| [1] |
GROSSMANN Ignacio E. Challenges in the new millennium: Product discovery and design, enterprise and supply chain optimization, global life cycle assessment[J]. Computers & Chemical Engineering, 2004, 29(1): 29-39.
|
| [2] |
ZHANG Lei, BABI Deenesh K, GANI Rafiqul. New vistas in chemical product and process design[J]. Annual Review of Chemical and Biomolecular Engineering, 2016, 7: 557-582.
|
| [3] |
KONTOGEORGIS Georgios M, JHAMB Spardha, LIANG Xiaodong, et al. Computer-aided design of formulated products[J]. Current Opinion in Colloid & Interface Science, 2022, 57: 101536.
|
| [4] |
张磊, 贺丁, 刘琳琳, 等. 基于模型的化工产品设计方法——综述与展望[J]. 化工进展, 2021, 40(4): 1746-1754.
|
|
ZHANG Lei, HE Ding, LIU Linlin, et al. Model-based chemical product design—Review and perspectives[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1746-1754.
|
| [5] |
GANI Rafiqul. Chemical product design: Challenges and opportunities[J]. Computers & Chemical Engineering, 2004, 28(12): 2441-2457.
|
| [6] |
VENKATASUBRAMANIAN V, CHAN K, CARUTHERS J M. Computer-aided molecular design using genetic algorithms[J]. Computers & Chemical Engineering, 1994, 18(9): 833-844.
|
| [7] |
ZHANG Lei, MAO Haitao, ZHUANG Yu, et al. Odor prediction and aroma mixture design using machine learning model and molecular surface charge density profiles[J]. Chemical Engineering Science, 2021, 245: 116947.
|
| [8] |
ZHAO Yujing, LIU Qilei, WU Xinyuan, et al. De novo drug design framework based on mathematical programming method and deep learning model[J]. AIChE Journal, 2022, 68(9): e17748.
|
| [9] |
KARUNANITHI Arunprakash T, ACHENIE Luke E K, GANI Rafiqul. A computer-aided molecular design framework for crystallization solvent design[J]. Chemical Engineering Science, 2006, 61(4): 1247-1260.
|
| [10] |
LIU Qilei, ZHANG Lei, TANG Kun, et al. Computer-aided reaction solvent design considering inertness using group contribution-based reaction thermodynamic model[J]. Chemical Engineering Research and Design, 2019, 152: 123-133.
|
| [11] |
KATRITZKY Alan R, LOBANOV Victor S, KARELSON Mati. QSPR: The correlation and quantitative prediction of chemical and physical properties from structure[J]. Chemical Society Reviews, 1995, 24(4): 279-287.
|
| [12] |
HILL Michael. Product and process design for structured products[J]. AIChE Journal, 2004, 50(8): 1656-1661.
|
| [13] |
WANG Huan, TANG Xueming, EIKE David M, et al. Scission free energies for wormlike surfactant micelles: Development of a simulation protocol, application, and validation for personal care formulations[J]. Langmuir, 2018, 34(4): 1564-1573.
|
| [14] |
SHARMA Shikha, KAMIL Mohammad. Studies on the interaction between polymer and surfactant in aqueous solutions[J]. Indian Journal of Chemical Technology, 2018, 25(3): 294-299.
|
| [15] |
KHAN Mohammad Yunus, SAMANTA Abhijit, OJHA Keka, et al. Interaction between aqueous solutions of polymer and surfactant and its effect on physicochemical properties[J]. Asia-Pacific Journal of Chemical Engineering, 2008, 3(5): 579-585.
|
| [16] |
LA MESA Camillo. Polymer-surfactant and protein-surfactant interactions[J]. Journal of Colloid and Interface Science, 2005, 286(1): 148-157.
|
| [17] |
BRADBURY Robert, PENFOLD Jeffrey, THOMAS Robert K, et al. Manipulating perfume delivery to the interface using polymer-surfactant interactions[J]. Journal of Colloid and Interface Science, 2016, 466: 220-226.
|
| [18] |
PENFOLD J, THOMAS R K, BRADBURY R, et al. Probing the surface of aqueous surfactant-perfume mixed solutions during perfume evaporation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 520: 178-183.
|
| [19] |
TANG Haifeng, SONG Jiamei, ZHA Mengling, et al. Molecular dynamics simulation on the structure-activity relationship between the Gemini surfactant and foam properties[J]. AIChE Journal, 2022, 68(5): e17625.
|
| [20] |
SHANG Barry Z, WANG Zuowei, LARSON Ronald G. Effect of headgroup size, charge, and solvent structure on polymer-micelle interactions, studied by molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2009, 113(46): 15170-15180.
|
| [21] |
TANG Xueming, ZOU Weizhong, KOENIG Peter H, et al. Multiscale modeling of the effects of salt and perfume raw materials on the rheological properties of commercial threadlike micellar solutions[J]. The Journal of Physical Chemistry B, 2017, 121(11): 2468-2485.
|
| [22] |
KUPGAN Grit, ABBOTT Lauren J, HART Kyle E, et al. Modeling amorphous microporous polymers for CO2 capture and separations[J]. Chemical Reviews, 2018, 118(11): 5488-5538.
|
| [23] |
LIANG Xinyuan, ZHANG Xiang, ZHANG Lei, et al. Computer-aided polymer design: Integrating group contribution and molecular dynamics[J]. Industrial & Engineering Chemistry Research, 2019, 58(34): 15542-15552.
|
| [24] |
GUO Wenjing, LIU Qilei, ZHANG Lei, et al. Computer-aided design of a perfluorinated sulfonic acid proton exchange membrane using stochastic optimization and molecular dynamic method[J]. Industrial & Engineering Chemistry Research, 2021, 60(49): 18045-18057.
|
| [25] |
CHENG Kai Cong, KHOO Zhi Sheng, Newton Well LO, et al. Design and performance optimisation of detergent product containing binary mixture of anionic-nonionic surfactants[J]. Heliyon, 2020, 6(5): e03861.
|
| [26] |
BINDER Kurt, Jürgen HORBACH, Walter KOB, et al. Molecular dynamics simulations[J]. Journal of Physics: Condensed Matter, 2004, 16(5): S429-S453.
|
| [27] |
JORGENSEN William L, Julian TIRADO-RIVES. Potential energy functions for atomic-level simulations of water and organic and biomolecular systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(19): 6665-6670.
|
| [28] |
DODDA Leela S, VILSECK Jonah Z, Julian TIRADO-RIVES, et al. 1.14*CM1A-LBCC: Localized bond-charge corrected CM1A charges for condensed-phase simulations[J]. The Journal of Physical Chemistry B, 2017, 121(15): 3864-3870.
|
| [29] |
DODDA Leela S, DE VACA Israel Cabeza, Julian TIRADO-RIVES, et al. LigParGen web server: An automatic OPLS-AA parameter generator for organic ligands[J]. Nucleic Acids Research, 2017, 45(W1): W331-W336.
|
| [30] |
EGGIMANN Becky L, SUNNARBORG Amara J, STERN Hudson D, et al. An online parameter and property database for the TraPPE force field[J]. Molecular Simulation, 2014, 40(1/2/3): 101-105.
|
| [31] |
JANG Seung Soon, GODDARD William A. Structures and properties of Newton black films characterized using molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2006, 110(15): 7992-8001.
|
| [32] |
MARTÍNEZ L, ANDRADE R, BIRGIN E G, et al. PACKMOL: A package for building initial configurations for molecular dynamics simulations[J]. Journal of Computational Chemistry, 2009, 30(13): 2157-2164.
|
| [33] |
ABRAHAM Mark James, MURTOLA Teemu, SCHULZ Roland, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers[J]. SoftwareX, 2015, 1: 19-25.
|
| [34] |
HESS Berk, BEKKER Henk, BERENDSEN Herman J C, et al. LINCS: A linear constraint solver for molecular simulations[J]. Journal of Computational Chemistry, 1997, 18(12): 1463-1472.
|
| [35] |
DARDEN Tom, YORK Darrin, PEDERSEN Lee. Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993, 98(12): 10089-10092.
|
| [36] |
HUMPHREY William, DALKE Andrew, SCHULTEN Klaus. VMD: Visual molecular dynamics[J]. Journal of Molecular Graphics, 1996, 14(1): 33-38.
|