化工进展 ›› 2024, Vol. 43 ›› Issue (6): 3187-3198.DOI: 10.16085/j.issn.1000-6613.2023-0879
• 材料科学与技术 • 上一篇
收稿日期:
2023-05-29
修回日期:
2023-08-04
出版日期:
2024-06-15
发布日期:
2024-07-02
通讯作者:
蒋军
作者简介:
龚雪梅(1999—),女,硕士研究生,研究方向为生物质材料性能改良。E-mail: gxm112622@163.com。
基金资助:
GONG Xuemei1(), JIANG Jun1,2(), WANG Chao3, MEI Changtong1,2
Received:
2023-05-29
Revised:
2023-08-04
Online:
2024-06-15
Published:
2024-07-02
Contact:
JIANG Jun
摘要:
纳米纤维素作为一种生物质材料,具有高比表面积、高强度等优良性能。其表面存在大量的羟基,具备很强的亲水性。这在一定程度上影响了纳米纤维素在生物基复合材料中的分散效果,限制了它的功能化应用。因此,纳米纤维素疏水改性已成为研究焦点之一。本文讨论了利用物理、化学和聚合物接枝的方式对纳米纤维素进行疏水改性,总结了不同纳米纤维素疏水改性机制及其优缺点,分析了疏水改性纳米纤维素对机械性能、热性能和生物相容性等性能的影响。据此,概述了纳米纤维素疏水改性研究现状及其在包装、造纸和水净化等领域的功能化应用情况,为有效利用纳米纤维素提供理论策略和实践依据。最后,展望了疏水改性纳米纤维素的优势和未来应用前景。
中图分类号:
龚雪梅, 蒋军, 王超, 梅长彤. 纳米纤维素疏水改性及其功能化应用研究进展[J]. 化工进展, 2024, 43(6): 3187-3198.
GONG Xuemei, JIANG Jun, WANG Chao, MEI Changtong. Research progress on hydrophobicity modification and functional application of nanocellulose[J]. Chemical Industry and Engineering Progress, 2024, 43(6): 3187-3198.
1 | ABITBOL Tiffany, RIVKIN Amit, CAO Yifeng, et al. Nanocellulose, a tiny fiber with huge applications[J]. Current Opinion in Biotechnology, 2016, 39: 76-88. |
2 | LAMM Meghan E, LI Kai, QIAN Ji, et al. Recent advances in functional materials through cellulose nanofiber templating[J]. Advanced Materials, 2021, 33(12): e2005538. |
3 | PESSAN Cibele Carneiro, BERNARDES Juliana Silva, BETTINI Sílvia H P, et al. Oxidized cellulose nanofibers from sugarcane bagasse obtained by microfluidization: Morphology and rheological behavior[J]. Carbohydrate Polymers, 2023, 304: 120505. |
4 | YANG Hongbin, BAI Long, DUAN Yaxin, et al. Upcycling corn straw into nanocelluloses via enzyme-assisted homogenization: Application as building blocks for high-performance films[J]. Journal of Cleaner Production, 2023, 390: 136215. |
5 | MANAN Sehrish, ULLAH Muhammad Wajid, Mazhar UL-ISLAM, et al. Bacterial cellulose: Molecular regulation of biosynthesis, supramolecular assembly, and tailored structural and functional properties[J]. Progress in Materials Science, 2022, 129: 100972. |
6 | ISOGAI Akira, ZHOU Yaxin. Diverse nanocelluloses prepared from TEMPO-oxidized wood cellulose fibers: Nanonetworks, nanofibers, and nanocrystals[J]. Current Opinion in Solid State and Materials Science, 2019, 23(2): 101-106. |
7 | CHU Youlu, SUN Yan, WU Weibing, et al. Dispersion properties of nanocellulose: A review[J]. Carbohydrate Polymers, 2020, 250: 116892. |
8 | JONNE Ukkola, MARKUS Lampimäki, OSSI Laitinen, et al. High-performance and sustainable aerosol filters based on hierarchical and crosslinked nanofoams of cellulose nanofibers[J]. Journal of Cleaner Production, 2021, 310: 127498. |
9 | FEIZI Zahra Hosseinpour, FATEHI Pedram. Interaction of hairy carboxyalkyl cellulose nanocrystals with cationic surfactant: Effect of carbon spacer[J]. Carbohydrate Polymers, 2021, 255: 117396. |
10 | ZHANG Yefei, KARIMKHANI Vahid, MAKOWSKI Brian T, et al. Nanoemulsions and nanolatexes stabilized by hydrophobically functionalized cellulose nanocrystals[J]. Macromolecules, 2017, 50(16): 6032-6042. |
11 | CHEN Yian, ZHANG Cunzhi, TAO Shenming, et al. High-performance smart cellulose nanohybrid aerogel fibers as a platform toward multifunctional textiles[J]. Chemical Engineering Journal, 2023, 466: 143153. |
12 | LONG Sishi, FENG Yunchao, LIU Yizheng, et al. Renewable and robust biomass carbon aerogel derived from deep eutectic solvents modified cellulose nanofiber under a low carbonization temperature for oil-water separation[J]. Separation and Purification Technology, 2021, 254: 117577. |
13 | KIM Yubin, PilHo HUH, YOO Seong Il. Mechanical reinforcement of thermoplastic polyurethane nanocomposites by surface-modified nanocellulose[J]. Macromolecular Chemistry and Physics, 2023, 224(4): 2200383. |
14 | YUN Tongtong, TAO Yehan, LI Qiang, et al. Superhydrophobic modification of cellulosic paper-based materials: Fabrication, properties, and versatile applications[J]. Carbohydrate Polymers, 2023, 305: 120570. |
15 | ZHOU Zhilong, YANG Jian, WU Min, et al. CO2 escaping in situ endowed the antimicrobial nanocellulose packaging film with a microporous structure[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(24): 8812-8821. |
16 | WU Yingji, LIANG Yunyi, MEI Changtong, et al. Advanced nanocellulose-based gas barrier materials: Present status and prospects[J]. Chemosphere, 2022, 286(Pt 3): 131891. |
17 | TYAGI Preeti, LUCIA Lucian A, HUBBE Martin A, et al. Nanocellulose-based multilayer barrier coatings for gas, oil, and grease resistance[J]. Carbohydrate Polymers, 2019, 206: 281-288. |
18 | NURUDDIN Md, KORANI Deepa M, Hyungyung JO, et al. Gas and water vapor barrier performance of cellulose nanocrystal-citric acid-coated polypropylene for flexible packaging[J]. ACS Applied Polymer Materials, 2020, 2(11): 4405-4414. |
19 | RANA Ashvinder K, THAKUR Vijay Kumar. Impact of physico-chemical properties of nanocellulose on rheology of aqueous suspensions and its utility in multiple fields: A review[J]. Journal of Vinyl and Additive Technology, 2023, 29(4): 617-648. |
20 | YOUM Jiyoon, LEE Seung-Hwan, CHO Inhee, et al. Highly increased hydrovoltaic power generation via surfactant optimization of carbon black solution for cellulose microfiber cylindrical generator[J]. Surfaces and Interfaces, 2023, 38: 102853. |
21 | DE SOUZA Alana G, DE LIMA Giovanni F, COLOMBO Renata, et al. A new approach for the use of anionic surfactants: Nanocellulose modification and development of biodegradable nanocomposites[J]. Cellulose, 2020, 27(10): 5707-5728. |
22 | FERRI Martina, SANTOS CHIROMITO Emanoele Maria, DE CARVALHO Antonio Jose Felix, et al. Fine tuning of the mechanical properties of bio-based PHB/nanofibrillated cellulose biocomposites to prevent implant failure due to the bone/implant stress shielding effect[J]. Polymers, 2023, 15(6): 1438. |
23 | SETTER Carine, MASCARENHAS Adriano Reis Prazeres, DIAS Matheus Cordazzo, et al. Surface modification of cellulosic nanofibrils by spray drying: Drying yield and microstructural, thermal and chemical characterization[J]. Industrial Crops and Products, 2023, 201: 116899. |
24 | GONÇALVES Rui A, HOLMBERG Krister, LINDMAN Björn. Cationic surfactants: A review[J]. Journal of Molecular Liquids, 2023, 375: 121335. |
25 | ZORMATI Soumaya, MHIRI Hiba, ALOULOU Fadhel, et al. Synthesis and characterization of organoclay and cellulose nanofibers modified with lauric acid eutectic as new phase change material (PCM) used in buildings for thermal energy storage[J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(10): 3955-3964. |
26 | DHAR Neha, Daniel AU, BERRY Richard C, et al. Interactions of nanocrystalline cellulose with an oppositely charged surfactant in aqueous medium[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 415: 310-319. |
27 | 赵群. 纳米微晶纤维素的制备、改性及其增强复合材料性能的研究[D]. 上海: 东华大学, 2014. |
ZHAO Qun. Research on the prepa ration and modification of cellulose nanocrystals and its application of reinforced composites[D].Shanghai: Donghua University, 2014. | |
28 | 储芸, 马建中. 表面活性剂在纳米材料研究中的应用[J]. 皮革科学与工程, 2004, 14(2): 22-24. |
CHU Yun, MA Jianzhong. Application of surfactant in nano-scale material research[J]. Leather Science and Engineering, 2004, 14(2): 22-24. | |
29 | ZHOU Jiaxing, DUAN Yanyi, WU Jiangjiexing, et al. Spray-drying hydrophobic cellulose nanocrystal coatings with degradable biocide release for marine antifouling[J]. Langmuir, 2023, 39(20): 7212-7220. |
30 | HASTATI Dwi Yuni, HAMBALI Erliza, SYAMSU Khaswar, et al. Enhanced hydrophobicity of nanofibrillated cellulose through surface modification using cetyltrimethylammonium chloride derived from palmityl alcohol[J]. Waste and Biomass Valorization, 2021, 12(9): 5147-5159. |
31 | Mahbubul BASHAR M, ZHU Huie, YAMAMOTO Shunsuke, et al. Superhydrophobic surfaces with fluorinated cellulose nanofiber assemblies for oil-water separation[J]. RSC Advances, 2017, 7(59): 37168-37174. |
32 | LI Ming, LIU Xiaohong, LIU Ning, et al. Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554: 122-128. |
33 | YIN Yuanyuan, HONG Zhengzheng, TIAN Xiuzhi, et al. Cellulose nanocrystals modified with quaternary ammonium salts and its reinforcement of polystyrene[J]. Polymer Bulletin, 2018, 75(5): 2151-2166. |
34 | ZHUANG Jie, RONG Nannan, WANG Xuerong, et al. Adsorption of small size microplastics based on cellulose nanofiber aerogel modified by quaternary ammonium salt in water[J]. Separation and Purification Technology, 2022, 293: 121133. |
35 | HUANG Lingqi, YE Zhibin, BERRY Richard. Modification of cellulose nanocrystals with quaternary ammonium-containing hyperbranched polyethylene ionomers by ionic assembly[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4937-4950. |
36 | DONG Hong, NAPADENSKY Eugene, ORLICKI Joshua A, et al. Cellulose nanofibrils and diblock copolymer complex: Micelle Formation and enhanced dispersibility[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(2): 1264-1271. |
37 | FUJISAWA Shuji, SAITO Tsuguyuki, KIMURA Satoshi, et al. Comparison of mechanical reinforcement effects of surface-modified cellulose nanofibrils and carbon nanotubes in PLLA composites[J]. Composites Science and Technology, 2014, 90: 96-101. |
38 | XU Zhaoyang, ZHOU Huan, JIANG Xiangdong, et al. Facile synthesis of reduced graphene oxide/trimethyl chlorosilane-coated cellulose nanofibres aerogel for oil absorption[J]. IET Nanobiotechnology, 2017, 11(8): 929-934. |
39 | CHEN Kouqin, WANG Liming, XU Lihui, et al. Preparation of peanut shell cellulose nanofibrils and their superhydrophobic aerogels and their application on cotton fabrics[J]. Journal of Porous Materials, 2023, 30(2): 471-483. |
40 | ZHANG Xuzhen, ZHOU Jin, HUANG Wenjian, et al. Reinforced poly (butylene succinate)/ethyl succinyl chloride cellulose nanocrystal composite fiber: A stretching induced orientation study[J]. Cellulose, 2023, 30(3): 1517-1532. |
41 | LI Wei, WANG Shuangfei, WANG Wei, et al. Facile preparation of reactive hydrophobic cellulose nanofibril film for reducing water vapor permeability (WVP) in packaging applications[J]. Cellulose, 2019, 26(5): 3271-3284. |
42 | SINGH Singam Suranjoy, ZAITOON Amr, SHARMA Sonu, et al. Enhanced hydrophobic paper-sheet derived from Miscanthus×giganteus cellulose fibers coated with esterified lignin and cellulose acetate blend[J]. International Journal of Biological Macromolecules, 2022, 223: 1243-1256. |
43 | ABRAHAM Eldho, NEVO Yuval, SLATTEGARD Rikard, et al. Highly hydrophobic thermally stable liquid crystalline cellulosic nanomaterials[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1338-1346. |
44 | LAFIA-ARAGA Ruth Anayimi, SABO Ronald, NABINEJAD Omid, et al. Influence of lactic acid surface modification of cellulose nanofibrils on the properties of cellulose nanofibril films and cellulose nanofibril-poly(lactic acid) composites[J]. Biomolecules, 2021, 11(9): 1346. |
45 | SETHI Jatin, LIIMATAINEN Henrikki, SIRVIÖ Juho Antti. Fast and filtration-free method to prepare lactic acid-modified cellulose nanopaper[J]. ACS Omega, 2021, 6(29): 19038-19044. |
46 | BENKADDOUR Abdelhaq, JRADI Khalil, ROBERT Sylvain, et al. Grafting of polycaprolactone on oxidized nanocelluloses by click chemistry[J]. Nanomaterials, 2013, 3(1): 141-157. |
47 | LEE Yea Ram, PARK Daehwan, CHOI Sang Koo, et al. Smart cellulose nanofluids produced by tunable hydrophobic association of polymer-grafted cellulose nanocrystals[J]. ACS Applied Materials & Interfaces, 2017, 9(36): 31095-31101. |
48 | Katarzyna KĘPA, AMIRALIAN Nasim, MARTIN Darren J, et al. Grafting from cellulose nanofibres with naturally-derived oil to reduce water absorption[J]. Polymer, 2021, 222: 123659. |
49 | CHENG Shaoling, ZHANG Yapei, Ruitao CHA, et al. Water-soluble nanocrystalline cellulose films with highly transparent and oxygen barrier properties[J]. Nanoscale, 2016, 8(2): 973-978. |
50 | HUANG Shuting, LIU Xinghai, CHANG Chunyu, et al. Recent developments and prospective food-related applications of cellulose nanocrystals: A review[J]. Cellulose, 2020, 27(6): 2991-3011. |
51 | LIU Siyuan, CHEN Yaoyao, LIU Changhua, et al. Polydopamine-coated cellulose nanocrystals as an active ingredient in poly(vinyl alcohol) films towards intensifying packaging application potential[J]. Cellulose, 2019, 26(18): 9599-9612. |
52 | ABEDI Fatemeh, EMADZADEH Daryoush, DUBÉ Marc A, et al. Modifying cellulose nanocrystal dispersibility to address the permeability/selectivity trade-off of thin-film nanocomposite reverse osmosis membranes[J]. Desalination, 2022, 538: 115900. |
53 | ALIMOHAMMADZADEH Rana, SANHUEZA Italo, Armando CÓRDOVA. Design and fabrication of superhydrophobic cellulose nanocrystal films by combination of self-assembly and organocatalysis[J]. Scientific Reports, 2023, 13(1): 3157. |
54 | LAKSHMIBALASUBRAMANIAM Suriya Prakaash, HOWELL Caitlin, TAJVIDI Mehdi, et al. Characterization of novel cellulose nanofibril and phenolic acid-based active and hydrophobic packaging films[J]. Food Chemistry, 2022, 374: 131773. |
55 | LEITE Liliane S F, BILATTO Stanley, PASCHOALIN Rafaella T, et al. Eco-friendly gelatin films with rosin-grafted cellulose nanocrystals for antimicrobial packaging[J]. International Journal of Biological Macromolecules, 2020, 165(Pt B): 2974-2983. |
56 | SURYA Indra, HAZWAN C M, H P S Abdul KHALIL, et al. Hydrophobicity and biodegradability of silane-treated nanocellulose in biopolymer for high-grade packaging applications[J]. Polymers, 2022, 14(19): 4147. |
57 | YANG Yuan, ZHAO Xiaowen, YE Lin. Facile construction of durable superhydrophobic cellulose paper for oil-water separation[J]. Cellulose, 2023, 30(5): 3255-3265. |
58 | WANG Hongzhen, ZHAO Yongxian, PAN Xiaosen, et al. Cationic “hard-soft” Janus particles for hydrophobic modification of cellulose paper[J]. Cellulose, 2021, 28(16): 10625-10636. |
59 | JI Yong, WEN Yingying, WANG Zhong, et al. Eco-friendly fabrication of a cost-effective cellulose nanofiber-based aerogel for multifunctional applications in Cu(Ⅱ) and organic pollutants removal[J]. Journal of Cleaner Production, 2020, 255: 120276. |
60 | CHHAJED Monika, VERMA Chhavi, GUPTA Pragya, et al. Multifunctional esterified nanocellulose aerogel: Impact of fatty chain length on oil/water separation and thermal insulation[J]. Cellulose, 2023, 30(3): 1717-1739. |
[1] | 李楠, 高党鸽, 吕斌, 唐立涛, 陈肯, 郑驰, 马建中. 皮胶原在柔性智能可穿戴领域的研究进展[J]. 化工进展, 2024, 43(5): 2645-2660. |
[2] | 何兰, 高助威, 亓欣雨, 李成欣, 王世豪, 刘钟馨. 三聚氰胺海绵疏水改性及在油水分离领域的研究进展[J]. 化工进展, 2024, 43(2): 984-1000. |
[3] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[4] | 黄岳峰, 马丽莎, 张莉莉, 王志国. 木质纤维素复合生物质薄膜材料的功能化应用研究进展[J]. 化工进展, 2022, 41(9): 4840-4854. |
[5] | 邱艺娟, 林佳伟, 秦济锐, 吴嘉茵, 林凤采, 卢贝丽, 唐丽荣, 黄彪. 双重动态共价键交联纳米纤维素导电水凝胶及其柔性传感器[J]. 化工进展, 2022, 41(8): 4406-4416. |
[6] | 詹洵, 陈健, 杨兆哲, 吴国民, 孔振武, 沈葵忠. 纳米纤维素构建超疏水材料研究进展[J]. 化工进展, 2022, 41(8): 4303-4313. |
[7] | 郑进宝, 李琛. 淀粉基包装材料疏水性改善研究进展[J]. 化工进展, 2022, 41(6): 3089-3102. |
[8] | 陈博, 陈伟香, 唐丽荣, 洪祺祺, 严雪, 靳江涛, 吕日新, 黄彪. 基于硝化纳米纤维素/琼脂的高灵敏度湿度传感器[J]. 化工进展, 2022, 41(5): 2604-2614. |
[9] | 时培东, 胡春蕊, 郑苗苗, 赵娟, 刘锐, 贾原媛. 纳米纤维素/Al2O3胶体/PE锂离子电池隔膜的制备及其成膜机理[J]. 化工进展, 2021, 40(10): 5624-5633. |
[10] | 张璐, 孙金鹏, 俞青源, 李如燕, 张云浩, 王文俊. 木粉疏水改性对HDPE基木塑复合材料性能的影响[J]. 化工进展, 2020, 39(9): 3487-3493. |
[11] | 袁林, 陈滢, 刘敏, 王婷庭. 改性纳米纤维素对磷的动态吸附及再生[J]. 化工进展, 2020, 39(7): 2907-2914. |
[12] | 张云浩,李如燕,张靠民,王文俊,张璐. 咖啡壳基微/纳米纤维素混合物增强木塑复合材料的制备及性能[J]. 化工进展, 2020, 39(1): 294-300. |
[13] | 郭晶,张光华,张万斌,朱军峰,吴江,杜伦. 烷基烯酮二聚体对褐煤疏水改性及成浆性能的影响[J]. 化工进展, 2019, 38(10): 4705-4711. |
[14] | 覃发梅, 邱学青, 孙川, 丁子先, 方志强. 纳米纤维素去除水体系重金属离子的研究进展[J]. 化工进展, 2019, 38(07): 3390-3401. |
[15] | 林凤采, 卢麒麟, 卢贝丽, 黄彪, 唐丽荣. 纳米纤维素及其聚合物纳米复合材料的研究进展[J]. 化工进展, 2018, 37(09): 3454-3470. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |