悦, 李玉凤, 李伟, 黄业千, 魏蓓. 数字孪生在油气田地面系统的研究进展及展望[J]. 化工进展, 2025, 44(3): 1194-1205. |
| [4] | 曹俊雅, 宋恕哲, 贺鹏, 王利国, 赵雪锋, 曹妍, 李会泉. 顺序式模拟移动床分离煤基混合醇的Aspen色谱动态模拟[J]. 化工进展, 2025, 44(3): 1228-1242. |
| [5] | 孔洁, 李沅欣, 孙兰义. 萃取精馏分离丙酮-正庚烷的模拟与控制[J]. 化工进展, 2025, 44(3): 1253-1262. |
| [6] | 王鹏坤, 蔡旺锋, 杨晨阳, 黄丽, 王燕. 真空间歇精馏分离含缩醛反应的1,4-丁二醇混合物[J]. 化工进展, 2025, 44(3): 1275-1284. |
| [7] | 韩英娜, 李丽, 张林子, 安金泽, 李文秀, 张弢. 离子液体萃取精馏分离甲醇-乙腈共沸物[J]. 化工进展, 2025, 44(2): 660-668. |
| [8] | 李鑫, 王维, 张羽, 谢湫钰, 袁昊. 分离乙酸乙酯+乙醇+水体系:离子液体筛选、汽液相平衡和过程模拟[J]. 化工进展, 2025, 44(1): 75-85. |
| [9] | 张佳鑫, 张淼, 戴一阳, 董立春. 面向实际化工过程故障诊断的强化深度卷积神经网络模型构建与应用[J]. 化工进展, 2024, 43(9): 4833-4844. |
| [10] | 陆诗建, 张娟娟, 杨菲, 刘玲, 陈思铭, 康国俊, 房芹芹. 化学吸收法胺液逃逸控制技术研究进展[J]. 化工进展, 2024, 43(8): 4562-4570. |
| [11] | 穆连波, 王随林, 鲁军辉, 刘贵昌, 赵立秋, 刘锦程, 郝安峰, 张彤. 烷烃脱氢加热炉排烟余热深度回收协同烟压控制性能分析[J]. 化工进展, 2024, 43(6): 3029-3041. |
| [12] | 杨晨阳, 朱怀工, 蔡旺锋, 张敏卿, 王燕, 张英, 陈建兵. 循环精馏技术研究进展[J]. 化工进展, 2024, 43(3): 1109-1117. |
| [13] | 马长金, 李腾, 安维中, 林子昕, 别海燕. 碳酸丙烯酯为萃取剂萃取精馏分离碳酸二甲酯-甲醇流程模拟与经济性评价[J]. 化工进展, 2024, 43(12): 6608-6614. |
| [14] | 郑莹, 李寻, 李泽兵, 高哲, 赵纯. 压电催化降解水中有机污染物的增效研究进展[J]. 化工进展, 2024, 43(10): 5723-5733. |
| [15] | 纵华健, 李英, 张香平. CO2化学转化碳酸二甲酯/乙二醇的能量集成和碳流分析[J]. 化工进展, 2024, 43(10): 5369-5380. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |