| [13] |
WEI Xuyang, YANG Jinwen, HU Lingling, et al. Recent advances in room temperature phosphorescent carbon dots: Preparation, mechanism, and applications[J]. Journal of Materials Chemistry C, 2021, 9(13): 4425-4443.
|
| [14] |
LI Jiurong, WU Yongzhong, GONG Xiao. Evolution and fabrication of carbon dot-based room temperature phosphorescence materials[J]. Chemical Science, 2023, 14(14): 3705-3729.
|
| [15] |
LIU Yushan, YANG Haiyue, HUANG Tao, et al. Recent advances of biomass-derived carbon dots with room temperature phosphorescence characteristics[J]. Nano Today, 2024, 56: 102257.
|
| [16] |
TENG Xiuming, SUN Xiaobo, PAN Wei, et al. Carbon dots confined in silica nanoparticles for triplet-to-singlet Föster resonance energy-transfer-induced delayed fluorescence[J]. ACS Applied Nano Materials, 2022, 5(4): 5168-5175.
|
| [17] |
ZHANG Xinlei, LIU Xia, LIU Peng, et al. Ultralong afterglow of heavy-atom-free carbon dots with a phosphorescence lifetime of up to 3.7s for encryption and fingerprinting description[J]. Dalton Transactions, 2024, 53(10): 4671-4679.
|
| [18] |
DING Liu, JIN Xilang, GAO Yuchong, et al. Facile preparation strategy of novel carbon dots with aggregation-induced emission and room-temperature phosphorescence characteristics[J]. Advanced Optical Materials, 2023, 11(5): 2202349.
|
| [19] |
LI Feng, TANG Long, LIU Yang, et al. Background-free latent fingerprint imaging based on carbonized polymers@silica powder with intense green room-temperature phosphorescence[J]. Optical Materials, 2022, 128: 112356.
|
| [20] |
WANG Zifei, SHEN Jian, XU Bin, et al. Thermally driven amorphous-crystalline phase transition of carbonized polymer dots for multicolor room-temperature phosphorescence[J]. Advanced Optical Materials, 2021, 9(16): 2100421.
|
| [21] |
TAO Songyuan, ZHOU Changjiang, KANG Chunyuan, et al. Confined-domain crosslink-enhanced emission effect in carbonized polymer dots[J]. Light, Science & Applications, 2022, 11(1): 56.
|
| [22] |
LIU Xiaoli, ZHAO Siyu, CHEN Xinrui, et al. The effect of lignin molecular weight on the formation and properties of carbon quantum dots[J]. Green Chemistry, 2024, 26(6): 3190-3201.
|
| [23] |
JIANG Kai, WANG Yuhui, CAI Congzhong, et al. Conversion of carbon dots from fluorescence to ultralong room-temperature phosphorescence by heating for security applications[J]. Advanced Materials, 2018, 30(26): 1800783.
|
| [24] |
PARK Jin Young, CHUNG Jong Won, YANG Hyun Kyoung. Versatile fluorescent Gd2MoO6: Eu3+ nanophosphor for latent fingerprints and anti-counterfeiting applications[J]. Ceramics International, 2019, 45(9): 11591-11599.
|
| [1] |
YU Yanlin, YAN Lei, XIA Zhining. Non-toxic luminescent Au nanoclusters@montmorillonite nanocomposites powders for latent fingerprint development[J]. RSC Advances, 2017, 7(79): 50106-50112.
|
| [2] |
WEI Shuoyun, CUI Xiaohu. Synthesis of gold nanoparticles immobilized on fibrous nano-silica for latent fingerprints detection[J]. Journal of Porous Materials, 2021, 28(3): 751-762.
|
| [3] |
TIAN Rui, WANG Yalong, LI Chong, et al. Turn-on green fluorescence imaging for latent fingerprint applications[J]. Materials Chemistry Frontiers, 2022, 6(9): 1188-1193.
|
| [4] |
金晓东, 毕天博, 辛然, 等. 有机材料在潜指纹显现中的应用研究进展[J]. 有机化学, 2020, 40(12): 4184-4202.
|
|
JIN Xiaodong, BI Tianbo, XIN Ran, et al. Advances in the application of organic materials for the development of latent fingerprints[J]. Chinese Journal of Organic Chemistry, 2020, 40(12): 4184-4202.
|
| [5] |
SINGH Shalini, SABRI Ylias M, JAMPAIAH Deshetti, et al. Easy, one-step synthesis of CdTe quantum dots via microwave irradiation for fingerprinting application[J]. Materials Research Bulletin, 2017, 90: 260-265.
|
| [6] |
COSTA Bianca M F, FREITAS Denilson V, SOUSA Felipe L N, et al. SATS@CdTe hierarchical structures emitting green to red colors developed for latent fingerprint applications[J]. Dyes and Pigments, 2020, 180: 108483.
|
| [7] |
刘俊, 张熙荣, 熊焕明. 荧光碳点在指纹检测中的应用[J]. 发光学报, 2021, 42(8): 1095-1113.
|
|
LIU Jun, ZHANG Xirong, XIONG Huanming. Application of fluorescent carbon dots in fingerprint detection[J]. Chinese Journal of Luminescence, 2021, 42(8): 1095-1113.
|
| [8] |
袁传军, 王猛, 李明, 等. 基于碳点的发光材料在潜在手印显现中的应用[J]. 化学进展, 2022, 34(9): 2108-2120.
|
|
YUAN Chuanjun, WANG Meng, LI Ming, et al. Application of luminescent materials based on carbon dots in development of latent fingerprints[J]. Progress in Chemistry, 2022, 34(9): 2108-2120.
|
| [9] |
WANG Meng, SHEN Dunpu, ZHU Zhongxu, et al. Dual-mode fluorescent development of latent fingerprints using NaYbF4: Tm upconversion nanomaterials[J]. Materials Today Advances, 2020, 8: 100113.
|
| [10] |
KANODARWALA Fehmida K, Adam LEŚNIEWSKI, Izabela OLSZOWSKA-ŁOŚ, et al. Fingermark detection using upconverting nanoparticles and comparison with cyanoacrylate fuming[J]. Forensic Science International, 2021, 326: 110915.
|
| [11] |
FU Wenjing, CHEN Yanjiao, LIU Kezhen, et al. Nanoscale aluminate-based afterglow materials from byproducts of aluminum-water-based hydrogen production for anticounterfeiting and latent fingerprint visualization[J]. ACS Applied Nano Materials, 2023, 6(24): 22673-22683.
|
| [12] |
LIU Lin, XIE Feiyan, XU Dekang, et al. Zn2SiO4: Mn2+, Yb3+ long afterglow materials prepared employing Zn-based coordination polymer as precursor: Properties, mechanism and application[J]. Journal of Luminescence, 2023, 255: 119601.
|
| [25] |
LI Tengfei, WU Chuanguang, YANG Mingsheng, et al. Long-lived color-tunable room-temperature phosphorescence of boron-doped carbon dots[J]. Langmuir, 2022, 38(7): 2287-2293.
|
| [26] |
QIN Ying, HE Yu, SONG Gongwu. Ultralong room-temperature phosphorescence of boron carbon oxynitride nanodots encapsulated in pyrophosphate in dry and wet states for fingerprint detection and information protection[J]. ACS Applied Nano Materials, 2023, 6(2): 1360-1368.
|
| [27] |
ZHENG Yan, ZHOU Qian, YANG Yan, et al. Full-color long-lived room temperature phosphorescence in aqueous environment[J]. Small, 2022, 18(19): 2201223.
|
| [28] |
ZHANG Qipeng, XU Shihao, ZHANG Lanpeng, et al. Multiemitting ultralong phosphorescent carbonized polymer dots via synergistic enhancement structure design[J]. Advanced Science, 2024, 11(18): 2400781.
|
| [29] |
LI Wei, ZHOU Wan, ZHOU Zhishan, et al. A universal strategy for activating the multicolor room-temperature afterglow of carbon dots in a boric acid matrix[J]. Angewandte Chemie International Edition, 2019, 58(22): 7278-7283.
|
| [30] |
WANG Zifei, LIU Yang, ZHEN Shijie, et al. Gram-scale synthesis of 41% efficient single-component white-light-emissive carbonized polymer dots with hybrid fluorescence/phosphorescence for white light-emitting diodes[J]. Advanced Science, 2020, 7(4): 1902688.
|
| [31] |
HE Wei, SUN Xiangying, CAO Xuegong. Construction and multifunctional applications of visible-light-excited multicolor long afterglow carbon dots/boron oxide composites[J]. ACS Sustainable Chemistry & Engineering, 2021, 9(12): 4477-4486.
|
| [32] |
ZHOU Zhishan, SONG Zhijian, LIU Jinkun, et al. Energy transfer mediated enhancement of room-temperature phosphorescence of carbon dots embedded in matrixes[J]. Advanced Optical Materials, 2022, 10(1): 2100704.
|
| [33] |
HAN Bingyan, LEI Xiangshan, LI Dan, et al. Shallow traps in carbon nitride quantum dots to achieve 6.47s ultralong lifetime and wavelength-tunable room temperature phosphorescence[J]. Advanced Optical Materials, 2023, 11(8): 2202293.
|
| [34] |
JIANG Kai, HU Sizhe, WANG Yuci, et al. Photo-stimulated polychromatic room temperature phosphorescence of carbon dots[J]. Small, 2020, 16(31): 2001909.
|