化工进展 ›› 2025, Vol. 44 ›› Issue (8): 4331-4340.DOI: 10.16085/j.issn.1000-6613.2024-2113
• 微介观过程与材料的模拟与仿真 • 上一篇
收稿日期:2024-12-30
修回日期:2025-02-27
出版日期:2025-08-25
发布日期:2025-09-08
通讯作者:
徐小飞
作者简介:刘力涵(1999—),女,硕士研究生,研究方向为丁苯橡胶的力学性能演变。E-mail:y82220175@mail.ecust.edu.cn。
LIU Lihan(
), WANG Qijun, WANG Xuan, PENG Yangfeng, XU Xiaofei(
)
Received:2024-12-30
Revised:2025-02-27
Online:2025-08-25
Published:2025-09-08
Contact:
XU Xiaofei
摘要:
橡胶材料的应力软化是指经多次循环加载(拉伸-恢复)后应力降低的现象,是影响相关工程应用效果和工程安全的重要因素。利用全原子分子动力学模拟方法,本文研究了丁苯橡胶材料的应力软化现象,从分子尺度探索和总结了应力软化的微观特征和关键影响因素。研究发现,丁苯橡胶的应力软化是由链间相互作用决定的,高分子总动能和势能分布是描述链间相互作用的重要方法。苯环基单元在丁苯橡胶总动能分布和总势能分布中发挥着主导作用。这是因为它们在丁苯橡胶分子中以侧支链的形式存在,且具有较大的体积。丁烯基单元在总动能分布中也发挥着主要作用,却几乎不影响总势能分布。乙烯基单元不是影响总动能、总势能分布的主要因素。在相同应变下,体系中自由体积随着循环拉伸次数增加而增大,并逐渐形成集中而连续的空腔,这些空腔是应力软化现象的重要微观结构特征。
中图分类号:
刘力涵, 王琪君, 王轩, 彭阳峰, 徐小飞. 丁苯橡胶应力软化的全原子分子动力学模拟[J]. 化工进展, 2025, 44(8): 4331-4340.
LIU Lihan, WANG Qijun, WANG Xuan, PENG Yangfeng, XU Xiaofei. All-atom molecular dynamics simulation on stress softening of styrene-butadiene rubber[J]. Chemical Industry and Engineering Progress, 2025, 44(8): 4331-4340.
| [1] | 崔小明. 我国丁苯橡胶的供需现状及发展分析[J]. 石油化工技术与经济, 2024, 40(4): 15-21. |
| CUI Xiaoming. Supply and demand status and development analysis of styrene-butadiene rubber in China[J]. Technology & Economics in Petrochemicals, 2024, 40(4): 15-21. | |
| [2] | SADHU Susmita, BHOWMICK Anil K. Preparation and properties of nanocomposites based on acrylonitrile-butadiene rubber, styrene-butadiene rubber, and polybutadiene rubber[J]. Journal of Polymer Science Part B: Polymer Physics, 2004, 42(9): 1573-1585. |
| [3] | ZHANG Bo, WANG Wencai, TIAN Ming, et al. Preparation of aramid nanofiber and its application in polymer reinforcement: A review[J]. European Polymer Journal, 2020, 139: 109996. |
| [4] | 徐林, 曾本忠, 王超, 等. 我国高性能合成橡胶材料发展现状与展望[J]. 中国工程科学, 2020, 22(5): 128-136. |
| XU Lin, ZENG Benzhong, WANG Chao, et al. Current status and prospects of high-performance synthetic rubber in China[J]. Strategic Study of CAE, 2020, 22(5): 128-136. | |
| [5] | PRATAP REDDY GUNTUR Nagasai, GURUSWAMY YADAV S, GOPALAN Sundararaman. Effect of titanium carbide as a filler on the mechanical properties of styrene butadiene rubber[J]. Materials Today: Proceedings, 2020, 24: 1552-1560. |
| [6] | BOTVINICK M, COHEN J. Rubber hands ‘feel’ touch that eyes see[J]. Nature, 1998, 391(6669): 756. |
| [7] | AMIN A F M S, ALAM M S, OKUI Y. An improved hyperelasticity relation in modeling viscoelasticity response of natural and high damping rubbers in compression: Experiments, parameter identification and numerical verification[J]. Mechanics of Materials, 2002, 34(2): 75-95. |
| [8] | 赵青松, 吴友平, 赵素合. 白炭黑/溶聚丁苯橡胶复合材料的填料网络结构与动态黏弹性能[J]. 合成橡胶工业, 2008, 31(1): 26-30. |
| ZHAO Qingsong, WU Youping, ZHAO Suhe. Filler network and dynamic viscoelastic properties of silica/solution polymerized styrene-butadiene rubber composites[J]. China Synthetic Rubber Industry, 2008, 31(1): 26-30. | |
| [9] | WANG Qian, XIONG Yuzhu, DONG Fuping. Eucommia ulmoides gum-based engineering materials: Fascinating platforms for advanced applications[J]. Journal of Materials Science, 2021, 56(2): 1855-1878. |
| [10] | ZHU Bowen, HE Zhongjin, JIANG Guosheng, et al. Molecular design of switchable nanochannels modified by zwitterion polymer chains with dissipative particle dynamics simulation[J]. Polymer, 2024, 290: 126602. |
| [11] | MULLINS L. Effect of stretching on the properties of rubber[J]. Rubber Chemistry and Technology, 1948, 21(2): 281-300. |
| [12] | MULLINS L. Softening of rubber by deformation[J]. Rubber Chemistry and Technology, 1969, 42(1): 339-362. |
| [13] | AMIN A F M S, LION A, HÖFER P. Effect of temperature history on the mechanical behaviour of a filler-reinforced NR/BR blend: Literature review and critical experiments[J]. ZAMM-Journal of Applied Mathematics and Mechanics, 2010, 90(5): 347-369. |
| [14] | RICKER Alexander, KRÖGER Nils Hendrik, WRIGGERS Peter. Comparison of discontinuous damage models of mullins-type[J]. Archive of Applied Mechanics, 2021, 91(10): 4097-4119. |
| [15] | NGUYEN Quang Tam, TINARD Violaine, FOND Christophe. The modelling of nonlinear rheological behaviour and Mullins effect in high damping rubber[J]. International Journal of Solids and Structures, 2015, 75: 235-246. |
| [16] | ZHAN Lin, QU Shaoxing, XIAO Rui. A review on the mullins effect in tough elastomers and gels[J]. Acta Mechanica Solida Sinica, 2024, 37(2): 181-214. |
| [17] | DIAZ Rodrigo, DIANI Julie, GILORMINI Pierre. Physical interpretation of the Mullins softening in a carbon-black filled SBR[J]. Polymer, 2014, 55(19): 4942-4947. |
| [18] | BOKOBZA Liliane. Mechanical and electrical properties of elastomer nanocomposites based on different carbon nanomaterials[J]. C—Journal of Carbon Research, 2017, 3(2): 10. |
| [19] | CLOUGH Jess M, CRETON Costantino, CRAIG Stephen L, et al. Covalent bond scission in the mullins effect of a filled elastomer: Real-time visualization with mechanoluminescence[J]. Advanced Functional Materials, 2016, 26(48): 9063-9074. |
| [20] | SHI Ruifang, WANG Xuan, SONG Xianyu, et al. Tensile performance and viscoelastic properties of rubber nanocomposites filled with silica nanoparticles: A molecular dynamics simulation study[J]. Chemical Engineering Science, 2023, 267: 118318. |
| [21] | 孙砚田. 轮胎滚动阻力分析及其性能优化方法研究[D]. 镇江: 江苏大学, 2016. |
| SUN Yantian. Research on tire rolling resistance analysis and its performance optimization method[D]. Zhenjiang: Jiangsu University, 2016. | |
| [22] | CANTOURNET S, DESMORAT R, BESSON J. Mullins effect and cyclic stress softening of filled elastomers by internal sliding and friction thermodynamics model[J]. International Journal of Solids and Structures, 2009, 46(11/12): 2255-2264. |
| [23] | XU Liyan, FAN Jiansheng, YANG Yue, et al. An improved elasto-plastic constitutive model for the exquisite description of stress-strain hysteresis loops with cyclic hardening and softening effects[J]. Mechanics of Materials, 2020, 150: 103590. |
| [24] | 方庆红, 宋博, 高雨, 等. 纳米石墨/天然橡胶复合材料的应力软化与动态性能[J]. 复合材料学报, 2014, 31(6): 1446-1451. |
| FANG Qinghong, SONG Bo, GAO Yu, et al. Stress softening and dynamic properties of nano-graphite/natural rubber composites[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1446-1451. | |
| [25] | PAVLOV Alexander S, KHALATUR Pavel G. Filler reinforcement in cross-linked elastomer nanocomposites: Insights from fully atomistic molecular dynamics simulation[J]. Soft Matter, 2016, 12(24): 5402-5419. |
| [26] | NAZARI Behzad, NAZOCKDAST Hossein, KATBAB Ali Asghar. The role of flow-induced microstructure in rheological behavior and nonisothermal crystallization kinetics of polyethylene/organoclay nanocomposites[J]. Polymer Engineering & Science, 2014, 54(8): 1839-1847. |
| [27] | STÖCKELHUBER K W, SVISTKOV A S, PELEVIN A G, et al. Impact of filler surface modification on large scale mechanics of styrene butadiene/silica rubber composites[J]. Macromolecules, 2011, 44(11): 4366-4381. |
| [28] | 胡小玲. 炭黑填充橡胶黏超弹性力学行为的宏细观研究[D]. 湘潭: 湘潭大学, 2013. |
| HU Xiaoling. Macroscopic and mesoscopic study on viscoelastic mechanical behavior of carbon black filled rubber[D]. Xiangtan: Xiangtan University, 2013. | |
| [29] | 高洋洋. 弹性体基复合材料中纳米填料分散聚集、聚合物界面行为及性能的分子动力学研究模拟[D]. 北京: 北京化工大学, 2016. |
| GAO Yangyang. Molecular dynamics simulation of dispersion and aggregation of nano-fillers, interfacial behavior and properties of polymers in elastomer matrix composites[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
| [30] | TANIGUCHI Yuga, Thanh-Tam MAI, YAMAGUCHI Masashi, et al. Investigating multiaxial mullins effect of carbon-black-reinforced elastomers using electrical resistivity measurements[J]. ACS Applied Polymer Materials, 2022, 4(2): 1139-1149. |
| [31] | SHI Ruifang, MA Jule, SONG Xianyu, et al. Composition effects on thermodynamic properties and interfacial structure in styrene-butadiene rubber: A combined experimental and simulation study[J]. Chemical Engineering Science, 2023, 275: 118750. |
| [32] | 王晓明, 田兴兴, 张振, 等. 显式方法模拟类橡胶材料率相关Mullins效应[J]. 力学学报, 2024, 56(12): 3553-3563. |
| WANG Xiaoming, TIAN Xingxing, ZHANG Zhen, et al. Simulation of rate-dependent Mullins effect of rubber-like materials by explicit method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(12): 3553-3563. | |
| [33] | WERNER B T, DANIEL I M. Characterization and modeling of polymeric matrix under multi-axial static and dynamic loading[J]. Composites Science and Technology, 2014, 102: 113-119. |
| [34] | WUNDE Matthias, PLAGGE Jan, Manfred KLÜPPEL. The role of stress softening in crack propagation of filler reinforced elastomers as evaluated by the J-integral[J]. Engineering Fracture Mechanics, 2019, 214: 520-533. |
| [35] | YANG Tingting, SHUI Yue, WEI Chengsha, et al. Effect of cyclic straining with various rates on stress softening/hysteresis and structural evolution of filled rubber: A time-resolved SANS study[J]. Composites Part B: Engineering, 2022, 242: 110100. |
| [36] | WANG Xuan, SONG Xianyu, TANG Weiqiang, et al. Microstructure effects on mechanical properties of network-forming polymer systems: An atomistic simulation study[J]. Chemical Engineering Science, 2023, 280: 118986. |
| [37] | WANG Xuan, ZHAO Shuangliang, XU Xiaofei. Molecular dynamics study on the stress concentration in polymer networks with dangling chains[J]. The Journal of Physical Chemistry B, 2024, 128(18): 4544-4553. |
| [38] | ZHU Jing, ZHAO Xiuying, LIU Li, et al. Quantitative relationships between intermolecular interaction and damping parameters of irganox-1035/NBR hybrids: A combination of experiments, molecular dynamics simulations, and linear regression analyses[J]. Journal of Applied Polymer Science, 2018, 135(17): 46202. |
| [39] | 文玉华, 朱如曾, 周富信, 等. 分子动力学模拟的主要技术[J]. 力学进展, 2003, 33(1): 65-73. |
| WEN Yuhua, ZHU Ruzeng, ZHOU Fuxin, et al. An overview on molecular dynamics simulation[J]. Advances in Mechanics, 2003, 33(1): 65-73. | |
| [40] | 杨萍, 孙益民. 分子动力学模拟方法及其应用[J]. 安徽师范大学学报(自然科学版), 2009, 32(1): 51-54. |
| YANG Ping, SUN Yimin. Method of molecular dynamics simulation and its application[J]. Journal of Anhui Normal University (Natural Science), 2009, 32(1): 51-54. | |
| [41] | 殷开梁. 分子动力学模拟的若干基础应用和理论[D]. 杭州: 浙江大学, 2006. |
| YIN Kailiang. Some basic applications and theories of molecular dynamics simulation[D]. Hangzhou: Zhejiang University, 2006. | |
| [42] | BRINI Emiliano, ALGAER Elena A, GANGULY Pritam, et al. Systematic coarse-graining methods for soft matter simulations—A review[J]. Soft Matter, 2013, 9(7): 2108-2119. |
| [43] | BUECHE F. Molecular basis for the Mullins effect[J]. Journal of Applied Polymer Science, 1960, 4(10): 107-114. |
| [44] | DIANI Julie, FAYOLLE Bruno, GILORMINI Pierre. A review on the Mullins effect[J]. European Polymer Journal, 2009, 45(3): 601-612. |
| [45] | OGDEN Ray W, ROXBURGH David George. A pseudo-elastic model for the Mullins effect in filled rubber[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1999, 455(1988): 2861-2877. |
| [46] | WAN Haixiao, GAO Ke, LI Sai, et al. Chemical bond scission and physical slippage in the Mullins effect and fatigue behavior of elastomers[J]. Macromolecules, 2019, 52(11): 4209-4221. |
| [47] | WANG Jiping, HU Wenbing. Roles of repeating-unit interactions in the stress relaxation process of bulk amorphous polymers: 2. Nonlinear viscoelasticity[J]. Polymer, 2022, 260: 125367. |
| [48] | WANG Jiping, YU Yihuan, GUO Yaqian, et al. Local transient jamming in stress relaxation of bulk amorphous polymers[J]. Chinese Journal of Polymer Science, 2021, 39(7): 906-913. |
| [49] | WANG Jiping, HU Wenbing. Nonlinear viscoelasticity raised at low temperatures by intermolecular cooperation of bulk amorphous polymers[J]. Chinese Journal of Polymer Science, 2021, 39(11): 1496-1501. |
| [50] | WANG Jiping, YU Yihuan, GUO Yaqian, et al. Roles of repeating-unit interactions in the stress relaxation process of bulk amorphous polymers[J]. Polymer, 2021, 224: 123740. |
| [51] | YOSHIMOTO Yuta, SUGIYAMA Sou, SHIMADA Shuntaro, et al. Molecular insights into the mechanical properties of polymer-fullerene bulk heterojunctions for organic photovoltaic applications[J]. Macromolecules, 2021, 54(2): 958-969. |
| [52] | WANG Linyuan, MA Jie, HE Xudong, et al. Learning the deformation mechanism of poly(vinylidine fluoride-co-chlorotrifluoroethylene): An insight into strain-induced microstructure evolution via molecular dynamics[J]. Journal of Molecular Modeling, 2017, 23(12): 361. |
| [53] | ZHU Bowen, HE Zhongjin, JIANG Guosheng, et al. Transport properties of aqueous methane solutions and blocking behavior of intelligent-responsive temporary plugging agent in a switchable nano-channel: A dissipative particle dynamics simulation study[J]. Macromolecular Rapid Communications, 2024, 45(21): e2400388. |
| [54] | BECKSTEIN Oliver, IORGA Bogdan I. Prediction of hydration free energies for aliphatic and aromatic chloro derivatives using molecular dynamics simulations with the OPLS-AA force field[J]. Journal of Computer-Aided Molecular Design, 2012, 26(5): 635-645. |
| [55] | KONY D, DAMM W, STOLL S, et al. An improved OPLS-AA force field for carbohydrates[J]. Journal of Computational Chemistry, 2002, 23(15): 1416-1429. |
| [56] | ROBERTSON Michael J, Julian TIRADO-RIVES, JORGENSEN William L. Improved peptide and protein torsional energetics with the OPLSAA force field[J]. Journal of Chemical Theory and Computation, 2015, 11(7): 3499-3509. |
| [57] | Shirley W I SIU, PLUHACKOVA Kristyna, BÖCKMANN Rainer A. Optimization of the OPLS-AA force field for long hydrocarbons[J]. Journal of Chemical Theory and Computation, 2012, 8(4): 1459-1470. |
| [58] | SWEERE Augustinus J M, FRAAIJE Johannes G E M. Accuracy test of the OPLS-AA force field for calculating free energies of mixing and comparison with PAC-MAC[J]. Journal of Chemical Theory and Computation, 2017, 13(5): 1911-1923. |
| [59] | YE Xianggui, CUI Shengting, DE ALMEIDA Valmor F, et al. Effect of varying the 1-4 intramolecular scaling factor in atomistic simulations of long-chain N-alkanes with the OPLS-AA model[J]. Journal of Molecular Modeling, 2013, 19(3): 1251-1258. |
| [60] | GUPTA Jasmine, NUNES Cletus, JONNALAGADDA Sriramakamal. A molecular dynamics approach for predicting the glass transition temperature and plasticization effect in amorphous pharmaceuticals[J]. Molecular Pharmaceutics, 2013, 10(11): 4136-4145. |
| [61] | ZHANG Jian, LIANG Yu, YAN Jizhong, et al. Study of the molecular weight dependence of glass transition temperature for amorphous poly(l-lactide) by molecular dynamics simulation[J]. Polymer, 2007, 48(16): 4900-4905. |
| [62] | KHABAZ Fardin, KHARE Rajesh. Glass transition and molecular mobility in styrene-butadiene rubber modified asphalt[J]. The Journal of Physical Chemistry B, 2015, 119(44): 14261-14269. |
| [63] | LINDEMANN Niclas, SCHAWE Jürgen E K, Jorge LACAYO-PINEDA. Kinetics of the glass transition of styrene-butadiene-rubber: Dielectric spectroscopy and fast differential scanning calorimetry[J]. Journal of Applied Polymer Science, 2021, 138(5): 49769. |
| [64] | DENG Jingxi, BAI Ruixue, ZHAO Jun, et al. Insights into the correlation of cross-linking modes with mechanical properties for dynamic polymeric networks[J]. Angewandte Chemie International Edition, 2023, 62(37): e202309058. |
| [65] | LIANG Xiaobin, NAKAJIMA Ken. Study of the mullins effect in carbon black-filled styrene-butadiene rubber by atomic force microscopy nanomechanics[J]. Macromolecules, 2022, 55(14): 6023-6030. |
| [1] | 刘燕燕, 李飞泉, 刘栋, 王俊涛, 罗雪. 纳观尺度下再生沥青-集料界面性质的分子模拟[J]. 化工进展, 2025, 44(8): 4302-4310. |
| [2] | 苏瑶, 陈占秀, 杨历, 邢赫威, 呼和仓, 李源华. 热源温度对非对称纳米通道流动换热的影响[J]. 化工进展, 2024, 43(S1): 144-153. |
| [3] | 陶一, 张晨, 胡益炯, 邱彤. 基于分子结构分布的减压蜡油分子重构模型[J]. 化工进展, 2024, 43(S1): 71-76. |
| [4] | 王禹程, 郭雄, 栾昕奇, 周健, 李想, 幸林广, 周雪芸, 刘颖, 汪德勇, 吴雪娟, 潘琦, 刘建新, 赵祯霞, 赵钟兴. 维生素U生产工艺优化及其热分解机理[J]. 化工进展, 2024, 43(9): 5157-5167. |
| [5] | 李美萱, 成建凤, 黄国勇, 徐盛明, 郁丰善, 翁雅青, 曹才放, 温嘉玮, 王俊莲, 王春霞, 顾斌涛, 张袁华, 刘斌, 王才平, 潘剑明, 徐泽良, 王翀, 王珂. 高电压镍锰酸锂正极材料的合成与电化学机理[J]. 化工进展, 2024, 43(9): 5086-5094. |
| [6] | 怀立业, 仲兆平, 杨宇轩. 脱硫石膏转化α-半水石膏的特征及机理:实验与模拟[J]. 化工进展, 2024, 43(8): 4694-4703. |
| [7] | 谢娟, 贺文, 赵勖丞, 李帅辉, 卢真真, 丁哲宇. 分子动力学模拟在沥青体系中的应用研究进展[J]. 化工进展, 2024, 43(8): 4432-4449. |
| [8] | 周逸寰, 解强, 周红阳, 梁鼎成, 刘金昌. 基于分子模拟的多孔炭材料结构模型构建方法研究进展[J]. 化工进展, 2024, 43(3): 1535-1551. |
| [9] | 黄致新, 王珺瑶, 袁湘洲, 邓帅, 赵洁, 张欣懿. 有机固废高值化为CO2吸附剂研究进展:交叉研究综述[J]. 化工进展, 2024, 43(10): 5748-5764. |
| [10] | 王业飞, 王婧, 杨震, 杨江, 郭雷. 新型高温酸化缓蚀剂的制备及性能评价[J]. 化工进展, 2024, 43(10): 5712-5722. |
| [11] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
| [12] | 欧阳素芳, 周道伟, 黄伟, 贾凤. 新型耐迁移橡胶防老剂的研究进展[J]. 化工进展, 2023, 42(7): 3708-3719. |
| [13] | 杨发容, 顾丽莉, 刘洋, 李伟雪, 蔡洁云, 王惠平. 计算机模拟辅助特丁津分子印迹聚合物的制备及应用[J]. 化工进展, 2023, 42(6): 3157-3166. |
| [14] | 赵毅, 杨臻, 张新为, 王刚, 杨旋. 不同裂缝损伤和愈合温度条件下沥青自愈合行为的分子模拟[J]. 化工进展, 2023, 42(6): 3147-3156. |
| [15] | 李瑞东, 黄辉, 同国虎, 王跃社. 原油精馏塔中铵盐吸湿特性及其腐蚀行为[J]. 化工进展, 2023, 42(6): 2809-2818. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |