化工进展 ›› 2025, Vol. 44 ›› Issue (9): 4954-4967.DOI: 10.16085/j.issn.1000-6613.2024-1209
• 工业催化 • 上一篇
收稿日期:2024-07-25
修回日期:2024-10-28
出版日期:2025-09-25
发布日期:2025-09-30
通讯作者:
徐聪
作者简介:徐聪(1990—),女,博士,副研究员,研究方向为工业催化与催化材料。E-mail:xuc.bjhy@sinopec.com。
XU Cong1(
), FENG Yingjie1, LIU Dongbing1, XIE Zaiku2
Received:2024-07-25
Revised:2024-10-28
Online:2025-09-25
Published:2025-09-30
Contact:
XU Cong
摘要:
分子筛限域催化剂因其高选择性催化、高金属分散度以及高抗烧结性能,近年来成为丙烷脱氢制丙烯领域的研究热点。本文从贵金属Pt基活性中心出发,分别从原位合成和后处理合成角度系统阐述了Pt基分子筛限域催化剂的研究进展,详细探讨了各催化体系中封装金属纳米尺寸效应、助剂调控及其与分子筛骨架间相互作用的催化机制。分析了目前两大类合成策略存在封装效率低、封装机制不明晰、方法不环保,以及金属活性组分容易团聚、再生稳定性差等问题,分别从发展先进的原位表征技术以探究封装机制和确定活性位精细结构,开发绿色高效的合成策略以加强金属与载体相互作用,发展温和的催化剂再生条件等方面提出解决思路,为高稳定性Pt-M@zeolites催化剂的精准设计和可控合成提供指导。
中图分类号:
徐聪, 冯英杰, 刘东兵, 谢在库. 分子筛限域Pt基丙烷脱氢催化剂的研究进展[J]. 化工进展, 2025, 44(9): 4954-4967.
XU Cong, FENG Yingjie, LIU Dongbing, XIE Zaiku. Review of zeolite confined Pt-based catalysts for propane dehydrogenation[J]. Chemical Industry and Engineering Progress, 2025, 44(9): 4954-4967.
| [1] | 徐志康, 黄佳露, 王廷海, 等. 丙烷脱氢制丙烯催化剂的研究进展[J]. 化工进展, 2021, 40(4): 1893-1916. |
| XU Zhikang, HUANG Jialu, WANG Tinghai, et al. Advances in catalysts for propane dehydrogenation to propylene[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1893-1916. | |
| [2] | 吴建国, 吴登峰, 程道建. 丙烷脱氢制丙烯用单原子催化剂研究进展[J]. 化工进展, 2021, 40(12): 6688-6695. |
| WU Jianguo, WU Dengfeng, CHENG Daojian. Advances in single-atom catalysts for dehydrogenation of propane to propylene[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6688-6695. | |
| [3] | 张雨宸, 张耀远, 吴芹, 等. 丙烷脱氢用高稳定性Pt基催化剂研究进展[J]. 化工进展, 2022, 41(9): 4733-4753. |
| ZHANG Yuchen, ZHANG Yaoyuan, WU Qin, et al. Advances in high stable Pt based catalysts for propane dehydrogenation[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4733-4753. | |
| [4] | ZHANG Wei, WANG Haizhi, JIANG Jiawei, et al. Size dependence of Pt catalysts for propane dehydrogenation: From atomically dispersed to nanoparticles[J]. ACS Catalysis, 2020, 10(21): 12932-12942. |
| [5] | WETTERGREN Kristina, SCHWEINBERGER Florian F, DEIANA Davide, et al. High sintering resistance of size-selected platinum cluster catalysts by suppressed Ostwald ripening[J]. Nano Letters, 2014, 14(10): 5803-5809. |
| [6] | NAKAYA Yuki, HIRAYAMA Jun, YAMAZOE Seiji, et al. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation[J]. Nature Communications, 2020, 11: 2838. |
| [7] | LIU Lichen, CORMA Avelino. Confining isolated atoms and clusters in crystalline porous materials for catalysis[J]. Nature Reviews Materials, 2021, 6: 244-263. |
| [8] | SONG Shaojia, SUN Yuanqing, YANG Kun, et al. Recent progress in metal-molecular sieve catalysts for propane dehydrogenation[J]. ACS Catalysis, 2023, 13(9): 6044-6067. |
| [9] | Zuqiao OU, LI Yanzhi, WU Wenche, et al. Encapsulating subnanometric metal clusters in zeolites for catalysis and their challenges[J]. Chemical Engineering Journal, 2022, 430: 132925. |
| [10] | WEI Xueer, CHENG Jiawei, LI Yubing, et al. Bimetallic clusters confined inside silicalite-1 for stable propane dehydrogenation[J]. Nano Research, 2023, 16(8): 10881-10889. |
| [11] | MA Yue, SONG Shaojia, LIU Changcheng, et al. Germanium-enriched double-four-membered-ring units inducing zeolite-confined subnanometric Pt clusters for efficient propane dehydrogenation[J]. Nature Catalysis, 2023, 6: 506-518. |
| [12] | WANG Ning, SUN Qiming, ZHANG Tianjun, et al. Impregnating subnanometer metallic nanocatalysts into self-pillared zeolite nanosheets[J]. Journal of the American Chemical Society, 2021, 143(18): 6905-6914. |
| [13] | CHAI Yuchao, SHANG Weixiang, LI Weijie, et al. Noble metal particles confined in zeolites: Synthesis, characterization, and applications[J]. Advanced Science, 2019, 6(16): 1900299. |
| [14] | DAI Chengyi, ZHANG Shaohua, ZHANG Anfeng, et al. Hollow zeolite encapsulated Ni-Pt bimetals for sintering and coking resistant dry reforming of methane[J]. Journal of Materials Chemistry A, 2015, 3(32): 16461-16468. |
| [15] | ZHANG Bofeng, ZHENG Lirong, ZHAI Ziwei, et al. Subsurface-regulated PtGa nanoparticles confined in silicalite-1 for propane dehydrogenation[J]. ACS Applied Materials & Interfaces, 2021, 13(14): 16259-16266. |
| [16] | SUN Qiming, WANG Ning, FAN Qiyuan, et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2020, 59(44): 19450-19459. |
| [17] | GOEL Sarika, WU Zhijie, ZONES Stacey I, et al. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites[J]. Journal of the American Chemical Society, 2012, 134(42): 17688-17695. |
| [18] | LIU Hao, ZHOU Jie, CHEN Tianxiang, et al. Isolated Pt species anchored by hierarchical-like heteroatomic Fe-silicalite-1 catalyze propane dehydrogenation near the thermodynamic limit[J]. ACS Catalysis, 2023, 13(5): 2928-2936. |
| [19] | CHOI Minkee, WU Zhijie, IGLESIA Enrique. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation[J]. Journal of the American Chemical Society, 2010, 132(26): 9129-9137. |
| [20] | LIU Lichen, Miguel LOPEZ-HARO, LOPES Christian W, et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis[J]. Nature Materials, 2019, 18(8): 866-873. |
| [21] | LIU Lichen, Miguel LOPEZ-HARO, LOPES Christian W, et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites[J]. Nature Catalysis, 2020, 3: 628-638. |
| [22] | ZHU Jie, OSUGA Ryota, ISHIKAWA Ryo, et al. Ultrafast encapsulation of metal nanoclusters into MFI zeolite in the course of its crystallization: Catalytic application for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2020, 132(44): 19837-19842. |
| [23] | SUN Qiming, WANG Ning, FAN Qiyuan, et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation[J]. Angewandte Chemie International Edition, 2020, 59(44): 19450-19459. |
| [24] | DAI Heng, SHEN Yufeng, YANG Taimin, et al. Finned zeolite catalysts[J]. Nature Materials, 2020, 19(10): 1074-1080. |
| [25] | ZHANG Bofeng, LI Guozhu, LIU Sibao, et al. Boosting propane dehydrogenation over PtZn encapsulated in an epitaxial high-crystallized zeolite with a low surface barrier[J]. ACS Catalysis, 2022, 12(2): 1310-1314. |
| [26] | 唐玲雪. 硅铝酸盐沸石的快速合成和结晶机理研究[D]. 长春: 吉林大学, 2021. |
| TANG Lingxue. Study on rapid synthesis and crystallization mechanism of aluminosilicate zeolite[D]. Changchun: Jilin University, 2021. | |
| [27] | ZHANG Juan, CHU Yueying, DENG Feng, et al. Evolution of D6R units in the interzeolite transformation from FAU, MFI or *BEA into AEI: Transfer or reassembly?[J]. Inorganic Chemistry Frontiers, 2020, 7(11): 2204-2211. |
| [28] | LIU Lichen, Urbano DÍAZ, ARENAL Raul, et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D[J]. Nature Materials, 2017, 16(1): 132-138. |
| [29] | ZHANG Yiwei, ZHOU Yuming, SHI Junjun, et al. Comparative study of bimetallic Pt-Sn catalysts supported on different supports for propane dehydrogenation[J]. Journal of Molecular Catalysis A: Chemical, 2014, 381: 138-147. |
| [30] | HUANG Weixin, ZHANG Shiran, TANG Yu, et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate[J]. Angewandte Chemie International Edition, 2016, 128(43): 13639-13643. |
| [31] | RYOO Ryong, KIM Jaeheon, Changbum JO, et al. Rare-earth-platinum alloy nanoparticles in mesoporous zeolite for catalysis[J]. Nature, 2020, 585(7824): 221-224. |
| [32] | SONG Mingxia, ZHANG Bofeng, ZHAI Ziwei, et al. Highly dispersed Pt stabilized by ZnO x -Si on self-pillared zeolite nanosheets for propane dehydrogenation[J]. Industrial & Engineering Chemistry Research, 2023, 62(9): 3853-3861. |
| [33] | WANG Tianlei, XU Zhikang, YUE Yuanyuan, et al. Bimetallic PtSn nanoparticles confined in hierarchical ZSM-5 for propane dehydrogenation[J]. Chinese Journal of Chemical Engineering, 2022, 41: 384-391. |
| [34] | IIDA Takayuki, ZANCHET Daniela, OHARA Koji, et al. Concerted bimetallic nanocluster synthesis and encapsulation via induced zeolite framework demetallation for shape and substrate selective heterogeneous catalysis[J]. Angewandte Chemie International Edition, 2018, 57(22): 6454-6458. |
| [35] | 马跃. 杂原子分子筛孔道限域金属催化剂的制备及其丙烷脱氢性能的研究[D]. 上海: 华东师范大学, 2021. |
| MA Yue. Preparation of heteroatom molecular sieve channel confined metal catalyst and study on its propane dehydrogenation performance[D]. Shanghai: East China Normal University, 2021. | |
| [36] | LIAN Zan, SI Chaowei, Faheem JAN, et al. Coke deposition on Pt-based catalysts in propane direct dehydrogenation: Kinetics, suppression, and elimination[J]. ACS Catalysis, 2021, 11(15): 9279-9292. |
| [37] | DZWIGAJ Stanislaw, CHE Michel. Oxidation state of vanadium introduced in dealuminated beta zeolite by impregnation with VIVOSO4 solution: Influence of preparation parameters[J]. The Journal of Physical Chemistry B, 2005, 109(47): 22167-22174. |
| [38] | XU Zhikang, YUE Yuanyuan, BAO Xiaojun, et al. Propane dehydrogenation over Pt clusters localized at the Sn single-site in zeolite framework[J]. ACS Catalysis, 2020, 10(1), 818-828. |
| [39] | PHAM Hien N, SATTLER Jesper J H B, WECKHUYSEN Bert M, et al. Role of Sn in the regeneration of Pt/γ-Al2O3 light alkane dehydrogenation catalysts[J]. ACS Catalysis, 2016, 6(4): 2257-2264. |
| [40] | ZHU Yanru, AN Zhe, SONG Hongyan, et al. Lattice-confined Sn(Ⅳ/Ⅱ) stabilizing raft-like Pt clusters: High selectivity and durability in propane dehydrogenation[J]. ACS Catalysis, 2017, 7(10): 6973-6978. |
| [41] | WANG Yansu, HU Zhongpan, TIAN Wenwen, et al. Framework-confined Sn in Si-beta stabilizing ultra-small Pt nanoclusters as direct propane dehydrogenation catalysts with high selectivity and stability[J]. Catalysis Science & Technology, 2019, 9(24): 6993-7002. |
| [42] | MA Yue, CHEN Xiao, GUAN Yejun, et al. Skeleton-Sn anchoring isolated Pt site to confine subnanometric clusters within *BEA topology[J]. Journal of Catalysis, 2021, 397: 44-57. |
| [43] | HE Yongsheng, DENG Huihui, ZHANG Ying, et al. Boosting propane dehydrogenation over Sn stabilizing dispersed Pt δ + confined in Silicalite-1 at low temperature[J]. Fuel, 2023, 352: 129044. |
| [44] | ZHANG Longkang, MA Yue, LIU Changcheng, et al. Demetallation and reduction induced ultra-dispersed PtZn alloy confined in zeolite for propane dehydrogenation[J]. Chinese Journal of Catalysis, 2023, 55: 241-252. |
| [45] | LI Shiwen, TUEL Alain, LAPRUNE David, et al. Transition-metal nanoparticles in hollow zeolite single crystals as bifunctional and size-selective hydrogenation catalysts[J]. Chemistry of Materials, 2015, 27(1): 276-282. |
| [46] | LI Shiwen, TUEL Alain, ROUSSET Jean-Luc, et al. Hollow zeolite single-crystals encapsulated alloy nanoparticles with controlled size and composition[J]. ChemNanoMat, 2016, 2(6): 534-539. |
| [47] | CHEN Yong, ZHU Xiaoxiao, WANG Xinping, et al. A reliable protocol for fast and facile constructing multi-hollow silicalite-1 and encapsulating metal nanoparticles within the hierarchical zeolite[J]. Chemical Engineering Journal, 2021, 419: 129641. |
| [1] | 张焕玲, 马会霞, 周峰, 赵成浩, 祝晓琳, 王国玮, 李春义. 助剂In引入对Ge/SiO2催化剂丙烷脱氢性能的影响[J]. 化工进展, 2025, 44(2): 879-886. |
| [2] | 熊磊, 丁飞燕, 李聪, 王群乐, 吕起, 翟晓娜, 刘峰. 金属Pt负载型非均相催化剂研究进展[J]. 化工进展, 2024, 43(S1): 295-304. |
| [3] | 李帅哲, 聂懿宸, PHIDSAVARD Keomeesay, 顾雯, 张伟, 刘娜, 徐高翔, 刘莹, 李兴勇, 陈玉保. 非贵金属催化生物质加氢脱氧制备烃基生物燃料的研究进展[J]. 化工进展, 2024, 43(S1): 225-242. |
| [4] | 洪学思, 吴省, 宋磊, 缪长喜, 杨为民. 分子筛限域丙烷脱氢催化剂的研究进展[J]. 化工进展, 2024, 43(10): 5517-5526. |
| [5] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
| [6] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
| [7] | 张巍, 秦川, 谢康, 周运河, 董梦瑶, 李婕, 汤云灏, 马英, 宋健. H2-SCR改性铂系催化剂低温脱硝的应用及性能强化挑战[J]. 化工进展, 2023, 42(6): 2954-2962. |
| [8] | 陈怡欣, 甄摇摇, 陈瑞浩, 吴继伟, 潘丽美, 姚翀, 罗杰, 卢春山, 丰枫, 王清涛, 张群峰, 李小年. 铂基纳米催化剂的制备及在加氢领域的进展[J]. 化工进展, 2023, 42(6): 2904-2915. |
| [9] | 张孟旭, 王红琴, 李金, 安霓虹, 戴云生, 钱颖, 沈亚峰. PtSn/MgAl2O4-sheet催化剂的制备及其PDH反应性能[J]. 化工进展, 2023, 42(3): 1365-1372. |
| [10] | 张雨宸, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 丙烷脱氢用高稳定性Pt基催化剂研究进展[J]. 化工进展, 2022, 41(9): 4733-4753. |
| [11] | 张永祥, 王德龙, 郭晓燕, 邵怀启. CrO x /Ti-Al2O3催化剂结构及其催化丙烷脱氢性能[J]. 化工进展, 2022, 41(11): 5879-5886. |
| [12] | 薛怡凡, 宋云彩, 冯杰, 李文英. 煤基液体燃料加氢脱氮催化剂的研究动态[J]. 化工进展, 2021, 40(S2): 176-184. |
| [13] | 李丹, 张博雅, 刘柏鸿, 陶阳, 熊子昂, 侯三英. 质子交换膜燃料电池高稳定性低铂载量膜电极的研究进展[J]. 化工进展, 2021, 40(S2): 89-100. |
| [14] | 葛睿, 胡旭, 董灵玉, 李丹, 郝广平. 电化学耦合阴极二氧化碳还原与阳极氧化合成[J]. 化工进展, 2021, 40(9): 5132-5144. |
| [15] | 李瑞松, 刘亚琳, 田浩, 王谦, 饶鹏, 李静, 贾春满, 田新龙. 燃料电池中铂基电催化剂的设计与合成[J]. 化工进展, 2021, 40(9): 4931-4947. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |