化工进展 ›› 2025, Vol. 44 ›› Issue (2): 717-727.DOI: 10.16085/j.issn.1000-6613.2024-0305
李雪静1(), 崔哲1, 刘彬1, 李传坤2, 田文德1(
)
收稿日期:
2024-02-21
修回日期:
2024-05-20
出版日期:
2025-02-25
发布日期:
2025-03-10
通讯作者:
田文德
作者简介:
李雪静(1997—),女,硕士研究生,研究方向为化工系统工程。E-mail:4021010038@mails.qust.edu.cn。
基金资助:
LI Xuejing1(), CUI Zhe1, LIU Bin1, LI Chuankun2, TIAN Wende1(
)
Received:
2024-02-21
Revised:
2024-05-20
Online:
2025-02-25
Published:
2025-03-10
Contact:
TIAN Wende
摘要:
安全评价是化工过程正常运行的前提,传统的定量风险评估方法虽然可以减少事故发生的频率,但严重依赖专家的经验,难以评估动态化学条件引起的潜在事故风险。针对这一问题,本文提出了一种基于动态模拟的智能定量风险评估方法(DQRA-BiLSTM)。首先,用流程模拟软件对所研究的过程进行模拟,得到异常条件下的动态数据集。然后,利用双向长短期记忆(Bi-LSTM)深度学习变量之间的潜在关系,表征对事故危害严重程度有直接影响的预测变量之间复杂的机制关系,提出了可靠的控制方案,保证了工艺的安全运行。将该方法应用于乙烯分离流程中的碳二加氢和脱乙烷系统。实验结果表明,该模型对乙烯分离流程的动态风险评估具有良好的性能,具有一定的实际应用价值。
中图分类号:
李雪静, 崔哲, 刘彬, 李传坤, 田文德. 乙烯装置碳二加氢和脱乙烷塔系统智能风险分析与预测[J]. 化工进展, 2025, 44(2): 717-727.
LI Xuejing, CUI Zhe, LIU Bin, LI Chuankun, TIAN Wende. Intelligent risk analysis and prediction of carbon di-hydrogenation and deethanization tower systems[J]. Chemical Industry and Engineering Progress, 2025, 44(2): 717-727.
设备编号 | 设备名称 | 设备编号 | 设备名称 |
---|---|---|---|
T-101 | 脱甲烷塔 | T-107 | 甲烷汽提塔 |
T-102 | 脱乙烷塔 | T-108 | 丙烯精馏塔 |
T-103 | 绿油吸收塔 | T-109 | C3再精馏塔 |
T-104 | 乙烯精馏塔 | R1 | 碳二加氢反应器 |
T-105 | 脱丙烷塔 | R2 | 丙二烯转化器 |
T-106 | 脱丁烷塔 | F1 | 闪蒸器 |
表1 乙烯顺序分离流程各关键设备名称
设备编号 | 设备名称 | 设备编号 | 设备名称 |
---|---|---|---|
T-101 | 脱甲烷塔 | T-107 | 甲烷汽提塔 |
T-102 | 脱乙烷塔 | T-108 | 丙烯精馏塔 |
T-103 | 绿油吸收塔 | T-109 | C3再精馏塔 |
T-104 | 乙烯精馏塔 | R1 | 碳二加氢反应器 |
T-105 | 脱丙烷塔 | R2 | 丙二烯转化器 |
T-106 | 脱丁烷塔 | F1 | 闪蒸器 |
流股 | 温度T/℃ | 压力P/bar | 流量F/kmol·h-1 |
---|---|---|---|
精馏塔401进料 | -75.80 | 0.73 | 1331.98 |
精馏塔401塔顶出料 | -245.98 | 0.61 | 779.94 |
精馏塔401塔底出料 | -53.36 | 0.66 | 2277.42 |
换热器进料 | -51.20 | 2.57 | 684.43 |
换热器出料 | 10.99 | 2.52 | 684.43 |
精馏塔402进料 | 9.32 | 2.40 | 684.43 |
精馏塔402进料 | -4.37 | 2.39 | 1592.97 |
精馏塔402塔顶出料1 | 1.28 | 2.39 | 1962.87 |
精馏塔402塔底出料2 | 88.49 | 2.42 | 471.36 |
反应器进料 | 104.86 | 2.66 | 2005.49 |
反应器出料 | 146.64 | 2.28 | 1964.77 |
精馏塔403进料1 | -21.33 | 2.04 | 131.51 |
精馏塔403进料2 | -5.56 | 2.05 | 1964.77 |
精馏塔403塔顶出料 | -8.75 | 2.09 | 1933.81 |
精馏塔404进料 | -9.78 | 1.99 | 1933.82 |
精馏塔404塔顶出料 | -32.66 | 1.83 | 411.29 |
精馏塔404塔底出料 | -19.52 | 2.01 | 1258.31 |
精馏塔404侧线采出 | -30.24 | 1.94 | 132.67 |
表2 流程中各流股参数
流股 | 温度T/℃ | 压力P/bar | 流量F/kmol·h-1 |
---|---|---|---|
精馏塔401进料 | -75.80 | 0.73 | 1331.98 |
精馏塔401塔顶出料 | -245.98 | 0.61 | 779.94 |
精馏塔401塔底出料 | -53.36 | 0.66 | 2277.42 |
换热器进料 | -51.20 | 2.57 | 684.43 |
换热器出料 | 10.99 | 2.52 | 684.43 |
精馏塔402进料 | 9.32 | 2.40 | 684.43 |
精馏塔402进料 | -4.37 | 2.39 | 1592.97 |
精馏塔402塔顶出料1 | 1.28 | 2.39 | 1962.87 |
精馏塔402塔底出料2 | 88.49 | 2.42 | 471.36 |
反应器进料 | 104.86 | 2.66 | 2005.49 |
反应器出料 | 146.64 | 2.28 | 1964.77 |
精馏塔403进料1 | -21.33 | 2.04 | 131.51 |
精馏塔403进料2 | -5.56 | 2.05 | 1964.77 |
精馏塔403塔顶出料 | -8.75 | 2.09 | 1933.81 |
精馏塔404进料 | -9.78 | 1.99 | 1933.82 |
精馏塔404塔顶出料 | -32.66 | 1.83 | 411.29 |
精馏塔404塔底出料 | -19.52 | 2.01 | 1258.31 |
精馏塔404侧线采出 | -30.24 | 1.94 | 132.67 |
设备名称 | 温度/℃ | 压力/bar | 流量/kmol·h-1 |
---|---|---|---|
换热器B-1 | 103 | 22.40 | 2011.8 |
反应器R-1 | 148 | 22.85 | 2011.8 |
表3 碳二加氢反应流程各设备参数
设备名称 | 温度/℃ | 压力/bar | 流量/kmol·h-1 |
---|---|---|---|
换热器B-1 | 103 | 22.40 | 2011.8 |
反应器R-1 | 148 | 22.85 | 2011.8 |
物流名称 | 温度/℃ | 压力/bar | 流量/kmol·h-1 |
---|---|---|---|
脱乙烷精馏塔进料 | 8.23 | 23.35 | 683.89 |
脱乙烷精馏塔塔顶出料 | -4.22 | 23.17 | 2015.63 |
脱乙烷精馏塔塔底出料 | 90.3813 | 23.53 | 559.33 |
表4 脱乙烷塔参数
物流名称 | 温度/℃ | 压力/bar | 流量/kmol·h-1 |
---|---|---|---|
脱乙烷精馏塔进料 | 8.23 | 23.35 | 683.89 |
脱乙烷精馏塔塔顶出料 | -4.22 | 23.17 | 2015.63 |
脱乙烷精馏塔塔底出料 | 90.3813 | 23.53 | 559.33 |
1 | LIU Jixiang, ZHOU Xin, YANG Gengfei, et al. Conceptual carbon-reduction process design and quantitative sustainable assessment for concentrating high purity ethylene from wasted refinery gas[J]. Chinese Journal of Chemical Engineering, 2023, 57: 290-308. |
2 | GONG Shixin. Multi-scale energy efficiency recognition and diagnosis scheme for ethylene production based on a hierarchical multi-indicator system[J]. Energy, 2023, 267: 126478. |
3 | XU Yuanyuan, RENIERS Genserik, YANG Ming, et al. Uncertainties and their treatment in the quantitative risk assessment of domino effects: Classification and review[J]. Process Safety and Environmental Protection, 2023, 172: 971-985. |
4 | ZHANG Huaqi, ZHANG Beike, GAO Dong. A new approach of integrating industry prior knowledge for HAZOP interaction[J]. Journal of Loss Prevention in the Process Industries, 2023, 82: 105005. |
5 | SADEGHI Reyhaneh, GOERLANDT Floris. Reasonableness of a proposed system theoretic process analysis (STPA) validation framework: An interview study[J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105064. |
6 | WANG Lipeng, YAN Fang, WANG Fang, et al. FMEA-CM based quantitative risk assessment for process industries—A case study of coal-to-methanol plant in China[J]. Process Safety and Environmental Protection, 2021, 149: 299-311. |
7 | BAROZZI Marco, CONTINI Sergio, RABONI Massimo, et al. Integration of recursive operability analysis, FMECA and FTA for the quantitative risk assessment in biogas plants: Role of procedural errors and components failures[J]. Journal of Loss Prevention in the Process Industries, 2021, 71: 104468. |
8 | AMENDOLA A. Accident sequence dynamic simulation versus event trees[J]. Reliability Engineering & System Safety, 1988, 22(1/2/3/4): 3-25. |
9 | WANG Hangzhou, KHAN Faisal, AHMED Salim, et al. Dynamic quantitative operational risk assessment of chemical processes[J]. Chemical Engineering Science, 2016, 142: 62-78. |
10 | EMAMI Mona, HEJAZI Bijan, KARIMI Mehdi, et al. Quantitative risk assessment and risk reduction of integrated acid gas enrichment and amine regeneration process using Aspen Plus dynamic simulation[J]. Results in Engineering, 2022, 15: 100566. |
11 | LIU Zengkai, MA Qiang, SHI Xuewei, et al. A dynamic quantitative risk assessment method for drilling well control by integrating multi types of risk factors[J]. Process Safety and Environmental Protection, 2022, 167: 162-172. |
12 | SHI Yuntao, ZHAO Lei, ZHOU Meng, et al. A dynamic community gas risk-prediction method based on temporal knowledge graphs[J]. Process Safety and Environmental Protection, 2023, 177: 436-445. |
13 | ADEDIGBA Sunday A, KHAN Faisal, YANG Ming. An integrated approach for dynamic economic risk assessment of process systems[J]. Process Safety and Environmental Protection, 2018, 116: 312-323. |
14 | YU Hongyang. Dynamic risk assessment of complex process operations based on a novel synthesis of soft-sensing and loss function[J]. Process Safety and Environmental Protection, 2017, 105: 1-11. |
15 | CHAU Kevin, DJIRE Abdoulaye, VADDIRAJU Sreeram, et al. Process Risk Index (PRI)-A methodology to analyze the design and operational hazards in the processing facility[J]. Process Safety and Environmental Protection, 2022, 165: 623-632. |
16 | ZEBERT Tristan Lee, LOKHAT David, KURELLA Swamy, et al. Modeling and simulation of ethane cracker reactor using Aspen Plus[J]. South African Journal of Chemical Engineering, 2023, 43: 204-214. |
17 | MALIK Huzaifa, KHAN Huma Warsi, HASSAN SHAH Mansoor Ul, et al. Screening of ionic liquids as green entrainers for ethanol water separation by extractive distillation: COSMO-RS prediction and Aspen Plus simulation[J]. Chemosphere, 2023, 311: 136901. |
18 | MUBASHIR Muhammad, AHSAN Muhammad, AHMAD Iftikhar, et al. Process modeling and simulation of ethylene oxide production by implementing pinch and cost analysis[J]. Ain Shams Engineering Journal, 2022, 13(3): 101585. |
19 | Mikael YAMANEE-NOLIN, ANDERSSON Niklas, NILSSON Bernt, et al. Trajectory optimization of an oscillating industrial two-stage evaporator utilizing a Python-Aspen Plus Dynamics toolchain[J]. Chemical Engineering Research and Design, 2020, 155: 12-17. |
20 | ZADAKBAR O, IMTIAZ S, KHAN F. Dynamic risk assessment and fault detection using a multivariate technique[J]. Process Safety Progress, 2013, 32(4): 365-375. |
21 | ZADAKBAR Omid, KHAN Faisal, IMTIAZ Syed. Development of economic consequence methodology for process risk analysis[J]. Risk Analysis, 2015, 35(4): 713-731. |
22 | ZADAKBAR O, IMTIAZ S, KHAN F. Dynamic risk assessment and fault detection using principal component analysis[J]. Industrial & Engineering Chemistry Research, 2013, 52(2): 809-816. |
23 | SPIRING Fred A. The reflected normal loss function[J]. Canadian Journal of Statistics, 1993, 21(3): 321-330. |
24 | BANGI Mohammed Saad Faizan, KWON Joseph Sang-Il. Deep hybrid modeling of chemical process: Application to hydraulic fracturing[J]. Computers & Chemical Engineering, 2020, 134: 106696. |
25 | BHADRIRAJU Bhavana, KWON Joseph Sang-Il, KHAN Faisal. Risk-based fault prediction of chemical processes using operable adaptive sparse identification of systems (OASIS)[J]. Computers & Chemical Engineering, 2021, 152: 107378. |
26 | RANAWAT Nagendra Singh, PRAKASH Jatin, MIGLANI Ankur, et al. Performance evaluation of LSTM and Bi-LSTM using non-convolutional features for blockage detection in centrifugal pump[J]. Engineering Applications of Artificial Intelligence, 2023, 122: 106092. |
27 | HU Xinmei, YUAN Shasha, XU Fangzhou, et al. Scalp EEG classification using deep Bi-LSTM network for seizure detection[J]. Computers in Biology and Medicine, 2020, 124: 103919. |
28 | SUN Weifeng, LI Weihua, ZHANG Dezhi, et al. Lost circulation monitoring using bi-directional LSTM and data augmentation[J]. Geoenergy Science and Engineering, 2023, 225: 211660. |
29 | WANG Shaochen, TIAN Wende, LI Chuankun, et al. Mechanism-based deep learning for tray efficiency soft-sensing in distillation process[J]. Reliability Engineering & System Safety, 2023, 231: 109012. |
30 | LI Zongxiang, YANG Yan, LI Liwei, et al. A weighted Pearson correlation coefficient based multi-fault comprehensive diagnosis for battery circuits[J]. Journal of Energy Storage, 2023, 60: 106584. |
[1] | 陈可欣, 李熙, 常福城, 武萧衣, 娄嘉诚, 李会雄. 螺旋管内水-水蒸气两相流压降及流型转变特性[J]. 化工进展, 2025, 44(2): 613-624. |
[2] | 张迁, 刘鑫, 王冰, 徐晶, 曹晨熙. 复杂风速风向与事件树下储罐区多米诺事故分析[J]. 化工进展, 2025, 44(2): 1170-1182. |
[3] | 孙悦鹏, 孙延吉, 潘艳秋, 王成宇. 基于BO-LSTM的低温甲醇洗净化气CO2含量预测[J]. 化工进展, 2025, 44(2): 688-697. |
[4] | 黄政锋, 王恒, 洪浩, 朱国瑞. 同心圆过渡排布管束旋涡脱落特性[J]. 化工进展, 2025, 44(2): 698-705. |
[5] | 于海, 栾智勇, 姬宜朋, 安申法, 陈家庆, 司政, 任强, 孙丰旭, 宋泽润. 动态水力旋流器内短路流流量的计算方法及影响分析[J]. 化工进展, 2025, 44(1): 135-144. |
[6] | 乔磊, 张亚新, 魏博, 冉文燊, 马金荣, 王峰. 氧热法气流床电石反应器烧嘴布置参数及操作参数优化[J]. 化工进展, 2025, 44(1): 145-157. |
[7] | 邢雷, 周晓庆, 蒋明虎, 赵立新, 李新亚, 陈德海. 突缩突扩圆管内离散油滴运动行为及变形特性[J]. 化工进展, 2025, 44(1): 27-37. |
[8] | 李灏, 孙昱楠, 李健, 陶俊宇, 程占军, 颜蓓蓓, 陈冠益. 陈腐垃圾与原生垃圾共气化特性[J]. 化工进展, 2025, 44(1): 525-537. |
[9] | 孙建辰, 杨捷, 李军, 孙会东, 牛俊敏, 廖逸飞, 任俊颖, 商辉. 催化剂颗粒排列方式对微波加热效果的影响[J]. 化工进展, 2025, 44(1): 57-65. |
[10] | 李鑫, 王维, 张羽, 谢湫钰, 袁昊. 分离乙酸乙酯+乙醇+水体系:离子液体筛选、汽液相平衡和过程模拟[J]. 化工进展, 2025, 44(1): 75-85. |
[11] | 张天昊, 李双喜, 贾祥际, 胡鼎国, 崔瑞焯, 李世聪. 干摩擦釜用机械密封DLC涂层-石墨配副摩擦磨损与温度变形场分析[J]. 化工进展, 2024, 43(S1): 121-133. |
[12] | 毛宁轩, 万小维, 鞠杰, 胡彦杰, 江浩. 工业气固流化床内流场的CFD-PBM数值模拟和结构优化[J]. 化工进展, 2024, 43(S1): 13-20. |
[13] | 苏瑶, 陈占秀, 杨历, 邢赫威, 呼和仓, 李源华. 热源温度对非对称纳米通道流动换热的影响[J]. 化工进展, 2024, 43(S1): 144-153. |
[14] | 张伟业, 朱晓武, 罗永皓, 王志. 复合型叶序微流道混合性能的数值模拟[J]. 化工进展, 2024, 43(S1): 154-165. |
[15] | 赵旗, 钱晓栋, 肖方雄, 陈丽, 徐展. 城市燃气安全韧性量化评估体系构建与应用分析[J]. 化工进展, 2024, 43(S1): 174-179. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 18
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 46
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |