化工进展 ›› 2024, Vol. 43 ›› Issue (5): 2645-2660.DOI: 10.16085/j.issn.1000-6613.2023-2119
• 催化与材料技术 • 上一篇
李楠1,2,3(), 高党鸽1,2,3(), 吕斌1,2,3, 唐立涛1,2,3, 陈肯1,2,3, 郑驰1,2,3, 马建中1,2,3
收稿日期:
2023-12-01
修回日期:
2024-01-09
出版日期:
2024-05-15
发布日期:
2024-06-15
通讯作者:
高党鸽
作者简介:
李楠(2000—),女,博士研究生,研究方向为皮胶原基摩擦纳米传感器的构筑。E-mail:3357923747@qq.com。
基金资助:
LI Nan1,2,3(), GAO Dangge1,2,3(), LYU Bin1,2,3, TANG Litao1,2,3, CHEN Ken1,2,3, ZHENG Chi1,2,3, MA Jianzhong1,2,3
Received:
2023-12-01
Revised:
2024-01-09
Online:
2024-05-15
Published:
2024-06-15
Contact:
GAO Dangge
摘要:
皮胶原作为一种来源于动物皮肤的天然生物质材料,具有良好的生物相容性、可降解性、低抗原性以及易功能化等优势,在柔性传感、电磁屏蔽、人体热管理和储能等柔性智能可穿戴领域展现出巨大的应用潜力。然而,未经改性的皮胶原存在热稳定性差、机械强度较低以及功能性不足等一些固有缺点,使其在柔性智能可穿戴领域应用受限。本文简要介绍了皮胶原的多层级结构和性能优势,论述了皮胶原的不同改性方法,包括物理交联、化学交联以及共混改性,重点综述了其作为柔性可穿戴材料在柔性传感、电磁屏蔽、人体热管理和超级电容器中的研究进展。最后,就皮胶原在柔性可穿戴电子领域的发展趋势进行了展望,指出开发具有极端环境稳定性、多功能集成型皮胶原柔性可穿戴电子材料,实现皮胶原基柔性智能可穿戴材料的按需定制将成为下一步的研究重点。
中图分类号:
李楠, 高党鸽, 吕斌, 唐立涛, 陈肯, 郑驰, 马建中. 皮胶原在柔性智能可穿戴领域的研究进展[J]. 化工进展, 2024, 43(5): 2645-2660.
LI Nan, GAO Dangge, LYU Bin, TANG Litao, CHEN Ken, ZHENG Chi, MA Jianzhong. Research progress of leather collagen in flexible intelligent wearable field[J]. Chemical Industry and Engineering Progress, 2024, 43(5): 2645-2660.
1 | FAN Xin, KE Tao, GU Haibin. Multifunctional, ultra-tough organohydrogel E-skin reinforced by hierarchical goatskin fibers skeleton for energy harvesting and self-powered monitoring[J]. Advanced Functional Materials, 2023, 33(42): 2304015. |
2 | KENNEDY L J, RATNAJI T, KONIKKARA N, et al. Value added porous carbon from leather wastes as potential supercapacitor electrode using neutral electrolyte[J]. Journal of Cleaner Production, 2018, 197: 930-936. |
3 | GAO Dangge, GUO Shihao, ZHOU Yingying, et al. Absorption-dominant, low-reflection multifunctional electromagnetic shielding material derived from hydrolysate of waste leather scraps[J]. ACS Applied Materials & Interfaces, 2022, 14(33): 38077-38089. |
4 | ZHENG Chi, GAO Dangge, Bin LYU, et al. Eco-friendly bionic flexible multifunctional sensors based on biomass-MXene composites[J]. ACS Sustainable Chemistry & Engineering, 2023, 11(15): 5834-5844. |
5 | Shanghai Jiao Tong University. 125 Questions: Exploration and discovery[M]. Washing D C: Science, 2021. |
6 | SANDERSON K. Electronic skin: From flexibility to a sense of touch[J]. Nature, 2021, 591(7851): 685-687. |
7 | 姚黎明, 张研柔, 刘振华, 等. 纳米纤维素/MXene柔性电子器件的制备及应用研究进展[J]. 中国造纸学报, 2023, 38(3): 9-17. |
YAO Liming, ZHANG Yanrou, LIU Zhenhua, et al. Progress in the preparation and application of nanocellulose/MXene flexible electronic devices[J]. Transactions of China Pulp and Paper, 2023, 38(3): 9-17. | |
8 | GHODBANE S A, DUNN M G. Physical and mechanical properties of cross-linked type Ⅰ collagen scaffolds derived from bovine, porcine, and ovine tendons[J]. Journal of Biomedical Materials Research Part A, 2016, 104(11): 2685-2692. |
9 | HU Yang, LIU Lan, GU Zhipeng, et al. Modification of collagen with a natural derived cross-linker, alginate dialdehyde[J]. Carbohydrate Polymers, 2014, 102: 324-332. |
10 | SHARMA S, THIND S S, KAUR A. In vitro meat production system: Why and how?[J]. Journal of Food Science and Technology, 2015, 52(12): 7599-7607. |
11 | RAO J R, THANIKAIVELAN P, SREERAM K J, et al. Green route for the utilization of chrome shavings (chromium-containing solid waste) in tanning industry[J]. Environmental Science & Technology, 2002, 36(6): 1372-1376. |
12 | SUNDAR V J, GNANAMANI A, MURALIDHARAN C, et al. Recovery and utilization of proteinous wastes of leather making: A review[J]. Reviews in Environmental Science and Bio/Technology, 2011, 10(2): 151-163. |
13 | WANG Lili, CHEN Di, JIANG Kai, et al. New insights and perspectives into biological materials for flexible electronics[J]. Chemical Society Reviews, 2017, 46(22): 6764-6815. |
14 | TORCULAS M, MEDINA J, XUE Wei, et al. Protein-based bioelectronics[J]. ACS Biomaterials Science & Engineering, 2016, 2(8): 1211-1223. |
15 | MOGILNER I G, RUDERMAN G, GRIGERA J R. Collagen stability, hydration and native state[J]. Journal of Molecular Graphics and Modelling, 2002, 21(3): 209-213. |
16 | QU Wenjuan, GUO Tiantian, ZHANG Xinxin, et al. Preparation of tuna skin collagen-chitosan composite film improved by sweep frequency pulsed ultrasound technology[J]. Ultrasonics Sonochemistry, 2022, 82: 105880. |
17 | Minsik JO, MIN Kyungtaek, ROY B, et al. Protein-based electronic skin akin to biological tissues[J]. ACS Nano, 2018, 12(6): 5637-5645. |
18 | TAO Hu, HWANG Suk-Won, MARELLI B, et al. Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(49): 17385-17389. |
19 | ZHAO Ping, GAO Dangge, Bin LYU, et al. Fabrication of effective electromagnetic shielding leather with a chromium-free multi-network structure[J]. Journal of Cleaner Production, 2022, 374: 133856. |
20 | 王光宇, 肖美添, 赵鹏, 等. 胶原聚集体及其聚集行为研究进展[J]. 生物技术进展, 2017, 7(6): 587-593. |
WANG Guangyu, XIAO Meitian, ZHAO Peng, et al. Progress on collagen aggregates and their aggregation behavior[J]. Current Biotechnology, 2017, 7(6): 587-593. | |
21 | CHEN Qijue, PEI Ying, TANG Keyong, et al. Structure, extraction, processing, and applications of collagen as an ideal component for biomaterials—A review[J]. Collagen and Leather, 2023, 5(1): 1-27. |
22 | BAUMANN L, KAUFMAN J, SAGHARI S. Collagen fillers[J]. Dermatologic Therapy, 2006, 19(3): 134-140. |
23 | SANDERS J E, GOLDSTEIN B S. Collagen fibril diameters increase and fibril densities decrease in skin subjected to repetitive compressive and shear stresses[J]. Journal of Biomechanics, 2001, 34(12): 1581-1587. |
24 | LIU Xinhua, ZHENG Chi, LUO Xiaomin, et al. Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications[J]. Materials Science and Engineering: C, 2019, 99: 1509-1522. |
25 | CAO Lilong, QIU Xia, JIAO Qin, et al. Polysaccharides and proteins-based nanogenerator for energy harvesting and sensing: A review[J]. International Journal of Biological Macromolecules, 2021, 173: 225-243. |
26 | BEDI N, SRIVASTAVA D K, SRIVASTAVA A, et al. Marine biological macromolecules as matrix material for biosensor fabrication[J]. Biotechnology and Bioengineering, 2022, 119(8): 2046-2063. |
27 | DAN Weihua, CHEN Yining, DAN Nianhua, et al. Multi-level collagen aggregates and their applications in biomedical applications[J]. International Journal of Polymer Analysis and Characterization, 2019, 24(8): 667-683. |
28 | YANG Huan, XU Songcheng, SHEN Lirui, et al. Changes in aggregation behavior of collagen molecules in solution with varying concentrations of acetic acid[J]. International Journal of Biological Macromolecules, 2016, 92: 581-586. |
29 | DELGADO L M, BAYON Y, PANDIT A, et al. To cross-link or not to cross-link? Cross-linking associated foreign body response of collagen-based devices[J]. Tissue Engineering Part B: Reviews, 2015, 21(3): 298-313. |
30 | 杜田明. 鱼鳞胶原基质的复合改性及其在创面中的初步应用研究[D]. 北京: 中国人民解放军军事医学科学院, 2016. |
DU Tianming. Modification of fish scale collagen matrix and its preliminary application in wound repair[D]. Beijing: PLA Academy of Military Medical Sciences 2016. | |
31 | 蔡洁. 新型交联剂的合成及交联改性胶原的研究[D]. 广州: 华南理工大学, 2014. |
CAI Jie. Preparation of new crosslinking agents and studying on crosslinking of collagen with them[D]. Guangzhou: South China University of Technology, 2014. | |
32 | HU Yang, LIU Lan, DAN Weihua, et al. Synergistic effect of carbodiimide and dehydrothermal crosslinking on acellular dermal matrix[J]. International Journal of Biological Macromolecules, 2013, 55: 221-230. |
33 | MYRONCHENKO S, ZVYAGINTSEVA T, ASHUKINA N. The effect of ultraviolet radiation on the organization and structure of collagen fibers of dermis[J]. Georgian Medical News, 2020(302): 82-85. |
34 | 缪楠. 鲫鱼皮胶原蛋白理化性质及其自组装行为研究[D]. 镇江: 江苏科技大学, 2019. |
MIAO Nan. Study on the physicochemical properties and self-assembly behavior of collagen from carassius auratus skin[D]. Zhenjiang: Jiangsu University of Science and Technology, 2019. | |
35 | YU Xiaoyue, TANG Cuie, XIONG Shanbai, et al. Modification of collagen for biomedical applications: A review of physical and chemical methods[J]. Current Organic Chemistry, 2016, 20(17): 1797-1812. |
36 | ZHANG Xiaoxia, XU Songcheng, SHEN Lirui, et al. Factors affecting thermal stability of collagen from the aspects of extraction, processing and modification[J]. Journal of Leather Science and Engineering, 2020, 2(1): 1-29. |
37 | KOZLOWSKA J, STACHOWIAK N, PRUS W. Stability studies of collagen-based microspheres with Calendula officinalis flower extract[J]. Polymer Degradation and Stability, 2019, 163: 214-219. |
38 | XU Chengzhi, WEI Xu, SHU Feiyi, et al. Induction of fiber-like aggregation and gelation of collagen by ultraviolet irradiation at low temperature[J]. International Journal of Biological Macromolecules, 2020, 153: 232-239. |
39 | SONG Xiaoyan, DONG Pengfei, GRAVESANDE J, et al. UV-mediated solid-state cross-linking of electrospinning nanofibers of modified collagen[J]. International Journal of Biological Macromolecules, 2018, 120: 2086-2093. |
40 | WEADOCK K S, MILLER E J, BELLINCAMPI L D, et al. Physical crosslinking of collagen fibers: Comparison of ultraviolet irradiation and dehydrothermal treatment[J]. Journal of Biomedical Materials Research, 1995, 29(11): 1373-1379. |
41 | 张金伟, 曹念, 陈武勇. 微波辐照对胶原蛋白三股螺旋结构的影响[J]. 光谱学与光谱分析, 2018, 38(5): 1353-1357. |
ZHANG Jinwei, CAO Nian, CHEN Wuyong. Influence of microwave irradiation on collagen triple helix structure[J]. Spectroscopy and Spectral Analysis, 2018, 38(5): 1353-1357. | |
42 | CAO Sheng, LI Hejun, LI Kezhi, et al. A dense and strong bonding collagen film for carbon/carbon composites[J]. Applied Surface Science, 2015, 347: 307-314. |
43 | BAILEY A J, LIGHT N D, ATKINS E D T. Chemical cross-linking restrictions on models for the molecular organization of the collagen fibre[J]. Nature, 1980, 288(5789): 408-410. |
44 | CHOY A T H, LEONG K W, CHAN B P. Chemical modification of collagen improves glycosaminoglycan retention of their co-precipitates[J]. Acta Biomaterialia, 2013, 9(1): 4661-4672. |
45 | ADAMIAK K, SIONKOWSKA A. Current methods of collagen cross-linking: Review[J]. International Journal of Biological Macromolecules, 2020, 161: 550-560. |
46 | MASTROPASQUA L. Collagen cross-linking: When and how? A review of the state of the art of the technique and new perspectives[J]. Eye and Vision, 2015, 2(1): 1-10. |
47 | ZHANG Ting, YU Zhe, MA Yun, et al. Modulating physicochemical properties of collagen films by cross-linking with glutaraldehyde at varied pH values[J]. Food Hydrocolloids, 2022, 124: 107270. |
48 | SCIALLA S, GULLOTTA F, IZZO D, et al. Genipin-crosslinked collagen scaffolds inducing chondrogenesis: A mechanical and biological characterization[J]. Journal of Biomedical Materials Research Part A, 2022, 110(7): 1372-1385. . |
49 | LI Weilin, FAN Xialian, WANG Ying, et al. A glycidyl methacrylate modified collagen/polyethylene glycol diacrylate hydrogel: A mechanically strong hydrogel for loading levofloxacin[J]. New Journal of Chemistry, 2020, 44: 17027-17032. |
50 | OCAK B. Chitosan/collagen hydrolysate based films obtained from hide trimming wastes reinforced with chitosan nanoparticles[J]. Food Biophysics, 2021, 16(3): 381-394. |
51 | DELGADO L M, FULLER K, ZEUGOLIS D I. Collagen cross-linking: biophysical, biochemical, and biological response analysis[J]. Tissue Engineering Part A, 2017, 23(19-20): 1064-1077. |
52 | HAO Dongyu, WANG Xuechuan, LIU Xinhua, et al. Chrome-free tanning agent based on epoxy-modified dialdehyde starch towards sustainable leather making[J]. Green Chemistry, 2021, 23(23): 9693-9703. |
53 | GAO Dangge, LI Xinjing, CHENG Yiming, et al. The modification of collagen with biosustainable POSS graft oxidized sodium alginate composite[J]. International Journal of Biological Macromolecules, 2022, 200: 557-565. |
54 | DING Wei, PANG Xiaoyan, DING Zhiwen, et al. Constructing a robust chrome-free leather tanned by biomass-derived polyaldehyde via crosslinking with chitosan derivatives[J]. Journal of Hazardous Materials, 2020, 396: 122771. |
55 | SPADARO J A, BECKER R O, BACHMAN C H. Size-specific metal complexing sites in native collagen[J]. Nature, 1970, 225(5238): 1134-1136. |
56 | WISE W R, DAVIS S J, HENDRIKSEN W E, et al. Zeolites as sustainable alternatives to traditional tanning chemistries[J]. Green Chemistry, 2023, 25(11): 4260-4270. |
57 | CIAMBELLI P, SANNINO D, NAVIGLIO B, et al. Zeolite-chrome tanning: From laboratory to pilot scale[M]//Studies in Surface Science and Catalysis. Amsterdam: Elsevier, 2005, 155: 189-198. |
58 | BACARDIT A, VAN DER BURGH S, ARMENGOL J, et al. Evaluation of a new environment friendly tanning process[J]. Journal of Cleaner Production, 2014, 65: 568-573. |
59 | 庄辰, 陶芙蓉, 于润慧, 等. 明胶/胶原改性的研究进展[J]. 化学通报, 2015, 78(3): 202-207. |
ZHUANG Chen, TAO Furong, YU Runhui, et al. Progress in gelatin/collagen modification[J]. Chemistry, 2015, 78(3): 202-207. | |
60 | 周东艳. 鱼皮胶原蛋白材料及其复合材料的制备及性能研究[D]. 长春: 吉林大学, 2019. |
ZHOU Dongyan. Preparation and characterization of collagen materials of fish skin and its composite materials[D]. Changchun: Jilin University, 2019. | |
61 | 张亚飞, 逄欣雨, 叶张靖, 等. 胶原蛋白改性方法与应用[J]. 渔业研究, 2020, 42(2): 185-194. |
ZHANG Yafei, PANG Xinyu, YE Zhangjing, et al. Collagen modification method and application[J]. Journal of Fisheries Research, 2020, 42(2): 185-194. | |
62 | 汪晓鹏. 皮胶原蛋白改性高分子制备新型材料的研究[J]. 西部皮革, 2019, 41(13): 37. |
WANG Xiaopeng. Study on preparation of new materials by collagen modified polymer[J]. West Leather, 2019, 41(13): 37. | |
63 | 商晋, 郭康权, 陈文强. 葡甘聚糖/壳聚糖/水解胶原蛋白胶粘剂的二氧化钛共混改性[J]. 材料科学与工程学报, 2016, 34(1): 38-44. |
SHANG Jin, GUO Kangquan, CHEN Wenqiang. Improved performance of konjac glucomannan/chitosan/polypeptide adhesive blends by adding TiO2 [J]. Journal of Materials Science and Engineering, 2016, 34(1): 38-44. | |
64 | SIRIVISOOT S, PARETA R, HARRISON B S. Protocol and cell responses in three-dimensional conductive collagen gel scaffolds with conductive polymer nanofibres for tissue regeneration[J]. Interface Focus, 2014, 4(1): 20130050. |
65 | KEBEDE Z T, TADESSE M G, CHANE T E, et al. Application of PEDOT: PSS conductive polymer to enhance the conductivity of natural leather: Retanning process[J]. Journal of Nanomaterials, 2023, 2023: 1-9. |
66 | RYAN A J, KEARNEY C J, SHEN Nian, et al. Electroconductive biohybrid collagen/pristine graphene composite biomaterials with enhanced biological activity[J]. Advanced Materials, 2018, 30(15): e1706442. |
67 | Hyo-Ryoung LIM, KIM Hee Seok, QAZI R, et al. Wearable flexible hybrid electronics: Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials, 2020, 32(15): 1901924. |
68 | ZHAO Dawei, ZHU Ying, CHENG Wanke, et al. Cellulose: Cellulose-based flexible functional materials for emerging intelligent electronics[J]. Advanced Materials, 2021, 33(28): 2000619. |
69 | XIONG Zheng, YU Haiyang, GONG Xiao. Designing photothermal superhydrophobic PET fabrics via in situ polymerization and 1,4-conjugation addition reaction[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2022, 38(28): 8708-8718. |
70 | HE Jiang, ZHANG Yufei, ZHOU Runhui, et al. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects[J]. Journal of Materiomics, 2020, 6(1): 86-101. |
71 | ABODUREXITI A, YANG Congcong, MAIMAITIYIMING X. High-performance flexible pressure and temperature sensors with complex leather structure[J]. Macromolecular Materials and Engineering, 2020, 305(7): 2000181. |
72 | HAN Yanting, HU Jinlian, SUN Gang. Recent advances in skin collagen: Functionality and non-medical applications[J]. Journal of Leather Science and Engineering, 2021, 3(1): 1-12. |
73 | ZHENG Manhui, WANG Xuechuan, OUYANG Yue, et al. Skin-inspired gelatin-based flexible bio-electronic hydrogel for wound healing promotion and motion sensing[J]. Biomaterials, 2021, 276: 121026. |
74 | WEGENE J D, THANIKAIVELAN P. Conducting leathers for smart product applications[J]. Industrial & Engineering Chemistry Research, 2014, 53(47): 18209-18215. |
75 | HAMMOCK M L, CHORTOS A, C-K TEE B, et al. 25th Anniversary article: The evolution of electronic skin (e-skin): A brief history, design considerations, and recent progress[J]. Advanced Materials, 2013, 25(42): 5997-6038. |
76 | WENGER M P E, BOZEC L, HORTON M A, et al. Mechanical properties of collagen fibrils[J]. Biophysical Journal, 2007, 93(4): 1255-1263. |
77 | ZAN Guangtao, WU Qingsheng. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures[J]. Advanced Materials, 2016, 28(11): 2099-2147. |
78 | WANG Ziying, MA Zongtao, SUN Jingyao, et al. Recent advances in natural functional biopolymers and their applications of electronic skins and flexible strain sensors[J]. Polymers, 2021, 13(5): 813. |
79 | MORENO S, BANIASADI M, MOHAMMED S, et al. Biocompatible collagen films as substrates for flexible implantable electronics[J]. Advanced Electronic Materials, 2015, 1(9): 1500154. |
80 | LIN Kaili, ZHANG Dawei, MACEDO M H, et al. Advanced collagen-based biomaterials for regenerative biomedicine[J]. Advanced Functional Materials, 2019, 29(3): 1804943. |
81 | MA Lie, GAO Changyou, MAO Zhengwei, et al. Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering[J]. Biomaterials, 2003, 24(26): 4833-4841. |
82 | WEI Benmei, ZHONG Huaying, WANG Linjie, et al. Facile preparation of a collagen-graphene oxide composite: A sensitive and robust electrochemical aptasensor for determining dopamine in biological samples[J]. International Journal of Biological Macromolecules, 2019, 135: 400-406. |
83 | ZOU Binghua, CHEN Yuanyuan, LIU Yihan, et al. Repurposed leather with sensing capabilities for multifunctional electronic skin[J]. Advanced Science, 2018, 6(3): 1801283. |
84 | QIN Rong, LUO Xiaomin, FENG Jianyan, et al. A novel eco- and user-friendly graphene/leather-based composite for real-time mechano-monitoring of human motion[J]. Journal of Cleaner Production, 2022, 371: 133360. |
85 | BAI Zhongxue, WANG Xuechuan, HUANG Mengchen, et al. Versatile nano-micro collagen fiber-based wearable electronics for health monitoring and thermal management[J]. Journal of Materials Chemistry A, 2023, 11(2): 726-741. |
86 | JIMA DEMISIE W, PALANISAMY T, KALIAPPA K, et al. Concurrent genesis of color and electrical conductivity in leathers through in-situ polymerization of aniline for smart product applications[J]. Polymers for Advanced Technologies, 2015, 26(5): 521-527. |
87 | 翟瑞, 郭军, 戴睿, 等. 废弃皮革再生利用与面对的问题[J]. 皮革科学与工程, 2021, 31(5): 33-38. |
ZHAI Rui, GUO Jun, DAI Rui, et al. Recycling of waste leather and its problems[J]. Leather Science and Engineering, 2021, 31(5): 33-38. | |
88 | WANG Xuechuan, OUYANG Yue, LIU Xinhua, et al. A novel bio-inspired multi-functional collagen aggregate based flexible sensor with multi-layer and internal 3D network structure[J]. Chemical Engineering Journal, 2020, 392: 123672. |
89 | WANG Zhonglin, SONG Jinhui. Piezoelectric nanogenerators based on zinc oxide nanowire arrays[J]. Science, 2006, 312(5771): 242-246. |
90 | XU Zhenyuan, ZHANG Dongzhi, CAI Haolin, et al. Performance enhancement of triboelectric nanogenerators using contact-separation mode in conjunction with the sliding mode and multifunctional application for motion monitoring[J]. Nano Energy, 2022, 102: 107719. |
91 | ZHAO Hongfa, XU Minyi, SHU Mingrui, et al. Underwater wireless communication via TENG-generated Maxwell’s displacement current[J]. Nature Communications, 2022, 13: 3325. |
92 | XIE Yunrui, MA Qianli, YUE Bin, et al. Triboelectric nanogenerator based on flexible Janus nanofiber membrane with simultaneous high charge generation and charge capturing abilities[J]. Chemical Engineering Journal, 2023, 452: 139393. |
93 | OUYANG Yue, WANG Xuechuan, HOU Mengdi, et al. Skin-inspired wearable self-powered electronic skin with tunable sensitivity for real-time monitoring of sleep quality[J]. Nano Energy, 2022, 91: 106682. |
94 | ZHANG Shaochun, XIAO Yu, CHEN Huamin, et al. Flexible triboelectric tactile sensor based on a robust MXene/leather film for human-machine interaction[J]. ACS Applied Materials & Interfaces, 2023, 15(10): 13802-13812. |
95 | CHENG Kui, LI Haoliang, ZHU Mohan, et al. In situ polymerization of graphene-polyaniline@polyimide composite films with high EMI shielding and electrical properties[J]. RSC Advances, 2020, 10(4): 2368-2377. |
96 | Ze NAN, WEI Wei, LIN Zhenhua, et al. Flexible nanocomposite conductors for electromagnetic interference shielding[J]. Nano-Micro Letters, 2023, 15(1): 1-50. |
97 | CHEN Yiming, YANG Yang, YE Xiong, et al. Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding[J]. Nano Today, 2021, 38: 101204. |
98 | 郭世豪. 基于废革屑水解物制备柔性电磁屏蔽薄膜的研究[D]. 西安: 陕西科技大学, 2022. |
GUO Shihao. Preparation of flexible electromagnetic shielding films based on hydrolysate of waste leather shavings[D]. Xi’an: Shaanxi University of Science & Technology, 2022. | |
99 | LIU Chang, WANG Xiaoling, HUANG Xin, et al. Absorption and reflection contributions to the high performance of electromagnetic waves shielding materials fabricated by compositing leather matrix with metal nanoparticles[J]. ACS Applied Materials & Interfaces, 2018, 10(16): 14036-14044. |
100 | ZENG Shulong, HUANG Zhaoxia, JIANG Hao, et al. From waste to wealth: A lightweight and flexible leather solid waste/polyvinyl alcohol/silver paper for highly efficient electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2020, 12(46): 52038-52049. |
101 | GAO Dangge, GUO Shihao, ZHOU Yingying, et al. Hydrophobic, flexible electromagnetic interference shielding films derived from hydrolysate of waste leather scraps[J]. Journal of Colloid and Interface Science, 2022, 613: 396-405. |
102 | 张文博, 王佳宁, 卫林峰, 等. 功能型聚合物基电磁屏蔽材料的制备及应用[J]. 化学进展, 2023, 35(7): 1065-1076. |
ZHANG Wenbo, WANG Jianing, WEI Linfeng, et al. Preparation and application of functional polymer-based electromagnetic shielding materials[J]. Progress in Chemistry, 2023, 35(7): 1065-1076. | |
103 | YUAN Bin, LAI Shuangxin, LI Jianjun, et al. Trash into treasure: Stiff, thermally insulating and highly conductive carbon aerogels from leather wastes for high-performance electromagnetic interference shielding[J]. Journal of Materials Chemistry C, 2021, 9(7): 2298-2310. |
104 | ZENG Shaoning, PIAN Sijie, SU Minyu, et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling[J]. Science, 2021, 373(6555): 692-696. |
105 | WU Jiawei, ZHANG Manni, SU Minyu, et al. Robust and flexible multimaterial aerogel fabric toward outdoor passive heating[J]. Advanced Fiber Materials, 2022, 4(6): 1545-1555. |
106 | PENG Yucan, CUI Yi. Advanced textiles for personal thermal management and energy[J]. Joule, 2020, 4(4): 724-742. |
107 | PAN Ruijie, WU Jing, QU Jin, et al. Peak-like three-dimensional CoFe2O4/carbon nanotube decorated bamboo fabrics for simultaneous solar-thermal evaporation of water and photocatalytic degradation of bisphenol A[J]. Journal of Materials Science & Technology, 2024, 179: 40-49. |
108 | PAKDEL E, SHARP J, KASHI S, et al. Antibacterial superhydrophobic cotton fabric with photothermal, self-cleaning, and ultraviolet protection functionalities[J]. ACS Applied Materials & Interfaces, 2023, 15(28): 34031-34043. |
109 | MA Jianzhong, MA Li, ZHANG Lei, et al. Bio-based waterborne poly(vanillin-butyl acrylate)/MXene coatings for leather with desired warmth retention and antibacterial properties[J]. Engineering, 2023 |
110 | FAN Xiangqian, YANG Yang, SHI Xinlei, et al. A MXene-based hierarchical design enabling highly efficient and stable solar-water desalination with good salt resistance[J]. Advanced Functional Materials, 2020, 30(52): 2007110. |
111 | MA Zhonglei, XIANG Xiaolian, SHAO Liang, et al. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing[J]. Angewandte Chemie International Edition, 2022, 61(15): e202200705. |
112 | FAN Ziyang, LU Liang, SANG Min, et al. Wearable safeguarding leather composite with excellent sensing, thermal management, and electromagnetic interference shielding[J]. Advanced Science, 2023, 10(26): e2302412. |
113 | HUANG Mengchen, YANG Maiping, GUO Xiaojing, et al. Scalable multifunctional radiative cooling materials[J]. Progress in Materials Science, 2023, 137: 101144. |
114 | XU Zhikui, LI Na, LIU Defang, et al. A new crystal Mg11(HPO3)8(OH)6 for daytime radiative cooling[J]. Solar Energy Materials and Solar Cells, 2018, 185: 536-541. |
115 | MENG Xin, CHEN Zhaochuan, QIAN Chenlu, et al. Hierarchical superhydrophobic poly(vinylidene fluoride-co-hexafluoropropylene) membrane with a bead (SiO2 nanoparticles)-on-string (nanofibers) structure for all-day passive radiative cooling[J]. ACS Applied Materials & Interfaces, 2023, 15(1): 2256-2266. |
116 | XIE Long, WANG Xuechuan, BAI Zhongxue, et al. Facile “synergistic inner-outer activation” strategy for nano-engineering of nature-skin-derived wearable daytime radiation cooling materials[J]. Small, 2023, 19(26): 2207602. |
117 | ZHANG Kai, LEI Xiaojuan, MO Caiqing, et al. A zero-energy, zero-emission air conditioning fabric[J]. Advanced Science, 2023, 10(11): e2206925. |
118 | ZHANG Dong, LIANG Qianqian, ZHOU Zhou, et al. Multifunctional bacterial cellulose photothermal aerogels with multi-bonded network assisted by carbon nanotube[J]. Chemical Engineering Journal, 2023: 144436. |
119 | MO Caiqing, LEI Xiaojuan, TANG Xuelian, et al. Nanoengineering natural leather for dynamic thermal management and electromagnetic interference shielding[J]. Small, 2023, 19(42): 2303368. |
120 | XIONG Chuanyin, LI Mengrui, HAN Qing, et al. Screen printing fabricating patterned and customized full paper-based energy storage devices with excellent photothermal, self-healing, high energy density and good electromagnetic shielding performances[J]. Journal of Materials Science & Technology, 2022, 97: 190-200. |
121 | KRAVCHYK K V, KOVALENKO M V. Perspective on design and technical challenges of Li-garnet solid-state batteries[J]. Science and Technology of Advanced Materials, 2022, 23(1): 41-48. |
122 | XU Tiezhu, WANG Di, LI Zhiwei, et al. Electrochemical proton storage: From fundamental understanding to materials to devices[J]. Nano-Micro Letters, 2022, 14(1): 1-23. |
123 | SHAHBAZI FARAHANI F, RAHMANIFAR M S, NOORI A, et al. Trilayer metal-organic frameworks as multifunctional electrocatalysts for energy conversion and storage applications[J]. Journal of the American Chemical Society, 2022, 144(8): 3411-3428. |
124 | LEE Jaehong, LLERENA ZAMBRANO B, Janghoon WOO, et al. Stretchable electronics: Recent advances in 1D stretchable electrodes and devices for textile and wearable electronics: Materials, fabrications, and applications [J]. Advanced Materials, 2020, 32(5): 1902532. |
125 | YU Chenyang, AN Jianing, CHEN Qiang, et al. Recent advances in design of flexible electrodes for miniaturized supercapacitors Small Methods, 2020, 6(4): 1900824. |
126 | YU Yan, PAN Diankun, ZHAO Liang, et al. Paper-like polyphenylene sulfide/aramid fiber electrode with excellent areal capacitance and flame-retardant performance[J]. Advanced Fiber Materials, 2022, 4(5): 1246-1255. |
127 | MILLER E E, HUA Ye, TEZEL F H. Materials for energy storage: Review of electrode materials and methods of increasing capacitance for supercapacitors[J]. Journal of Energy Storage, 2018, 20: 30-40. |
128 | JIANG Hao, MA Jan, LI Chunzhong. Mesoporous carbon incorporated metal oxide nanomaterials as supercapacitor electrodes[J]. Advanced Materials, 2012, 24(30): 4197-4202. |
129 | WANG Guoping, ZHANG Lei, ZHANG Jiujun. A review of electrode materials for electrochemical supercapacitors[J]. Chemical Society Reviews, 2012, 41(2): 797-828. |
130 | FU Lijun, QU Qunting, HOLZE R, et al. Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: The best of both worlds?[J]. Journal of Materials Chemistry A, 2019, 7(25): 14937-14970. |
131 | KONIKKARA N, PUNITHAVELAN N, KENNEDY L J, et al. A new approach to solid waste management: Fabrication of supercapacitor electrodes from solid leather wastes using aqueous KOH electrolyte[J]. Clean Technologies and Environmental Policy, 2017, 19(4): 1087-1098. |
132 | 张璐璐. 氮掺杂碳基超级电容器电极材料的制备及性能研究[D]. 哈尔滨: 哈尔滨理工大学, 2020. |
ZHANG Lulu. Fabrication and properties of nitrogen-doped carbon-based supercapacitor electrode materials[D]. Harbin: Harbin University of Science and Technology, 2020. | |
133 | LIU Pengyun, XING Zhihao, WANG Xue, et al. Nanoarchitectonics of nitrogen-doped porous carbon derived from leather wastes for solid-state supercapacitor[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(8): 4887-4901. |
134 | NIU Jin, LIU Mengyue, XU Feng, et al. Synchronously boosting gravimetric and volumetric performance: Biomass-derived ternary-doped microporous carbon nanosheet electrodes for supercapacitors[J]. Carbon, 2018, 140: 664-672. |
135 | WU Hongqin, MU Jiahui, XU Yanglei, et al. Heat-resistant, robust, and hydrophilic separators based on regenerated cellulose for advanced supercapacitors[J]. Small, 2023, 19(1): e2205152. |
136 | YU Haijun, TANG Qunwei, WU Jihuai, et al. Using eggshell membrane as a separator in supercapacitor[J]. Journal of Power Sources, 2012, 206: 463-468. |
137 | XU Heng, WANG Yaping, LIAO Xuepin, et al. A collagen-based electrolyte-locked separator enables capacitor to have high safety and ionic conductivity[J]. Journal of Energy Chemistry, 2020, 47: 324-332. |
[1] | 彭李佳, 王银龙, 翟宸, 王琦, 陈小鹏, 童张法. 白云石可控碳化联产氢氧化镁和碳酸钙及其改性[J]. 化工进展, 2024, 43(4): 1981-1991. |
[2] | 谷星朋, 马红钦, 刘嘉豪. 雷尼镍的磷量子点改性及其催化加氢脱硫性能[J]. 化工进展, 2024, 43(3): 1293-1301. |
[3] | 李伟杰, 康金灿, 张传明, 林丽娜, 李昌鑫, 朱红平. 锆改性Cu/SiO2催化剂催化3-羟基丙酸甲酯选择性加氢[J]. 化工进展, 2024, 43(3): 1328-1341. |
[4] | 董晓涵, 田月, 苏毅. 含钛高炉渣制备复合吸附剂及其铬吸附性能[J]. 化工进展, 2024, 43(3): 1552-1564. |
[5] | 彭程, 徐漪琳, 石钰婧, 张玟, 李宇涛, 王皓冉, 张卫, 占绣萍. 生物炭改性及其对除草剂污染水体和土壤修复的研究进展[J]. 化工进展, 2024, 43(2): 1069-1081. |
[6] | 何兰, 高助威, 亓欣雨, 李成欣, 王世豪, 刘钟馨. 三聚氰胺海绵疏水改性及在油水分离领域的研究进展[J]. 化工进展, 2024, 43(2): 984-1000. |
[7] | 田时泓, 郭磊, 李娜, 宇文超, 许磊, 郭胜惠, 巨少华. 微波加热强化闪蒸工艺的科学基础及发展趋势[J]. 化工进展, 2024, 43(1): 135-144. |
[8] | 陈乐, 种海玲, 张致慧, 何明阳, 陈群. CTAB改性Cu-BTC材料的合成及其吸附分离二甲苯异构体的性能[J]. 化工进展, 2024, 43(1): 455-464. |
[9] | 王家庆, 宋广伟, 李强, 郭帅成, DAI Qingli. 橡胶混凝土界面改性方法及性能提升路径[J]. 化工进展, 2023, 42(S1): 328-343. |
[10] | 陈崇明, 陈秋, 宫云茜, 车凯, 郁金星, 孙楠楠. 分子筛基CO2吸附剂研究进展[J]. 化工进展, 2023, 42(S1): 411-419. |
[11] | 顾永正, 张永生. HBr改性飞灰对Hg0的动态吸附及动力学模型[J]. 化工进展, 2023, 42(S1): 498-509. |
[12] | 朱杰, 金晶, 丁正浩, 杨会盼, 侯封校. 化学链气化中准东煤灰对CaSO4载氧体改性及其作用机理[J]. 化工进展, 2023, 42(9): 4628-4635. |
[13] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
[14] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[15] | 陈俊俊, 费昌恩, 段金汤, 顾雪萍, 冯连芳, 张才亮. 高生物活性聚醚醚酮化学改性研究进展[J]. 化工进展, 2023, 42(8): 4015-4028. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 448
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 223
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |