1 |
高晓峰, 黄永康, 徐文豪, 等. 硼基催化剂丙烷氧化脱氢制丙烯[J]. 化工进展, 2022, 41(3): 1409-1429.
|
|
GAO Xiaofeng, HUANG Yongkang, XU Wenhao, et al. Oxidative dehydrogenation of propane to propene over boron-based catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1409-1429.
|
2 |
HU Zhongpan, YANG Dandan, WANG Zheng, et al. State-of-the-art catalysts for direct dehydrogenation of propane to propylene[J]. Chinese Journal of Catalysis, 2019, 40(9): 1233-1254.
|
3 |
DONG S, ALTVATER N R, MARK L O, et al. Assessment and comparison of ordered & non-ordered supported metal oxide catalysts for upgrading propane to propylene[J]. Applied Catalysis A: General, 2021, 617: 118121.
|
4 |
徐志康, 黄佳露, 王廷海, 等. 丙烷脱氢制丙烯催化剂的研究进展[J]. 化工进展, 2021, 40(4): 1893-1916.
|
|
XU Zhikang, HUANG Jialu, WANG Tinghai, et al. Advances in catalysts for propane dehydrogenation to propylene[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1893-1916.
|
5 |
NAZIMOV D A, KLIMOV O V, DANILOVA I G, et al. Effect of alumina polymorph on the dehydrogenation activity of supported chromia/alumina catalysts[J]. Journal of Catalysis, 2020, 391: 35-47.
|
6 |
KUMAR M S, HAMMER N, RØNNING M, et al. The nature of active chromium species in Cr-catalysts for dehydrogenation of propane: new insights by a comprehensive spectroscopic study[J]. Journal of Catalysis, 2009, 261: 116-128.
|
7 |
Seohyun SIM, GONG Sujin, Jongyoon BAE, et al. Chromium oxide supported on Zr modified alumina for stable and selective propane dehydrogenation in oxygen free moving bed process[J]. Molecular Catalysis, 2017, 436: 164-173.
|
8 |
SHAO Huaiqi, WAMG Xun, GU Xia, et al. Improved catalytic performance of CrO x catalysts supported on foamed Sn-modified alumina for propane dehydrogenation[J]. Microporous and Mesoporous Materials, 2021, 311: 110684.
|
9 |
YUAN Quan, Anxiang YIM, LUO Chen, et al. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability[J]. Journal of the American Chemical Society, 2008, 130: 3465-3472.
|
10 |
EL-SHEIKH S M, MOHAMED R M, FOUAD O A. Synthesis and structure screening of nanostructured chromium oxide powders[J]. Journal of Alloys and Compounds, 2009, 482: 302-307.
|
11 |
古堂生, 林光明. 非晶态和晶态纳米氧化铝粉的相变与红外光谱[J]. 无机材料学报, 1997, 12(6): 840-844.
|
|
GU Tangsheng, LIN Guangming. Phase transformation and infrared absorption spectra of amorphous and crystalline nano-Al2O3 powder[J]. Journal of Inorganic Materials, 1997, 12(6): 840-844.
|
12 |
YIM S D, NAM I. Characteristics of chromium oxides supported on TiO2 and Al2O3 for the decomposition of perchloroethylene[J]. Journal of Catalysis, 2004, 221(2): 601-611.
|
13 |
XING Tao, WAN Haiqin, SHAO Yun, et al. Catalytic combustion of benzene over γ-alumina supported chromium oxide catalysts[J]. Applied Catalysis A: General, 2013, 468: 269-275.
|
14 |
SULLIVAN V S, JACKSON S D, STAIR P C. In situ ultraviolet Raman spectroscopy of the reduction of chromia on alumina catalysts[J]. Journal of Physical Chemistry B, 2005, 109: 352-356.
|
15 |
MENTASTY L R, GORRIZ O F, CADÚS L E. A study of chromia-alumina interaction by temperature-programmed reduction in dehydrogenation catalysts[J]. Industrial & Engineering Chemistry Research, 2001, 40: 136-143.
|
16 |
WECKHUYSEN B M, WACHS I E, SCHOONHEYDT R A. Surface chemistry and spectroscopy of chromium in inorganic oxides[J]. Chemical Review, 1996, 96: 3327-3349.
|
17 |
OVERBURY S H, BERTRAND P A, SOMORJAI G A. The surface composition of binary systems. prediction of surface phase diagrams of solid solutions[J]. Chemical Review, 1975, 75: 547-580.
|
18 |
OTROSHCHENKO T P, RODEMERCK U, LINKE D, et al. Synergy effect between Zr and Cr active sites in binary CrZrO x or supported CrO x /LaZrO x : consequences for catalyst activity, selectivity and durability in non-oxidative propane dehydrogenation[J]. Journal of Catalysis, 2017, 356: 197-205.
|
19 |
BUSCA Guido. The surface of transitional aluminas: a critical review[J]. Catalysis Today, 2014, 226: 2-13.
|
20 |
YUE Yuanyuan, FU Jing, WANG Chuanming, et al. Propane dehydrogenation catalyzed by single Lewis acid site in Sn-Beta zeolite[J]. Journal of Catalysis, 2021, 395: 155-167.
|