化工进展 ›› 2025, Vol. 44 ›› Issue (5): 2919-2937.DOI: 10.16085/j.issn.1000-6613.2024-1852
• 化工过程减排 • 上一篇
马梓轩1,2(
), 施瑞晨1, 刘明杰1,2, 杨莹杰1,2, 宋子瑜1,2, 梅晓鹏1,2, 高晓峰1,2, 洪龙城1,2, 姚思宇1,2(
), 张治国1,2(
), 任其龙1,2(
)
收稿日期:2024-11-12
修回日期:2025-04-10
出版日期:2025-05-25
发布日期:2025-05-20
通讯作者:
姚思宇,张治国,任其龙
作者简介:马梓轩(1995—),男,博士后,研究方向为工业催化。E-mail:mazixuan@zju.edu.cn。
基金资助:
MA Zixuan1,2(
), SHI Ruichen1, LIU Mingjie1,2, YANG Yingjie1,2, SONG Ziyu1,2, MEI Xiaopeng1,2, GAO Xiaofeng1,2, HONG Longcheng1,2, YAO Siyu1,2(
), ZHANG Zhiguo1,2(
), REN Qilong1,2(
)
Received:2024-11-12
Revised:2025-04-10
Online:2025-05-25
Published:2025-05-20
Contact:
YAO Siyu, ZHANG Zhiguo, REN Qilong
摘要:
在全球能源转型与可持续发展的背景下,液态有机储氢(LOHCs)技术作为氢能安全高效储运的重要方案,已成为氢能产业的研究热点。环烷烃储氢载体,如甲基环己烷和环己烷,因其较高的储氢密度、低廉的价格和良好的化学稳定性,成为LOHCs的重要选项。然而,环烷烃的脱氢反应效率和选择性受到多种因素的制约,必须深入研究反应器的设计策略,优化催化剂与反应器之间的匹配。本文系统论述了各类反应器基于传质和传热特性提升的设计策略,详细阐述了其对催化环烷烃脱氢高效释放氢气性能优化的重要影响。深入分析了环烷烃脱氢反应器内传质、传热、传动与反应过程之间的协同作用并加以利用,不仅能够大幅提高环烷烃脱氢效率,还能显著提升能量与资源的利用率。结合前沿的反应器设计理念、多尺度建模与实验验证,有望为高性能脱氢反应器的开发与优化及其在工业中的应用提供重要的理论基础和技术路径,为化工过程的效率提升和可持续发展提供新的指引。
中图分类号:
马梓轩, 施瑞晨, 刘明杰, 杨莹杰, 宋子瑜, 梅晓鹏, 高晓峰, 洪龙城, 姚思宇, 张治国, 任其龙. 环烷烃催化制氢反应器的设计与性能优化: 前沿进展与挑战[J]. 化工进展, 2025, 44(5): 2919-2937.
MA Zixuan, SHI Ruichen, LIU Mingjie, YANG Yingjie, SONG Ziyu, MEI Xiaopeng, GAO Xiaofeng, HONG Longcheng, YAO Siyu, ZHANG Zhiguo, REN Qilong. Design and performance optimization of reactors for catalytic hydrogen production from cycloalkanes: Frontline progress and challenges[J]. Chemical Industry and Engineering Progress, 2025, 44(5): 2919-2937.
| 反应器类型 | 特点 | 优势 | 应用 | 文献 |
|---|---|---|---|---|
| 连续微通道反应器 | 微米级反应,优良的热管理 | 精确控制反应条件,反应效率高 | 适合小规模、高选择性的反应 | [ |
| 脉冲反应器 | 快速物料输入,适合短时间反应 | 灵活性高,适合催化剂筛选和性能评估 | 适合快速反应和催化剂性能测试 | [ |
| 连续管式反应器 | 稳定操作,易于控制反应条件 | 适合稳态反应,传热和传质效率高 | 广泛应用于工业化连续反应 | [ |
| 固定床反应器 | 床层固定,操作灵活 | 催化剂回收方便,适合连续反应 | 适合长期运行和连续生产 | [ |
| 热耦合反应器 | 吸热与放热反应耦合 | 提高能源利用效率,降低运营成本 | 适合多反应物和多产物的复杂反应 | [ |
| 热自维持反应器 | 无需外部热源,利用反应自身热量 | 高效热管理,适合持续反应 | 适合长时间反应且热损失小 | [ |
| 膜反应器 | 选择性分离与反应结合 | 提高反应效率和产品纯度 | 适合分离与反应同时进行的过程 | [ |
| 膜渗透热耦合反应器 | 结合膜分离与热耦合技术 | 整体效率高,适合复杂反应优化 | 适合需要分离和反应协同进行的过程 | [ |
| 微波反应器 | 快速加热,均匀加热效果 | 提高反应速率,降低副产物甲烷的生成 | 适合快速反应升温和高效催化脱氢过程 | [ |
表1 适用于环烷烃脱氢反应器的特点、优势与应用
| 反应器类型 | 特点 | 优势 | 应用 | 文献 |
|---|---|---|---|---|
| 连续微通道反应器 | 微米级反应,优良的热管理 | 精确控制反应条件,反应效率高 | 适合小规模、高选择性的反应 | [ |
| 脉冲反应器 | 快速物料输入,适合短时间反应 | 灵活性高,适合催化剂筛选和性能评估 | 适合快速反应和催化剂性能测试 | [ |
| 连续管式反应器 | 稳定操作,易于控制反应条件 | 适合稳态反应,传热和传质效率高 | 广泛应用于工业化连续反应 | [ |
| 固定床反应器 | 床层固定,操作灵活 | 催化剂回收方便,适合连续反应 | 适合长期运行和连续生产 | [ |
| 热耦合反应器 | 吸热与放热反应耦合 | 提高能源利用效率,降低运营成本 | 适合多反应物和多产物的复杂反应 | [ |
| 热自维持反应器 | 无需外部热源,利用反应自身热量 | 高效热管理,适合持续反应 | 适合长时间反应且热损失小 | [ |
| 膜反应器 | 选择性分离与反应结合 | 提高反应效率和产品纯度 | 适合分离与反应同时进行的过程 | [ |
| 膜渗透热耦合反应器 | 结合膜分离与热耦合技术 | 整体效率高,适合复杂反应优化 | 适合需要分离和反应协同进行的过程 | [ |
| 微波反应器 | 快速加热,均匀加热效果 | 提高反应速率,降低副产物甲烷的生成 | 适合快速反应升温和高效催化脱氢过程 | [ |
| 1 | SULTAN O, SHAW H. Study of automotive storage of hydrogen using recyclable liquid chemical carriers[R]. Nasa Sti/recon Technical Report N, 1975. |
| 2 | GIANOTTI Elia, Mélanie TAILLADES-JACQUIN, Jacques ROZIÈRE, et al. High-purity hydrogen generation via dehydrogenation of organic carriers: A review on the catalytic process[J]. ACS Catalysis, 2018, 8(5): 4660-4680. |
| 3 | SCHLAPBACH Louis, Andreas ZÜTTEL. Hydrogen-storage materials for mobile applications[J]. Nature, 2001, 414(6861): 353-358. |
| 4 | KISHORE KUMAR S A, JOHN Mathew, Shivanand M PAI, et al. Low temperature hydrogenation of aromatics over Pt-Pd/SiO2-Al2O3 catalyst[J]. Fuel Processing Technology, 2014, 128: 303-309. |
| 5 | FISHER Ian P, WILSON Michael F. Kinetics and thermodynamics of aromatics hydrogenation in distillates from Athabasca syncrudes[J]. Energy & Fuels, 1988, 2(4): 548-555. |
| 6 | KIMBARA Naoto, CHARLAND Jean-Pierre, WILSON Michael F. Hydrogenation of aromatics in synthetic crude distillates catalyzed by platinum supported in molecular sieves[J]. Industrial & Engineering Chemistry Research, 1996, 35(11): 3874-3883. |
| 7 | WRISTERS J. Strong acid-catalyzed hydrogenation of aromatics[J]. Journal of the American Chemical Society, 1975, 97(15): 4312-4316. |
| 8 | YANG Yang, LIN Xinzhang, TANG Jie, et al. Supported mesoporous Pt catalysts with excellent performance for toluene hydrogenation under low reaction pressure[J]. Molecular Catalysis, 2022, 524: 112341. |
| 9 | Chan HA, WANG Sibo, WANG Cong, et al. Study on the laws of methanol reforming coupled with flow, heat and mass transfer processes with variable catalyst distribution in microchannels[J]. Applied Thermal Engineering, 2024, 236: 121762. |
| 10 | HORÁK J, JIRÁČEK F. Heat and mass transfer in heterogeneous catalysis. ⅩⅪ. Effect of heat and mass transfer between external surface of the catalyst particle and the bulk of the reaction mixture on steadying of the catalyst particle regime[J]. Collection of Czechoslovak Chemical Communications, 1970, 35(7): 2100-2110. |
| 11 | ANDREEV VV. Modeling of simple reversible-reactions on porous catalyst granules with regard for heat and mass-transfer between the catalyst and surrounding reaction mixture[J]. High Temperature, 1995, 33(3): 489-492. |
| 12 | KIGUCHI Yuji, SEKIGUCHI Hidetoshi, WATANABE Takayuki, et al. Heat transfer with tert-butanol dehydration reaction[J]. Kagaku Kogaku Ronbunshu, 1996, 22(2): 400-403. |
| 13 | ERMOLAEV V S, MORDKOVICH V Z, SOLOMONIK I G. Influence of capillary condensation on heat and mass transfer in the grain of a Fischer-Tropsch synthesis catalyst[J]. Theoretical Foundations of Chemical Engineering, 2010, 44(5): 660-664. |
| 14 | KOSHELEVA M K, MESHALKIN V P, DORNYAK O R. Mathematical modeling of heat and mass transfer in the drying of granules used as a support for a nickel catalyst[J]. Theoretical Foundations of Chemical Engineering, 2021, 55(3): 410-416. |
| 15 | KANG Dong Gyun, KWAK Yeonsu, MOON Seongeun, et al. Thermally manageable and scalable reactor configurations towards efficient hydrogen release from liquid organic hydrogen carriers[J]. Energy Conversion and Management, 2024, 307: 118345. |
| 16 | MENG Lie, YU Xin, NIIMI Takuya, et al. Methylcyclohexane dehydrogenation for hydrogen production via a bimodal catalytic membrane reactor[J]. AIChE Journal, 2015, 61(5): 1628-1638. |
| 17 | RAMADHANI Safira, Quan Nguyen DAO, IMANUEL Yoel, et al. Advances in catalytic hydrogenation of liquid organic hydrogen carriers (LOHCs) using high-purity and low-purity hydrogen[J]. ChemCatChem, 2024, 16(24): e202401278. |
| 18 | LE Thi-Hoa, TRAN Ngo, LEE Hyun-Jong. Development of liquid organic hydrogen carriers for hydrogen storage and transport[J]. International Journal of Molecular Sciences, 2024, 25(2): 1359. |
| 19 | Florian D’AMBRA, Gérard GÉBEL. Literature review: State-of-the-art hydrogen storage technologies and Liquid Organic Hydrogen Carrier (LOHC) development[J]. Science and Technology for Energy Transition, 2023, 78: 32. |
| 20 | ZHOU Minjie, MIAO Yulong, GU Yanwei, et al. Recent advances in reversible liquid organic hydrogen carrier systems: From hydrogen carriers to catalysts[J]. Advanced Materials, 2024, 36(37): 2311355. |
| 21 | GEMECHU Desalegn Nigatu, MOHAMMED Ahmed Mustefa, REDI Mesfin, et al. First principles-based approaches for catalytic activity on the dehydrogenation of liquid organic hydrogen carriers: A review[J]. International Journal of Hydrogen Energy, 2023, 48(85): 33186-33206. |
| 22 | WANG Guowei, ZHANG Shan, ZHU Xiaolin, et al. Dehydrogenation versus hydrogenolysis in the reaction of light alkanes over Ni-based catalysts[J]. Journal of Industrial and Engineering Chemistry, 2020, 86: 1-12. |
| 23 | GAO Jiaojiao, LI Ning, ZHANG Dongqiang, et al. The progress of research based on methylcyclohexane dehydrogenation technology: A review[J]. International Journal of Hydrogen Energy, 2024, 85: 865-880. |
| 24 | ACHARYA Durga, Derrick NG, XIE Zongli. Recent advances in catalysts and membranes for MCH dehydrogenation: A mini review[J]. Membranes, 2021, 11(12): 955. |
| 25 | MENG Junchi, ZHOU Feng, MA Huixia, et al. A review of catalysts for methylcyclohexane dehydrogenation[J]. Topics in Catalysis, 2021, 64(7): 509-520. |
| 26 | RAO Purna, YOON Minyoung. Potential liquid-organic hydrogen carrier (LOHC) systems: A review on recent progress[J]. Energies, 2020, 13(22): 6040. |
| 27 | Emilija RAKIĆ, GRILC Miha, LIKOZAR Blaž. Liquid organic hydrogen carrier hydrogenation-dehydrogenation: From ab initio catalysis to reaction micro-kinetics modelling[J]. Chemical Engineering Journal, 2023, 472: 144836. |
| 28 | MODISHA Phillimon M, OUMA Cecil N M, GARIDZIRAI Rudaviro, et al. The prospect of hydrogen storage using liquid organic hydrogen carriers[J]. Energy & Fuels, 2019, 33(4): 2778-2796. |
| 29 | 盖宏伟, 张辰君, 屈晶莹, 等. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
| GAI Hongwei, ZHANG Chenjun, QU Jingying, et al. Research progress on strengthening catalytic dehydrogenation process of organic liquid hydrogen storage technology[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 164-185. | |
| 30 | LIAO Moyu, GUO Chenxu, GUO Wenming, et al. Hydrogen production in microreactor using porous SiC ceramic with a pore-in-pore hierarchical structure as catalyst support[J]. International Journal of Hydrogen Energy, 2020, 45(41): 20922-20932. |
| 31 | WANG Yancheng, HONG Ziyue, MEI Deqing. A thermally autonomous methanol steam reforming microreactor with porous copper foam as catalyst support for hydrogen production[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6734-6744. |
| 32 | RÖNNHOLM Mats R, HERNÁNDEZ CARUCCI José R, ARVE Kalle, et al. ANN modeling applied to NOx reduction with octane in a new microreactor[J]. Topics in Catalysis, 2007, 42(1): 195-198. |
| 33 | Susana PÉREZ-GIL, Sergio SANTOS-MORENO, GARCÍA Cristina Diñeiro, et al. Process intensification in the continuous dehydrogenation of methylcyclohexane to toluene[J]. Chemical Engineering and Processing: Process Intensification, 2024, 203: 109904. |
| 34 | ROUMANIE Marilyne, MEILLE Valérie, PIJOLAT Christophe, et al. Design and fabrication of a structured catalytic reactor at micrometer scale: Example of methylcyclohexane dehydrogenation[J]. Catalysis Today, 2005, 110(1/2): 164-170. |
| 35 | PETRAZZUOLI Vittorio, ROLLAND Matthieu, Adrien MEKKI-BERRADA, et al. Choosing the right packing in millipacked bed reactors under single phase gas flow[J]. Chemical Engineering Science, 2021, 231: 116314. |
| 36 | HU Rongrong, ZHAO Xueliang, DING Shi, et al. Determination of a catalyst powder’s active site concentration with a pulse reactor in Knudsen flow[J]. Chemical Engineering Science, 2007, 62(18/19/20): 5317-5321. |
| 37 | MATSUMURA Yasuyuki, HASHIMOTO Keiji, YOSHIDA Satohiro. Dehydrogenation of methanol to formaldehyde over silicalite[J]. Journal of Catalysis, 1986, 100(2): 392-400. |
| 38 | BINIWALE Rajesh B, YAMASHIRO Hikaru, ICHIKAWA Masaru. In-situ infrared thermographic analysis during dehydrogenationof cyclohexane over carbon-supported Pt catalysts using spray-pulsed reactor[J]. Catalysis Letters, 2005, 102(1): 23-31. |
| 39 | MAGGIORE R, GIORDANO N, CRISAFULLI C, et al. The mechanism of dehydrogenation of cyclohexane on MoO3 Al2O3 catalysts[J]. Journal of Catalysis, 1979, 60(2): 193-203. |
| 40 | BINIWALE Rajesh B, KARIYA Nobuko, ICHIKAWA Masaru. Dehydrogenation of cyclohexane over Ni based Catalysts Supported on activated carbon using spray-pulsed reactor and enhancement in activity by addition of a small amount of Pt[J]. Catalysis Letters, 2005, 105(1): 83-87. |
| 41 | KARIYA Nobuko, FUKUOKA Atsushi, UTAGAWA Tadashi, et al. Efficient hydrogen production using cyclohexane and decalin by pulse-spray mode reactor with Pt catalysts[J]. Applied Catalysis A: General, 2003, 247(2): 247-259. |
| 42 | SILUVAI ANTONY Praveen, SOHONY Rajiv Ananth, BINIWALE Rajesh B. An insight into spray pulsed reactor through mathematical modeling of catalytic dehydrogenation of cyclohexane[J]. International Journal of Hydrogen Energy, 2014, 39(13): 6944-6952. |
| 43 | YE Li, WAN Tengfei, XIE Xiaohui, et al. Study on flow characteristics and mass transfer mechanism of kettle Taylor flow reactor[J]. Energies, 2022, 15(6): 2028. |
| 44 | BESENHARD Maximilian O, Sayan PAL, GKOGKOS Georgios, et al. Non-fouling flow reactors for nanomaterial synthesis[J]. Reaction Chemistry & Engineering, 2023, 8(5): 955-977. |
| 45 | HARO J, GÓMEZ R, FERREIRA J M. The role of palladium in dehydrogenation of cyclohexane over Pt-Pd/Al2O3 bimetallic catalysts[J]. Journal of Catalysis, 1976, 45(3): 326-331. |
| 46 | LOZHKIN A D, ISKHAKOVA L D, MILOVICH F O, et al. Kinetics of hydrogen and toluene production from methylcyclohexane in the presence of a PtSn/Al2O3 catalyst[J]. Kinetics and Catalysis, 2024, 65(3): 280-297. |
| 47 | ARORA Deepali, RICHARDS Matt, ZHU Yutong, et al. A multipass catalytic reactor insert for continuous hydrogen generation from methylcyclohexane[J]. Chemical Engineering and Processing: Process Intensification, 2024, 201: 109822. |
| 48 | Saurish DAS, DEEN Niels G, KUIPERS J A M. A DNS study of flow and heat transfer through slender fixed-bed reactors randomly packed with spherical particles[J]. Chemical Engineering Science, 2017, 160: 1-19. |
| 49 | DIXON Anthony G, PARTOPOUR Behnam. Computational fluid dynamics for fixed bed reactor design[J]. Annual Review of Chemical and Biomolecular Engineering, 2020, 11: 109-130. |
| 50 | ZHANG Minhua, DONG He, GENG Zhongfeng. Computational study of flow and heat transfer in fixed beds with cylindrical particles for low tube to particle diameter ratios[J]. Chemical Engineering Research and Design, 2018, 132: 149-161. |
| 51 | YANG Jian, WU Jiangquan, ZHOU Lang, et al. Computational study of fluid flow and heat transfer in composite packed beds of spheres with low tube to particle diameter ratio[J]. Nuclear Engineering and Design, 2016, 300: 85-96. |
| 52 | BRAHMA Sujata, NATH Biswajit, BASUMATARY Bidangshri, et al. Biodiesel production from mixed oils: A sustainable approach towards industrial biofuel production[J]. Chemical Engineering Journal Advances, 2022, 10: 100284. |
| 53 | MA Zixuan, TAN Minghui, CAO Fenghai, et al. Revealing the effect of synergistic interaction between ZnO and ZnCr2O4 on the syngas aromatization[J]. AIChE Journal, 2023, 69(5): e17979. |
| 54 | MA Zixuan, CAO Fenghai, YANG Yuhao, et al. Role of the nonstoichiometric Zn-Cr spinel in ZnCrO x /ZSM-5 catalysts for syngas aromatization[J]. Fuel, 2022, 325: 124809. |
| 55 | MA Zixuan, ZHOU Chenliang, WANG Danmei, et al. Co-precipitated Fe-Zr catalysts for the Fischer-Tropsch synthesis of lower olefins (C 2 O ~C 4 O ): Synergistic effects of Fe and Zr[J]. Journal of Catalysis, 2019, 378: 209-219. |
| 56 | MA Zixuan, WANG Xiaoxing, MA Xiaoling, et al. Catalytic roles of acid property in different morphologies of H‐ZSM‐5 zeolites for syngas‐to-aromatics conversion over ZnCrO x /H-ZSM-5 catalysts[J]. Microporous and Mesoporous Materials, 2023, 349: 112420. |
| 57 | CHEN Shuyao, ZHANG Junfeng, SONG Faen, et al. Induced high selectivity methanol formation during CO2 hydrogenation over a CuBr2-modified CuZnZr catalyst[J]. Journal of Catalysis, 2020, 389: 47-59. |
| 58 | CHEN Shuyao, ZHANG Junfeng, WANG Peng, et al. Effect of vapor-phase-treatment to CuZnZr catalyst on the reaction behaviors in CO2 hydrogenation into methanol[J]. ChemCatChem, 2019, 11(5): 1448-1457. |
| 59 | USMAN Muhammad, CRESSWELL David, GARFORTH Arthur. Detailed reaction kinetics for the dehydrogenation of methylcyclohexane over Pt catalyst[J]. Industrial & Engineering Chemistry Research, 2012, 51(1): 158-170. |
| 60 | XIA Zhijun, LU Hanfeng, LIU Huayan, et al. Cyclohexane dehydrogenation over Ni-Cu/SiO2 catalyst: Effect of copper addition[J]. Catalysis Communications, 2017, 90: 39-42. |
| 61 | ZHANG Qianlin, ZHANG Zhao, MA Yueer, et al. Morphological regulation of Pt/CeO2 and its catalytic dehydrogenation of methylcyclohexane in fixed bed reactor[J]. International Journal of Hydrogen Energy, 2024, 83: 1338-1348. |
| 62 | ALEKSEEVA BYKOVA Maria V, GULYAEVA Yuliya K, BULAVCHENKO Olga A, et al. Promoting effect of Zn in high-loading Zn/Ni-SiO2 catalysts for selective hydrogen evolution from methylcyclohexane[J]. Dalton Transactions, 2022, 51(15): 6068-6085. |
| 63 | TAKISE Kent, SATO Ayaka, MURAKAMI Kota, et al. Irreversible catalytic methylcyclohexane dehydrogenation by surface protonics at low temperature[J]. RSC Advances, 2019, 9(11): 5918-5924. |
| 64 | ABBASI Mohsen, FARNIAEI Mehdi, KABIRI Sedigheh, et al. Performance study of a thermally double coupled multi-tubular reactor by considering the effect of flow type patterns[J]. International Journal of Chemical Reactor Engineering, 2016, 14(1): 63-78. |
| 65 | IRANSHAHI Davood, RAFIEI Razieh, JAFARI Mitra, et al. Applying new kinetic and deactivation models in simulation of a novel thermally coupled reactor in continuous catalytic regenerative naphtha process[J]. Chemical Engineering Journal, 2013, 229: 153-176. |
| 66 | GHANI Roozbeh, BOOSTANI Fatemeh, IRANSHAHI Davood. Analysis of the combined ammonia production and cyclohexane dehydrogenation by a novel bifunctional reactor[J]. Energy & Fuels, 2019, 33(7): 6717-6726. |
| 67 | KHADEMI M H, SETOODEH P, RAHIMPOUR M R, et al. Optimization of methanol synthesis and cyclohexane dehydrogenation in a thermally coupled reactor using differential evolution (DE) method[J]. International Journal of Hydrogen Energy, 2009, 34(16): 6930-6944. |
| 68 | RAHIMPOUR M R, VAKILI R, POURAZADI E, et al. Enhancement of hydrogen production via coupling of MCH dehydrogenation reaction and methanol synthesis process by using thermally coupled heat exchanger reactor[J]. International Journal of Hydrogen Energy, 2011, 36(5): 3371-3383. |
| 69 | JAVAID Ahtesham, BILDEA Costin Sorin. Coupling exothermic and endothermic reactions—Application to combined aniline production/methyl-cyclohexane dehydrogenation[J]. Asia-Pacific Journal of Chemical Engineering, 2018, 13(4): e2210. |
| 70 | KHADEMI M H, FARSI M, RAHIMPOUR M R, et al. DME synthesis and cyclohexane dehydrogenation reaction in an optimized thermally coupled reactor[J]. Chemical Engineering and Processing: Process Intensification, 2011, 50(1): 113-123. |
| 71 | KHADEMI Mohammad Hasan, RAHIMPOUR Mohammad Reza, JAHANMIRI Abdolhossein. Start-up and dynamic analysis of a novel thermally coupled reactor for the simultaneous production of methanol and benzene[J]. Industrial & Engineering Chemistry Research, 2011, 50(21): 12092-12102. |
| 72 | KINGSTON Diego, RAZZITTE Adrián César. Entropy generation minimization in dimethyl ether synthesis: A case study[J]. Journal of Non-Equilibrium Thermodynamics, 2018, 43(2): 111-120. |
| 73 | SANTIS-ALVAREZ Alejandro J, NABAVI Majid, HILD Nora, et al. A fast hybrid start-up process for thermally self-sustained catalyticn-butane reforming in micro-SOFC power plants[J]. Energy & Environmental Science, 2011, 4(8): 3041-3050. |
| 74 | SAYAMA Shogo, YAMAMOTO Seiji. Energy efficiency improvement of CO2 methanation process by using a thermally self-sustained two-stage reactor: Preliminary evaluation of a reactor concept[J]. Kagaku Kogaku Ronbunshu, 2020, 46(3): 63-70. |
| 75 | SAYAMA Shogo, YAMAMOTO Seiji. A 6-kW thermally self-sustained two-stage CO2 methanation reactor: Design and experimental evaluation of steady-state performance under full-load conditions[J]. Applied Energy, 2022, 325: 119773. |
| 76 | BADAKHSH Arash, SONG Donghyun, MOON Seongeun, et al. COX-free LOHC dehydrogenation in a heatpipe reformer highly integrated with a hydrogen burner[J]. Chemical Engineering Journal, 2022, 449: 137679. |
| 77 | XUE Jian, CHEN Yan, WEI Yanying, et al. Gas to liquids: Natural gas conversion to aromatic fuels and chemicals in a hydrogen-permeable ceramic hollow fiber membrane reactor[J]. ACS Catalysis, 2016, 6(4): 2448-2451. |
| 78 | ZHANG Zhenzhen, GAO Liang, BOES Alexander, et al. An enzymatic continuous-flow reactor based on a pore-size matching nano- and isoporous block copolymer membrane[J]. Nature Communications, 2024, 15(1): 3308. |
| 79 | NOGAMI Shuji, SHIDA Naoki, IGUCHI Shoji, et al. Mechanistic insights into the electrocatalytic hydrogenation of alkynes on Pt-Pd electrocatalysts in a proton-exchange membrane reactor[J]. ACS Catalysis, 2022, 12(9): 5430-5440. |
| 80 | ZHENG Liping, ZHANG Zhengqing, LAI Zhuozhi, et al. Covalent organic framework membrane reactor for boosting catalytic performance[J]. Nature Communications, 2024, 15(1): 6837. |
| 81 | KOUTSONIKOLAS D, KALDIS S, ZASPALIS V T, et al. Potential application of a microporous silica membrane reactor for cyclohexane dehydrogenation[J]. International Journal of Hydrogen Energy, 2012, 37(21): 16302-16307. |
| 82 | WANG Xiaochuan, WANG Bingzheng, WANG Man, et al. Cyclohexane dehydrogenation in solar-driven hydrogen permeation membrane reactor for efficient solar energy conversion and storage[J]. Journal of Thermal Science, 2021, 30(5): 1548-1558. |
| 83 | JEONG Byeong-Heon, SOTOWA Ken-Ichiro, KUSAKABE Katsuki. Catalytic dehydrogenation of cyclohexane in an FAU-type zeolite membrane reactor[J]. Journal of Membrane Science, 2003, 224(1/2): 151-158. |
| 84 | KIM Sejin, LEE Seungmi, SUNG Suhyeon, et al. Zeolite membrane-based low-temperature dehydrogenation of a liquid organic hydrogen carrier: A key step in the development of a hydrogen economy[J]. Advanced Science, 2024, 11(30): 2403128. |
| 85 | SESHIMO Masahiro, URAI Hiromi, SASA Kazuaki, et al. Bench-scale membrane reactor for methylcyclohexane dehydrogenation using silica membrane module[J]. Membranes, 2021, 11(5): 326. |
| 86 | NIMKAR Samir C, MEWADA Rajubhai K, ROSEN Marc A. Exergy and exergoeconomic analyses of thermally coupled reactors for methanol synthesis[J]. International Journal of Hydrogen Energy, 2017, 42(47): 28113-28127. |
| 87 | BAYAT M, RAHIMPOUR M R. Simultaneous hydrogen and methanol enhancement through a recuperative two-zone thermally coupled membrane reactor[J]. Energy Systems, 2012, 3(4): 401-420. |
| 88 | VAKILI R, RAHIMPOUR M R, ESLAMLOUEYAN R. Incorporating differential evolution (DE) optimization strategy to boost hydrogen and DME production rate through a membrane assisted single-step DME heat exchanger reactor[J]. Journal of Natural Gas Science and Engineering, 2012, 9: 28-38. |
| 89 | KHADEMI M H, RAHIMPOUR M R, JAHANMIRI A. Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor[J]. International Journal of Hydrogen Energy, 2010, 35(5): 1936-1950. |
| 90 | WANG Hongsheng, WANG Bingzheng, KONG Hui, et al. Thermodynamic analysis of methylcyclohexane dehydrogenation and solar energy storage via solar-driven hydrogen permeation membrane reactor[J]. Membranes, 2020, 10(12): 374. |
| 91 | Merve SARıYER, BOZDAĞ Arzu Arslan, SEZGI Naime Aslı, et al. Performance comparison of microwave and conventionally heated reactors for sorption enhanced reforming of ethanol over Ni impregnated SBA-15[J]. Chemical Engineering Journal, 2019, 377: 120138. |
| 92 | KWAK Yeonsu, WANG Cong, KAVALE Chaitanya A, et al. Microwave-assisted, performance-advantaged electrification of propane dehydrogenation[J]. Science Advances, 2023, 9(37): eadi8219. |
| 93 | GULER Melih, DOGU Timur, VARISLI Dilek. Hydrogen production over molybdenum loaded mesoporous carbon catalysts in microwave heated reactor system[J]. Applied Catalysis B: Environmental, 2017, 219: 173-182. |
| 94 | VARISLI Dilek, KORKUSUZ Cansu, DOGU Timur. Microwave-assisted ammonia decomposition reaction over iron incorporated mesoporous carbon catalysts[J]. Applied Catalysis B: Environmental, 2017, 201: 370-380. |
| 95 | RAMIREZ Adrian, HUESO Jose L, MALLADA Reyes, et al. Microwave-activated structured reactors to maximize propylene selectivity in the oxidative dehydrogenation of propane[J]. Chemical Engineering Journal, 2020, 393: 124746. |
| 96 | HORIKOSHI Satoshi, KAMATA Momoko, SUMI Takuya, et al. Selective heating of Pd/AC catalyst in heterogeneous systems for the microwave-assisted continuous hydrogen evolution from organic hydrides: Temperature distribution in the fixed-bed reactor[J]. International Journal of Hydrogen Energy, 2016, 41(28): 12029-12037. |
| 97 | GAO Botao, GUO Shenghui, HOU Ming, et al. Study on a potential hydrogen storage system: Microwave-activated methylcyclohexane dehydrogenation[J]. International Journal of Hydrogen Energy, 2024, 79: 619-629. |
| 98 | MA Zixuan, YANG Yingjie, SONG Ziyu, et al. Fine-tuning Pt nanoparticle and coordination for enhanced catalytic efficiency in microwave-assisted methylcyclohexane dehydrogenation over Pt/Al2O3 catalysts[J]. Fuel, 2024, 378: 132851. |
| [1] | 陈奥辉, 宋艳芳, 陈为, 魏伟. 多孔自支撑电极电催化还原二氧化碳[J]. 化工进展, 2025, 44(5): 2806-2810. |
| [2] | 丁红兵, 柴旭天, 王世伟, 宋鑫宇, 孙宏军. 单液滴与多液滴撞击流动液膜的实验探究[J]. 化工进展, 2025, 44(4): 1888-1897. |
| [3] | 王磊, 王艳, 甘玉凤, 罗凯, 费华, 栾俨丁. 水平流向不同小流道加热管内超临界CO2的传热特性[J]. 化工进展, 2025, 44(4): 1945-1956. |
| [4] | 王佳琪, 刘佳兴, 魏皓琦, 周昕霖, 程传晓, 葛坤. 鼠李糖脂强化CO2水合物生成[J]. 化工进展, 2025, 44(4): 1998-2007. |
| [5] | 袁梦丽, 宋云彩, 李文英, 冯杰. 光热驱动褐煤固定床气化过程热质传递规律[J]. 化工进展, 2025, 44(4): 2008-2019. |
| [6] | 王美杰, 韦刘轲, 贾保印, 蓝兴英, 高金森, 石孝刚. LNG开架式气化器传热强化的研究进展[J]. 化工进展, 2025, 44(3): 1206-1217. |
| [7] | 佘永璐, 徐强, 罗欣怡, 聂腾飞, 郭烈锦. 反应温度对光电极表面气泡动力学及传质特性的影响[J]. 化工进展, 2025, 44(3): 1243-1252. |
| [8] | 张喆, 纪献兵, 杨聿昊, 刘家璇, 姚泊丞. 多尺度结构烧结沟槽表面沸腾传热性能[J]. 化工进展, 2025, 44(2): 669-676. |
| [9] | 王思懿, 许建良, 代正华, 武国义, 王辅臣. 多晶硅还原炉气相沉积反应数值模拟[J]. 化工进展, 2025, 44(2): 706-716. |
| [10] | 李昊阳, 李洪伟, 谭建宇. 瞬态振荡加热条件下沸腾气泡运动特性[J]. 化工进展, 2025, 44(2): 735-742. |
| [11] | 白依冉, 翟玉玲, 戴晶慧, 李舟航. 微纳尺度池沸腾表面润湿性的气泡成核及强化传热机制[J]. 化工进展, 2025, 44(2): 743-751. |
| [12] | 蔡楷楠, 陈健勇, 陈颖, 罗向龙, 梁颖宗, 何嘉诚. 非共沸工质在分液板式冷凝器中的热力性能[J]. 化工进展, 2025, 44(1): 48-56. |
| [13] | 孙建辰, 杨捷, 李军, 孙会东, 牛俊敏, 廖逸飞, 任俊颖, 商辉. 催化剂颗粒排列方式对微波加热效果的影响[J]. 化工进展, 2025, 44(1): 57-65. |
| [14] | 胡洋, 韩传军, 胡强, 李汶颖, 安全成, 苏洋, 武洪松, 袁果. 固体氧化物燃料电池用甲醇水蒸气重整反应器研究进展[J]. 化工进展, 2025, 44(1): 169-183. |
| [15] | 张天昊, 李双喜, 贾祥际, 胡鼎国, 崔瑞焯, 李世聪. 干摩擦釜用机械密封DLC涂层-石墨配副摩擦磨损与温度变形场分析[J]. 化工进展, 2024, 43(S1): 121-133. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |