化工进展 ›› 2024, Vol. 43 ›› Issue (S1): 209-224.DOI: 10.16085/j.issn.1000-6613.2024-0510

• 能源加工与技术 • 上一篇    下一篇

金属-掺杂氧化铈体系H2/CO电化学反应机理研究进展

林梅洁1(), 米烁东1, 包成1,2()   

  1. 1.北京科技大学能源与环境工程学院,北京 100083
    2.北京怀柔实验室,北京 101400
  • 收稿日期:2024-03-28 修回日期:2024-06-08 出版日期:2024-11-20 发布日期:2024-12-06
  • 通讯作者: 包成
  • 作者简介:林梅洁(1998—),女,硕士研究生,研究方向为Ni-GDC阳极电催化机理。E-mail:m202120230@xs.ustb.edu.cn
  • 基金资助:
    国家重点研发计划(2021YFB2500401);国家自然科学基金面上项目(51976009)

Research progress of H2 and CO electrochemical oxidation mechanisms in metal and doped ceria system

LIN Meijie1(), MI Shuodong1, BAO Cheng1,2()   

  1. 1.School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
    2.Beijing Huairou Laboratory, Beijing 101400, China
  • Received:2024-03-28 Revised:2024-06-08 Online:2024-11-20 Published:2024-12-06
  • Contact: BAO Cheng

摘要:

应用金属-稀土元素掺杂氧化铈阳极是固体氧化物燃料电池(SOFC)中低温化的重要策略之一。掺杂氧化铈自身的混合离子电子导体(MIEC)特性拓展了反应界面,也使得反应机理更为复杂。本文综述了金属-掺杂氧化铈体系H2和CO的电化学氧化反应机理,指出在H2电化学反应中类Ni/YSZ型H溢出机理占主导地位;对于CO电化学反应,结合在CO催化反应中主要的Marse-van Krevelen(MvK)机制和CO2电化学还原反应逆过程,预测其电荷转移步骤主要发生在氧空位形成和CO2形成反应。在MIEC型反应机理中,H2氧化反应路径的主要区别在于H2解离吸附位点的不同;而CO氧化反应路径根据吸附位点可分为与CeO2晶格氧反应直接生成CO2或者生成碳酸盐中间体,电荷转移步骤为碳酸盐形成和CO2形成反应。综上,H2电化学氧化以H溢出为主,CO电化学氧化的主导反应机理尚不明确,亟待深入研究。本文工作对明晰H2和CO乃至H2/CO混合燃料体系类Ni/YSZ型和MIEC型反应机理具有一定的指导意义。

关键词: 固体氧化物燃料电池, 电化学, 氧化, 反应机理, 混合离子电子导体, Ce基氧化物, 催化

Abstract:

The application of metal-rare earth doped ceria anode is one of the most important strategies for the moderate and low temperature solid oxide fuel cells (SOFC). The mixed ionic and electronic conductor (MIEC) characteristic of doped ceria expands the reaction interface and complicates the reaction mechanism. This article reviewed the electrochemical oxidation mechanism of H2 and CO in metal and doped ceria system. It was pointed out that the Ni/YSZ-like H spillover mechanism was dominant in the H2 electrochemistry. For the CO electrochemistry, combined with the predominant Marse-van Krevelen (MvK) type mechanism in the CO catalytic reaction and the reverse process of the CO2 electrochemical reduction reaction, it was predicted that the charge transfer step mainly occurred in the oxygen vacancy formation and the CO2 formation reactions. In the MIEC type reaction mechanism, the main difference in the H2 oxidation reaction pathways was the difference of H2 dissociation adsorption site. The CO oxidation reaction pathway can be categorized into two modes based on the adsorption site: directly reacting with CeO2 lattice oxygen to generate CO2 or generating carbonate intermediates, and the charge transfer step involved carbonate formation and CO2 formation reactions. In summary, H2 electrochemical oxidation was dominated by H spillover, while the dominant reaction mechanism of CO electrochemical oxidation was still unclear and required further study. This article was instructive for clarifying the reaction mechanisms of Ni/YSZ and MIEC types in H2 and CO, as well as H2/CO hybrid fuel systems.

Key words: solid oxide fuel cells, electrochemistry, oxidation, reaction mechanism, mixed ionic and electronic conductor, ceria-based oxides, catalysis

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn