化工进展 ›› 2025, Vol. 44 ›› Issue (3): 1285-1297.DOI: 10.16085/j.issn.1000-6613.2024-0439
程崇律1(
), 单聪慧1, 张孟凡1, WEN X Jennifer2, 徐宝鹏1(
)
收稿日期:2024-03-18
修回日期:2024-04-02
出版日期:2025-03-25
发布日期:2025-04-16
通讯作者:
徐宝鹏
作者简介:程崇律(1996—),男,博士研究生,研究方向为能源安全、火灾模拟。E-mail:ccl9611@mail.dlut.edu.cn。
基金资助:
CHENG Chonglyu1(
), SHAN Conghui1, ZHANG Mengfan1, WEN X Jennifer2, XU Baopeng1(
)
Received:2024-03-18
Revised:2024-04-02
Online:2025-03-25
Published:2025-04-16
Contact:
XU Baopeng
摘要:
氢能对于实现国家“双碳”目标至关重要。由于氢气独特的性质,在储存、运输和使用过程中极易发生泄漏,从而引发严重的安全事故,这成为制约氢能源大规模应用的主要障碍之一。为了更好地应对氢能利用过程中的安全挑战,开展风险研究至关重要。本文简要介绍了氢气的基本理化特性,讨论了氢气和液氢泄漏、扩散、射流火焰以及爆炸的建模方法,总结了氢气和液氢在泄漏、扩散、射流燃烧和爆炸等过程中的演化规律以及内在机理,深入分析了影响上述过程的多种关键因素,如气体种类、储存条件、泄漏条件、环境条件和通风条件等,重点关注了计算流体动力学(CFD)方法在当前研究中的应用;指出了当前研究的不足之处,并就未来的发展方向提出建议。对于促进氢能安全研究、完善事故预防和应急响应机制具有重要指导意义。
中图分类号:
程崇律, 单聪慧, 张孟凡, WEN X Jennifer, 徐宝鹏. 氢安全建模研究进展[J]. 化工进展, 2025, 44(3): 1285-1297.
CHENG Chonglyu, SHAN Conghui, ZHANG Mengfan, WEN X Jennifer, XU Baopeng. Research progress of hydrogen safety modeling[J]. Chemical Industry and Engineering Progress, 2025, 44(3): 1285-1297.
| 属性 | 氢气 | 甲烷 | 丙烷 |
|---|---|---|---|
| 气体密度/kg·m-3 | 0.0838 | 0.651 | 1.87 |
| 能量密度/MJ·kg-1 | 119.96 | 50.07 | 50.30 |
| 沸点/℃ | -253 | -162 | -42 |
| 引燃温度/℃ | 585 | 650 | 460 |
| 扩散系数/cm2·s-1 | 1.29 | 0.16 | 0.10 |
| 最小点火能量/mJ | 0.017 | 0.31 | 0.28 |
| 燃烧极限(体积分数)/% | 4~75 | 5.3~17 | 1.7~10.9 |
| 爆炸极限(体积分数)/% | 18~59 | 6.5~12 | 2.6~7.4 |
| 燃烧速率/m·s-1 | 2.65 | 0.38 | 0.15 |
表1 氢气与甲烷以及丙烷的属性比较
| 属性 | 氢气 | 甲烷 | 丙烷 |
|---|---|---|---|
| 气体密度/kg·m-3 | 0.0838 | 0.651 | 1.87 |
| 能量密度/MJ·kg-1 | 119.96 | 50.07 | 50.30 |
| 沸点/℃ | -253 | -162 | -42 |
| 引燃温度/℃ | 585 | 650 | 460 |
| 扩散系数/cm2·s-1 | 1.29 | 0.16 | 0.10 |
| 最小点火能量/mJ | 0.017 | 0.31 | 0.28 |
| 燃烧极限(体积分数)/% | 4~75 | 5.3~17 | 1.7~10.9 |
| 爆炸极限(体积分数)/% | 18~59 | 6.5~12 | 2.6~7.4 |
| 燃烧速率/m·s-1 | 2.65 | 0.38 | 0.15 |
| 方法 | 守恒情况 | 状态方程 |
|---|---|---|
| Birch(1984) | 质量守恒 | 理想气体 |
| Birch(1987) | 质量、动量守恒 | 理想气体 |
| Ewan | 质量守恒 | 理想气体 |
| Schefer | 质量、动量守恒 | 真实气体 |
| Yüceil | 质量、动量、能量守恒 | 理想气体 |
| Molkov | 质量、能量守恒 | 理想气体 |
| Harstad | 质量、动量、能量守恒 | 理想气体 |
表2 虚拟喷嘴模型
| 方法 | 守恒情况 | 状态方程 |
|---|---|---|
| Birch(1984) | 质量守恒 | 理想气体 |
| Birch(1987) | 质量、动量守恒 | 理想气体 |
| Ewan | 质量守恒 | 理想气体 |
| Schefer | 质量、动量守恒 | 真实气体 |
| Yüceil | 质量、动量、能量守恒 | 理想气体 |
| Molkov | 质量、能量守恒 | 理想气体 |
| Harstad | 质量、动量、能量守恒 | 理想气体 |
| 1 | 李星国, 郑捷, 郭妍如, 等. 氢与氢能[M]. 2版. 北京: 科学出版社, 2022: 758-780. |
| LI Xingguo, ZHENG Jie, GUO Yanru, et al. Hydrogen and hydrogen energy[M]. 2nd ed. Beijing: Science Press, 2022: 758-780. | |
| 2 | LI Xuefang, CHEN Qi, CHEN Mingjia, et al. Modeling of underexpanded hydrogen jets through square and rectangular slot nozzles[J]. International Journal of Hydrogen Energy, 2019, 44(12): 6353-6365. |
| 3 | LI Xuefang, CHRISTOPHER David M, HECHT Ethan S, et al. Comparison of two-layer model for hydrogen and helium jets with notional nozzle model predictions and experimental data for pressures up to 35MPa[J]. International Journal of Hydrogen Energy, 2017, 42(11): 7457-7466. |
| 4 | TIAN Ying, QIN Chuan, YANG Zirong, et al. Numerical simulation study on the leakage and diffusion characteristics of high-pressure hydrogen gas in different spatial scenes[J]. International Journal of Hydrogen Energy, 2024, 50: 1335-1349. |
| 5 | SCHEFER R W, HOUF W G, WILLIAMS T C. Investigation of small-scale unintended releases of hydrogen: Momentum-dominated regime[J]. International Journal of Hydrogen Energy, 2008, 33(21): 6373-6384. |
| 6 | SCHEFER R W, HOUF W G, WILLIAMS T C. Investigation of small-scale unintended releases of hydrogen: Buoyancy effects[J]. International Journal of Hydrogen Energy, 2008, 33(17): 4702-4712. |
| 7 | EL-AMIN M F, INOUE M, KANAYAMA H. Boundary layer theory approach to the concentration layer adjacent to a ceiling wall of a hydrogen leakage: Far region[J]. International Journal of Hydrogen Energy, 2008, 33(24): 7642-7647. |
| 8 | SHU Zhiyong, LIANG Wenqing, ZHENG Xiaohong, et al. Dispersion characteristics of hydrogen leakage: Comparing the prediction model with the experiment[J]. Energy, 2021, 236: 121420. |
| 9 | CUI Weiyi, YUAN Yupeng, TONG Liang, et al. Numerical simulation of hydrogen leakage diffusion in seaport hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2023, 48(63): 24521-24535. |
| 10 | LI Yongjun, WANG Zhirong, SHANG Zheng. Analysis and prediction of hydrogen-blended natural gas diffusion from various pipeline leakage sources based on CFD and ANN approach[J]. International Journal of Hydrogen Energy, 2024, 53: 535-549. |
| 11 | HE Xu, KONG Depeng, YU Xirui, et al. Prediction model for the evolution of hydrogen concentration under leakage in hydrogen refueling station using deep neural networks[J]. International Journal of Hydrogen Energy, 2024, 51: 702-712. |
| 12 | HAJJI Yassine, JOUINI Belgacem, BOUTERAA Mourad, et al. Numerical study of hydrogen release accidents in a residential garage[J]. International Journal of Hydrogen Energy, 2015, 40(31): 9747-9759. |
| 13 | WANG Fangnian, XIAO Jianjun, KUZNETSOV Mike, et al. Deterministic risk assessment of hydrogen leak from a fuel cell truck in a real-scale hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2024, 50: 1103-1118. |
| 14 | CUI Shaoqi, ZHU Guoqing, HE Lu, et al. Analysis of the fire hazard and leakage explosion simulation of hydrogen fuel cell vehicles[J]. Thermal Science and Engineering Progress, 2023, 41: 101754. |
| 15 | SHAO Xiangyu, YANG Shenyin, YUAN Yongliang, et al. Study on the difference of dispersion behavior between hydrogen and methane in utility tunnel[J]. International Journal of Hydrogen Energy, 2022, 47(12): 8130-8144. |
| 16 | PRABHAKAR Aneesh, AGRAWAL Nilesh, RAGHAVAN Vasudevan, et al. Numerical modelling of isothermal release and distribution of helium and hydrogen gases inside the AIHMS cylindrical enclosure[J]. International Journal of Hydrogen Energy, 2017, 42(22): 15435-15447. |
| 17 | YANG Nannan, DENG Jun, WANG Caiping, et al. High pressure hydrogen leakage diffusion: Research progress[J]. International Journal of Hydrogen Energy, 2024, 50: 1029-1046. |
| 18 | DE STEFANO M, ROCOURT X, SOCHET I, et al. Hydrogen dispersion in a closed environment[J]. International Journal of Hydrogen Energy, 2019, 44(17): 9031-9040. |
| 19 | LI Yongjun, WANG Zhirong, SHI Xuemeng, et al. Numerical investigation of the dispersion features of hydrogen gas under various leakage source conditions in a mobile hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2023, 48(25): 9498-9511. |
| 20 | AFGHAN HAJI ABBAS Mohammad, KHERADMAND Saeid, SADOUGHIPOUR Hossein. Numerical study of the effect of hydrogen leakage position and direction on hydrogen distribution in a closed enclosure[J]. International Journal of Hydrogen Energy, 2020, 45(43): 23872-23881. |
| 21 | HUANG Teng, ZHAO Mingbin, BA Qingxin, et al. Modeling of hydrogen dispersion from hydrogen fuel cell vehicles in an underground parking garage[J]. International Journal of Hydrogen Energy, 2022, 47(1): 686-696. |
| 22 | SHENTSOV V, CIRRONE D, MAKAROV D. Effect of TPRD diameter and direction of release on hydrogen dispersion and jet fires in underground parking[J]. Journal of Energy Storage, 2023, 68: 107771. |
| 23 | Dorota BRZEZIŃSKA. Hydrogen dispersion phenomenon in nominally closed spaces[J]. International Journal of Hydrogen Energy, 2021, 46(55): 28358-28365. |
| 24 | OLVERA Héctor A, CHOUDHURI Ahsan R. Numerical simulation of hydrogen dispersion in the vicinity of a cubical building in stable stratified atmospheres[J]. International Journal of Hydrogen Energy, 2006, 31(15): 2356-2369. |
| 25 | MUKAI Shinji, SUZUKI Jinji, MITSUISHI Hiroyuki, et al. CFD simulation of diffusion of hydrogen leakage caused by fuel cell vehicle accident in tunnel, underground parking lot and multistory parking garage[C]//19th International Technical Conference on the Enhanced Safety of Vehicles. Washington: U.S. Department of Transportation, 2005: 9. |
| 26 | KANG Yong, MA Shuye, SONG Bingxue, et al. Simulation of hydrogen leakage diffusion behavior in confined space[J]. International Journal of Hydrogen Energy, 2024, 53: 75-85. |
| 27 | LIU Yanlei, ZHENG Jinyang, XU Ping, et al. Numerical simulation on the diffusion of hydrogen due to high pressured storage tanks failure[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 265-270. |
| 28 | XIE Lin, RONG Yangyiming, CHEN Jianye, et al. Impacts of wind conditions on hydrogen leakage during refilling hydrogen-powered vehicles[J]. Energy Storage and Saving, 2023, 2(2): 449-458. |
| 29 | ZHANG Xiaolu, WANG Qiubo, HOU Xulei, et al. Effect of the position and the area of the vent on the hydrogen dispersion in a naturally ventilated cubiod space with one vent on the side wall[J]. International Journal of Hydrogen Energy, 2022, 47(14): 9071-9081. |
| 30 | HAJJI Yassine, BOUTERAA Mourad, ELCAFSI Afif, et al. Green hydrogen leaking accidentally from a motor vehicle in confined space: A study on the effectiveness of a ventilation system[J]. International Journal of Energy Research, 2021, 45(13): 18935-18943. |
| 31 | GIANNISSI S G, SHENTSOV V, MELIDEO D, et al. CFD benchmark on hydrogen release and dispersion in confined, naturally ventilated space with one vent[J]. International Journal of Hydrogen Energy, 2015, 40(5): 2415-2429. |
| 32 | LI Xiaojuan, XU Yixiang, LI Xiang, et al. Effect of wind condition on unintended hydrogen release in a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2021, 46(7): 5537-5547. |
| 33 | XU Baopeng, JALLAIS S, HOUSSIN D, et al. Numerical simulations of atmospheric dispersion of large-scale liquid hydrogen releases[C]//International Conference on Hydrogen Safety. Belgium: HySafe, 2021: 12. |
| 34 | VERFONDERN K, DIENHART B. Pool spreading and vaporization of liquid hydrogen[J]. International Journal of Hydrogen Energy, 2007, 32(2): 256-267. |
| 35 | WINTERS W S, HOUF W G. Simulation of small-scale releases from liquid hydrogen storage systems[J]. International Journal of Hydrogen Energy, 2011, 36(6): 3913-3921. |
| 36 | TRAVIS J R, PICCIONI KOCH D, BREITUNG W. A homogeneous non-equilibrium two-phase critical flow model[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17373-17379. |
| 37 | WITCOFSKI R D, CHIRIVELLA J E. Experimental and analytical analyses of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills[J]. International Journal of Hydrogen Energy, 1984, 9(5): 425-435. |
| 38 | SHAO Xiangyu, PU Liang, TANG Xin, et al. Parametric influence study of cryogenic hydrogen dispersion on theoretical aspect[J]. International Journal of Hydrogen Energy, 2020, 45(38): 20153-20162. |
| 39 | SHU Zhiyong, LEI Gang, LIANG Wenqing, et al. Experimental investigation of hydrogen dispersion characteristics with liquid helium spills in moist air[J]. Process Safety and Environmental Protection, 2022, 162: 923-931. |
| 40 | XIAO Jinsheng, HE Pan, LI Xuefang, et al. Computational fluid dynamics model based artificial neural network prediction of flammable vapor clouds formed by liquid hydrogen releases[J]. International Journal of Energy Research, 2022, 46(8): 11011-11026. |
| 41 | HOUF W G, WINTERS W S. Simulation of high-pressure liquid hydrogen releases[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8092-8099. |
| 42 | HANSEN Olav Roald. Hydrogen infrastructure—Efficient risk assessment and design optimization approach to ensure safe and practical solutions[J]. Process Safety and Environmental Protection, 2020, 143: 164-176. |
| 43 | SHU Zhiyong, LIANG Wenqing, LIU Fan, et al. Diffusion characteristics of liquid hydrogen spills in a crossflow field: Prediction model and experiment[J]. Applied Energy, 2022, 323: 119617. |
| 44 | SHU Zhiyong, LIANG Wenqing, LEI Gang, et al. Theoretical modeling of diffusion clouds of liquid hydrogen spilling in crosswind field with atmospheric inversion layer[J]. International Journal of Hydrogen Energy, 2023, 48(81): 31813-31822. |
| 45 | FERRARI Federica. Data analytics for hydrogen safety: Prediction of liquid hydrogen release characteristics[D]. Trondheim: Norwegian University of Science and Technology, 2022. |
| 46 | ICHARD M, HANSEN O R, MIDDHA P, et al. CFD computations of liquid hydrogen releases[J]. International Journal of Hydrogen Energy, 2012, 37(22): 17380-17389. |
| 47 | YU Haishuai, GAO Qiang, PU Liang, et al. Numerical investigation on the characteristics of leakage and dispersion of cryogenic liquid oxygen in open environment[J]. Cryogenics, 2022, 125: 103514. |
| 48 | SHAO Xiangyu, PU Liang, LI Qiang, et al. Numerical investigation of flammable cloud on liquid hydrogen spill under various weather conditions[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5249-5260. |
| 49 | MIDDHA Prankul, ICHARD Mathieu, ARNTZEN Bjørn J. Validation of CFD modelling of LH2 spread and evaporation against large-scale spill experiments[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2620-2627. |
| 50 | GIANNISSI S G, VENETSANOS A G, MARKATOS N, et al. CFD modeling of hydrogen dispersion under cryogenic release conditions[J]. International Journal of Hydrogen Energy, 2014, 39(28): 15851-15863. |
| 51 | GIANNISSI S G, VENETSANOS A G. Study of key parameters in modeling liquid hydrogen release and dispersion in open environment[J]. International Journal of Hydrogen Energy, 2018, 43(1): 455-467. |
| 52 | PU Liang, TANG Xin, SHAO Xiangyu, et al. Numerical investigation on the difference of dispersion behavior between cryogenic liquid hydrogen and methane[J]. International Journal of Hydrogen Energy, 2019, 44(39): 22368-22379. |
| 53 | LI Zhiyong, PAN Xiangmin, SUN Ke, et al. Comparison of the harm effects of accidental releases: Cryo-compressed hydrogen versus natural gas[J]. International Journal of Hydrogen Energy, 2013, 38(25): 11174-11180. |
| 54 | VERFONDERN K, DIENHART B. Experimental and theoretical investigation of liquid hydrogen pool spreading and vaporization[J]. International Journal of Hydrogen Energy, 1997, 22(7): 649-660. |
| 55 | STATHARAS J C, VENETSANOS A G, BARTZIS J G, et al. Analysis of data from spilling experiments performed with liquid hydrogen[J]. Journal of Hazardous Materials, 2000, 77(1/2/3): 57-75. |
| 56 | MIDDHA Prankul, HANSEN Olav R, GRUNE Joachim, et al. CFD calculations of gas leak dispersion and subsequent gas explosions: Validation against ignited impinging hydrogen jet experiments[J]. Journal of Hazardous Materials, 2010, 179(1/2/3): 84-94. |
| 57 | JIN Tao, WU Mengxi, LIU Yuanliang, et al. CFD modeling and analysis of the influence factors of liquid hydrogen spills in open environment[J]. International Journal of Hydrogen Energy, 2017, 42(1): 732-739. |
| 58 | LIU Yuanliang, WEI Jianjian, LEI Gang, et al. Dilution of hazardous vapor cloud in liquid hydrogen spill process under different source conditions[J]. International Journal of Hydrogen Energy, 2018, 43(15): 7643-7651. |
| 59 | LIU Yuanliang, WEI Jianjian, LEI Gang, et al. Modeling the development of hydrogen vapor cloud considering the presence of air humidity[J]. International Journal of Hydrogen Energy, 2019, 44(3): 2059-2068. |
| 60 | LIU Yuanliang, WEI Jianjian, LEI Gang, et al. Numerical investigation on the effects of dike around liquid hydrogen source on vapor cloud dispersion[J]. International Journal of Hydrogen Energy, 2019, 44(10): 5063-5071. |
| 61 | LIU Yuanliang, WEI Jianjian, LEI Gang, et al. Spread of hydrogen vapor cloud during continuous liquid hydrogen spills[J]. Cryogenics, 2019, 103: 102975. |
| 62 | LIU Yuanliang, WEI Jianjian, LIU Zhan, et al. Dilution of flammable vapor cloud formed by liquid hydrogen spill[J]. International Journal of Hydrogen Energy, 2020, 45(7): 5067-5072. |
| 63 | SUN Ruofan, PU Liang, YU Haishuai, et al. Modeling the diffusion of flammable hydrogen cloud under different liquid hydrogen leakage conditions in a hydrogen refueling station[J]. International Journal of Hydrogen Energy, 2022, 47(61): 25849-25863. |
| 64 | MOLKOV Vladimir, SAFFERS Jean-Bernard. Hydrogen jet flames[J]. International Journal of Hydrogen Energy, 2013, 38(19): 8141-8158. |
| 65 | DELICHATSIOS M A. Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships[J]. Combustion and Flame, 1993, 92(4): 349-364. |
| 66 | SCHEFER R W, HOUF W G, WILLIAMS T C, et al. Characterization of high-pressure, underexpanded hydrogen-jet flames[J]. International Journal of Hydrogen Energy, 2007, 32(12): 2081-2093. |
| 67 | MOLINA Alejandro, SCHEFER Robert W, HOUF William G. Radiative fraction and optical thickness in large-scale hydrogen-jet fires[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2565-2572. |
| 68 | EKOTO I W, RUGGLES A J, CREITZ L W, et al. Updated jet flame radiation modeling with buoyancy corrections[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20570-20577. |
| 69 | MOLKOV Vladimir. Fundamentals of hydrogen safety engineering Ⅰ[M]. London: Ventus Publishing Aps, 2012: 131. |
| 70 | GU Mingyan, HE Qing, TANG Fei. Experimental and machine learning studies of thermal impinging flow under ceiling induced by hydrogen-blended methane jet fire: Temperature distribution and flame extension characteristics[J]. International Journal of Heat and Mass Transfer, 2023, 215: 124502. |
| 71 | BIRCH A D, HUGHES D J, SWAFFIELD F. Velocity decay of high pressure jets[J]. Combustion Science and Technology, 1987, 52(1/2/3): 161-171. |
| 72 | HOUF W G, EVANS G H, SCHEFER R W. Analysis of jet flames and unignited jets from unintended releases of hydrogen[J]. International Journal of Hydrogen Energy, 2009, 34(14): 5961-5969. |
| 73 | LIU Jiaoyan, FAN Yanqing, ZHOU Kuibin, et al. Prediction of flame length of horizontal hydrogen jet fire during high-pressure leakage process[J]. Procedia Engineering, 2018, 211: 471-478. |
| 74 | CONSALVI Jean-Louis, NMIRA Fatiha. Modeling of large-scale under-expanded hydrogen jet fires[J]. Proceedings of the Combustion Institute, 2019, 37(3): 3943-3950. |
| 75 | CIRRONE D M C, MAKAROV D, MOLKOV V. Thermal radiation from cryogenic hydrogen jet fires[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8874-8885. |
| 76 | CIRRONE Donatella, MAKAROV Dmitriy, KUZNETSOV Mike, et al. Effect of heat transfer through the release pipe on simulations of cryogenic hydrogen jet fires and hazard distances[J]. International Journal of Hydrogen Energy, 2022, 47(50): 21596-21611. |
| 77 | BRENNAN S L, MAKAROV D V, MOLKOV V. LES of high pressure hydrogen jet fire[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(3): 353-359. |
| 78 | YU Xing, WU Yue, ZHAO Yanqiu, et al. Flame characteristics of under-expanded, cryogenic hydrogen jet fire[J]. Combustion and Flame, 2022, 244: 112294. |
| 79 | PANDA Pratikash P, HECHT Ethan S. Ignition and flame characteristics of cryogenic hydrogen releases[J]. International Journal of Hydrogen Energy, 2017, 42(1): 775-785. |
| 80 | GU Xiaochen, ZHANG Jiandu, PAN Yong, et al. Hazard analysis on tunnel hydrogen jet fire based on CFD simulation of temperature field and concentration field[J]. Safety Science, 2020, 122: 104532. |
| 81 | XIE Yongliang, Na Lyu, WANG Xujiang, et al. Thermal and fire characteristics of hydrogen jet flames in the tunnel at longitudinal ventilation strategies[J]. Fuel, 2021, 306: 121659. |
| 82 | MUESCHKE Nicholas J, JOYCE Alexandra. Measurement of gas detonation blast loads in semiconfined geometry[J]. Journal of Loss Prevention in the Process Industries, 2020, 63: 104004. |
| 83 | MOLKOV V, KASHKAROV S. Blast wave from a high-pressure gas tank rupture in a fire: Stand-alone and under-vehicle hydrogen tanks[J]. International Journal of Hydrogen Energy, 2015, 40(36): 12581-12603. |
| 84 | JALLAIS Simon, VYAZMINA Elena, MILLER Derek, et al. Hydrogen jet vapor cloud explosion: A model for predicting blast size and application to risk assessment[J]. Process Safety Progress, 2018, 37(3): 397-410. |
| 85 | SINHA Anubhav, WEN Jennifer X. A simple model for calculating peak pressure in vented explosions of hydrogen and hydrocarbons[J]. International Journal of Hydrogen Energy, 2019, 44(40): 22719-22732. |
| 86 | Regis L BAUWENS C, DOROFEEV Sergey B. Modeling detonation limits for arbitrary non-uniform concentration distributions in fuel–air mixtures[J]. Combustion and Flame, 2020, 221: 338-345. |
| 87 | DOBASHI Ritsu, KAWAMURA Satoshi, KUWANA Kazunori, et al. Consequence analysis of blast wave from accidental gas explosions[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2295-2301. |
| 88 | ZHOU Yonghao, HUANG Lei, LI Yanchao, et al. The prediction model for explosion overpressure in unconfined hydrogen cloud explosion[J]. Journal of Loss Prevention in the Process Industries, 2024, 88: 105254. |
| 89 | 毛宗强, 王昌建, 李权, 等. 氢安全[M]. 北京: 化学工业出版社, 2020: 28-31. |
| MAO Zongqiang, WANG Changjian, LI Quan, et al. Hydrogen safety[M]. Beijing: Chemical Industry Press, 2020: 28-31. | |
| 90 | LI Qilin, WANG Yang, LI Ling, et al. Prediction of BLEVE loads on structures using machine learning and CFD[J]. Process Safety and Environmental Protection, 2023, 171: 914-925. |
| 91 | SHI Jihao, CHANG Bo, KHAN Faisal, et al. Stochastic explosion risk analysis of hydrogen production facilities[J]. International Journal of Hydrogen Energy, 2020, 45(24): 13535-13550. |
| 92 | LI Jianhang, LIANG Wenkai, HAN Wenhu. Predicting the explosion limits of hydrogen-oxygen-diluent mixtures using machine learning approach[J]. International Journal of Hydrogen Energy, 2024, 50: 1306-1313. |
| 93 | BO Yaofen, LI Yanchao, GAO Wei. Exploring the effects of turbulent field on propagation behaviors in confined hydrogen-air explosion using OpenFOAM[J]. International Journal of Hydrogen Energy, 2024, 50: 912-927. |
| 94 | LOWESMITH B J, MUMBY C, HANKINSON G, et al. Vented confined explosions involving methane/hydrogen mixtures[J]. International Journal of Hydrogen Energy, 2011, 36(3): 2337-2343. |
| 95 | SILVESTRINI M, GENOVA B, LEON TRUJILLO F J. Energy concentration factor. A simple concept for the prediction of blast propagation in partially confined geometries[J]. Journal of Loss Prevention in the Process Industries, 2009, 22(4): 449-454. |
| 96 | TOLIAS I C, VENETSANOS A G, MARKATOS N, et al. CFD modeling of hydrogen deflagration in a tunnel[J]. International Journal of Hydrogen Energy, 2014, 39(35): 20538-20546. |
| 97 | VYAZMINA E, JALLAIS S. Validation and recommendations for FLACS CFD and engineering approaches to model hydrogen vented explosions: Effects of concentration, obstruction vent area and ignition position[J]. International Journal of Hydrogen Energy, 2016, 41(33): 15101-15109. |
| 98 | TOLIAS I C, STEWART J R, NEWTON A, et al. Numerical simulations of vented hydrogen deflagration in a medium-scale enclosure[J]. Journal of Loss Prevention in the Process Industries, 2018, 52: 125-139. |
| 99 | ROCOURT X, SOCHET I, PELLEGRINELLI B. Small-scale flame acceleration and application of medium and large-scale flame speed correlations[J]. International Journal of Hydrogen Energy, 2017, 42(2): 1327-1336. |
| 100 | BOECK L R, BERGER F M, HASSLBERGER J, et al. Detonation propagation in hydrogen-air mixtures with transverse concentration gradients[J]. Shock Waves, 2016, 26(2): 181-192. |
| 101 | KHODADADI AZADBONI Reza, HEIDARI Ali, BOECK Lorenz R, et al. The effect of concentration gradients on deflagration-to-detonation transition in a rectangular channel with and without obstructions-A numerical study[J]. International Journal of Hydrogen Energy, 2019, 44(13): 7032-7040. |
| 102 | KLEBANOFF L E, PRATT J W, LAFLEUR C B. Comparison of the safety-related physical and combustion properties of liquid hydrogen and liquid natural gas in the context of the SF-BREEZE high-speed fuel-cell ferry[J]. International Journal of Hydrogen Energy, 2017, 42(1): 757-774. |
| 103 | AJRASH Mohammed J, ZANGANEH Jafar, MOGHTADERI Behdad. Influences of the initial ignition energy on methane explosion in a flame deflagration tube[J]. Energy & Fuels, 2017, 31(6): 6422-6434. |
| 104 | YANG Zhuohua, WANG Zhirong, CAO Xiaojiao, et al. Influences of concentration gradients and ignition positions on unconfined inhomogeneous hydrogen explosion[J]. International Journal of Hydrogen Energy, 2024, 50: 857-869. |
| 105 | SCARPA R, STUDER E, KUDRIAKOV S, et al. Influence of initial pressure on hydrogen/air flame acceleration during severe accident in NPP[J]. International Journal of Hydrogen Energy, 2019, 44(17): 9009-9017. |
| 106 | TANG Chenglong, HUANG Zuohua, JIN Chun, et al. Explosion characteristics of hydrogen-nitrogen-air mixtures at elevated pressures and temperatures[J]. International Journal of Hydrogen Energy, 2009, 34(1): 554-561. |
| 107 | American National Standards Institute. Guide to safety of hydrogen and hydrogen systems: G-095A-2017 [S]. Reston: American Institute of Aeronautics and Astronautics, 2017. |
| 108 | SCHROEDER V, HOLTAPPELS K. Explosion characteristics of hydrogen-air and hydrogen-oxygen mixtures at elevated pressures[C]//International Conference on Hydrogen Safety. Belgium: HySafe, 2005. |
| 109 | LIU Kun, JIANG Jieyu, HE Canxing, et al. Numerical analysis of the diffusion and explosion characteristics of hydrogen-air clouds in a plateau hydrogen refuelling station[J]. International Journal of Hydrogen Energy, 2023, 48(100): 40101-40116. |
| 110 | XIAO Huahua, ORAN Elaine S. Flame acceleration and deflagration-to-detonation transition in hydrogen-air mixture in a channel with an array of obstacles of different shapes[J]. Combustion and Flame, 2020, 220: 378-393. |
| 111 | DAI Tingkai, ZHANG Bo, LIU Hong. On the explosion characteristics for central and end-wall ignition in hydrogen-air mixtures: A comparative study[J]. International Journal of Hydrogen Energy, 2021, 46(60): 30861-30869. |
| 112 | GAMEZO Vadim N, OGAWA Takanobu, ORAN Elaine S. Flame acceleration and DDT in channels with obstacles: Effect of obstacle spacing[J]. Combustion and Flame, 2008, 155(1/2): 302-315. |
| 113 | WANG Luqing, MA Honghao. Explosion dynamics of hydrogen-air mixtures in a flat vessel filled with annular obstacles[J]. Fuel, 2021, 298: 120835. |
| 114 | WANG Qiao, LUO Xinjiao, LI Quan, et al. Explosion venting of hydrogen-air mixture in an obstructed rectangular tube[J]. Fuel, 2022, 310: 122473. |
| 115 | SKJOLD T, HISKEN H, LAKSHMIPATHY S, et al. Vented hydrogen deflagrations in containers: Effect of congestion for homogeneous and inhomogeneous mixtures[J]. International Journal of Hydrogen Energy, 2019, 44(17): 8819-8832. |
| 116 | LI Hongwei, GUO Jin, TANG Zesi, et al. Effects of ignition, obstacle, and side vent locations on vented hydrogen-air explosions in an obstructed duct[J]. International Journal of Hydrogen Energy, 2019, 44(36): 20598-20605. |
| [1] | 韩媛迪, 邹昀, 梁志超, 童张法, 陈小鹏, 廖丹葵. 高温型碳酸氢钾发泡剂制备及其在聚丙烯微发泡材料中的应用[J]. 化工进展, 2025, 44(3): 1599-1606. |
| [2] | 邱泽刚, 石亚斐, 李志勤. 生物质衍生芳香族含氧化合物中C—O键断裂研究进展[J]. 化工进展, 2025, 44(3): 1183-1193. |
| [3] | 王鹏坤, 蔡旺锋, 杨晨阳, 黄丽, 王燕. 真空间歇精馏分离含缩醛反应的1,4-丁二醇混合物[J]. 化工进展, 2025, 44(3): 1275-1284. |
| [4] | 金志浩, 王云帆, 田振玉. 火箭发动机尾焰复燃反应动力学分析策略[J]. 化工进展, 2025, 44(3): 1776-1780. |
| [5] | 李晓倩, 任申勇, 刘璐, 杨驰, 申宝剑, 徐春明. Fe物种对NiMo基催化剂的调控及加氢脱硫性能的影响[J]. 化工进展, 2025, 44(2): 867-878. |
| [6] | 杨帆, 赵溢涛, 朱学栋, 王达锐. 三元尖晶石与孪晶ZSM-5分子筛在苯与二氧化碳甲基化中的应用[J]. 化工进展, 2025, 44(2): 856-866. |
| [7] | 张焕玲, 马会霞, 周峰, 赵成浩, 祝晓琳, 王国玮, 李春义. 助剂In引入对Ge/SiO2催化剂丙烷脱氢性能的影响[J]. 化工进展, 2025, 44(2): 879-886. |
| [8] | 陈可欣, 李熙, 常福城, 武萧衣, 娄嘉诚, 李会雄. 螺旋管内水-水蒸气两相流压降及流型转变特性[J]. 化工进展, 2025, 44(2): 613-624. |
| [9] | 郑娆, 胡鼎国, 刘志远, 宋子锋, 张江腾, 李双喜. 变工况下静压氦隔离密封的密封性能分析[J]. 化工进展, 2025, 44(2): 677-687. |
| [10] | 申耀宗, 郭培民, 王磊, 孔令兵, 郭庆, 谢奕斌. HF体系中AlF3杂质的溶解度与纯化机理[J]. 化工进展, 2025, 44(2): 1157-1162. |
| [11] | 刘法志, 张鹏威, 刘涛, 谢玉仙, 何建乐, 苏胜, 徐俊, 向军. Sb改性钒钛SCR脱硝催化剂抗CO中毒性能[J]. 化工进展, 2025, 44(2): 1129-1137. |
| [12] | 李昊阳, 李洪伟, 谭建宇. 瞬态振荡加热条件下沸腾气泡运动特性[J]. 化工进展, 2025, 44(2): 735-742. |
| [13] | 苏良健, 肖俊岩, 张春光, 赵元生, 杨旭. 固定床渣油加氢脱残炭剂的深度再生[J]. 化工进展, 2025, 44(2): 728-734. |
| [14] | 黄政锋, 王恒, 洪浩, 朱国瑞. 同心圆过渡排布管束旋涡脱落特性[J]. 化工进展, 2025, 44(2): 698-705. |
| [15] | 贾亦静, 陶金泉, 黄文斌, 刘昊然, 李蓉蓉, 姚荣鹏, 白天瑜, 魏强, 周亚松. CO2加氢制低碳烯烃Fe基催化剂研究进展[J]. 化工进展, 2025, 44(2): 820-833. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||
|
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |