化工进展 ›› 2024, Vol. 43 ›› Issue (3): 1252-1265.DOI: 10.16085/j.issn.1000-6613.2023-0351
• 工业催化 • 上一篇
刘方旺1(), 韩艺1, 张佳佳1, 步红红1, 王兴鹏1, 于传峰1, 刘猛帅2
收稿日期:
2023-03-08
修回日期:
2023-06-13
出版日期:
2024-03-10
发布日期:
2024-04-11
通讯作者:
刘方旺
作者简介:
刘方旺(1992—),男,博士,副教授,研究方向为新型纳米材料、CO2的捕集与转化。E-mail:liufangwang@sdwfvc.edu.cn。
基金资助:
LIU Fangwang1(), HAN Yi1, ZHANG Jiajia1, BU Honghong1, WANG Xingpeng1, YU Chuanfeng1, LIU Mengshuai2
Received:
2023-03-08
Revised:
2023-06-13
Online:
2024-03-10
Published:
2024-04-11
Contact:
LIU Fangwang
摘要:
作为最主要的温室气体,二氧化碳(CO2)的过度排放已导致了严重的环境问题。同时,CO2也属于储量丰富、廉价、安全和可再生利用的C1资源,被认为是有机合成的理想碳材料。高效且绿色的化学固定CO2耦合制备具有高沸点、高极性、低挥发性和可生物降解性等优点的环状碳酸酯是CO2资源化利用的有效方式,已引起社会各界的广泛关注。本文首先简述了目前合成环状碳酸酯的现有反应路径。然后,以CO2和环氧化物的耦合反应为出发点,着重分析了该反应发生所涉及的反应机理以及催化该反应时多相催化体系的设计思路和当前研究进展。同时,综合比较了不同多相催化体系的催化条件、催化活性及循环使用性等催化参数的优缺点。最后,基于上述分析,本文总结了不同多相催化体系的应用前景并建议其后续发展应与均相催化体系相结合,利用两者的优势高效活化CO2与环氧化物,以实现温和条件下催化耦合反应。
中图分类号:
刘方旺, 韩艺, 张佳佳, 步红红, 王兴鹏, 于传峰, 刘猛帅. CO2与环氧化物耦合制备环状碳酸酯的多相催化体系研究进展[J]. 化工进展, 2024, 43(3): 1252-1265.
LIU Fangwang, HAN Yi, ZHANG Jiajia, BU Honghong, WANG Xingpeng, YU Chuanfeng, LIU Mengshuai. Research advance of heterogeneous catalytic system for the coupling between CO2 and epoxide into propylene carbonate[J]. Chemical Industry and Engineering Progress, 2024, 43(3): 1252-1265.
底物 | 催化剂名称 | 反应条件 | 收率/% | 选择性/% | 循环性 | 参考文献 |
---|---|---|---|---|---|---|
AGE① | 固载化的离子液体PVIm2-BuBr | 90℃;0.86MPa;6h | 48.0 | 49 | 循环五次,仅第四次后略有降低 | [ |
100℃;0.86MPa;6h | 58.8 | 60 | ||||
110℃;0.86MPa;6h | 64.4 | 65 | ||||
110℃;1.34MPa;6h | 84.2 | 85 | ||||
110℃;1.62MPa;6h | 93.1 | 94 | ||||
110℃;1.82MPa;6h | 97.0 | 98 |
表1 固载化的离子液体(PVIm2-RX)催化CO2的耦合反应
底物 | 催化剂名称 | 反应条件 | 收率/% | 选择性/% | 循环性 | 参考文献 |
---|---|---|---|---|---|---|
AGE① | 固载化的离子液体PVIm2-BuBr | 90℃;0.86MPa;6h | 48.0 | 49 | 循环五次,仅第四次后略有降低 | [ |
100℃;0.86MPa;6h | 58.8 | 60 | ||||
110℃;0.86MPa;6h | 64.4 | 65 | ||||
110℃;1.34MPa;6h | 84.2 | 85 | ||||
110℃;1.62MPa;6h | 93.1 | 94 | ||||
110℃;1.82MPa;6h | 97.0 | 98 |
序号 | 催化剂名称 | 载体 | 反应条件 | 收率/% | 循环性/次 | 参考文献 |
---|---|---|---|---|---|---|
1 | 六烷基氯化胍(摩尔分数1%) | SiO2 | 120℃,4.5MPa,4h | 99 | 5 | [ |
2 | 季铵盐(摩尔分数1%) | SiO2 | 150℃,8.0MPa,6h | 97 | 8 | [ |
3 | PEG固载的季铵盐①(摩尔分数1%) | 聚苯乙烯 | 100℃,8.0MPa,12h | 95 | 5 | [ |
4 | 3-氯-2-(羟丙基)三甲基氯化铵(摩尔分数1.7%) | 壳聚糖 | 160℃,4.0MPa,6h | 88 | 5 | [ |
5 | 4-吡咯烷并吡啶碘化铵 | SiO2 | 100℃,0.1MPa,20.5h | 89 | 3 | [ |
6 | 二乙醇胺基卤化铵(摩尔分数2%) | 聚苯乙烯 | 110℃,0.1MPa,6h | 96 | 6 | [ |
7 | 羟丙基三甲基碘化铵(摩尔分数0.4%) | 纤维素 | 120℃,1.2MPa,6h | 88 | 6 | [ |
8 | 季铵盐 | Nano-POF② (COP-114) | 100℃,0.1MPa,24h | 96 | 3 | [ |
表2 固载化的烷基铵盐多相催化体系催化CO2的耦合反应
序号 | 催化剂名称 | 载体 | 反应条件 | 收率/% | 循环性/次 | 参考文献 |
---|---|---|---|---|---|---|
1 | 六烷基氯化胍(摩尔分数1%) | SiO2 | 120℃,4.5MPa,4h | 99 | 5 | [ |
2 | 季铵盐(摩尔分数1%) | SiO2 | 150℃,8.0MPa,6h | 97 | 8 | [ |
3 | PEG固载的季铵盐①(摩尔分数1%) | 聚苯乙烯 | 100℃,8.0MPa,12h | 95 | 5 | [ |
4 | 3-氯-2-(羟丙基)三甲基氯化铵(摩尔分数1.7%) | 壳聚糖 | 160℃,4.0MPa,6h | 88 | 5 | [ |
5 | 4-吡咯烷并吡啶碘化铵 | SiO2 | 100℃,0.1MPa,20.5h | 89 | 3 | [ |
6 | 二乙醇胺基卤化铵(摩尔分数2%) | 聚苯乙烯 | 110℃,0.1MPa,6h | 96 | 6 | [ |
7 | 羟丙基三甲基碘化铵(摩尔分数0.4%) | 纤维素 | 120℃,1.2MPa,6h | 88 | 6 | [ |
8 | 季铵盐 | Nano-POF② (COP-114) | 100℃,0.1MPa,24h | 96 | 3 | [ |
催化剂名称 | 底物 | 反应条件 | 收率 /% | 参考 文献 |
---|---|---|---|---|
MOF-5/TBAB | 环氧丙烷(PO) | 50℃,6.0MPa,4h | 98 | [ |
Co-MOF-74 | SO | 100℃,2.0MPa,4h | 96 | [ |
Mg-MOF-74 | SO | 100℃,2.0MPa,4h | 94 | [ |
Cr-MIL-101 | SO | 25℃,0.8MPa,48h | 95 | [ |
Fe-MIL-101 | SO | 25℃,0.8MPa,48h | 93 | [ |
MOF-505 | PO | 25℃,0.1MPa,48h | 48 | [ |
MOF-5/TBAB | PO | 50℃,0.4MPa,4h | 45 | [ |
ZnMOF-1-NH2 | SO | 80℃,0.8MPa,8h | 88 | [ |
Zn(Ⅱ)-MOF | SO | 70℃,0.1MPa,12h | 99 | [ |
Zn(Ⅱ)-MOF | SO | 100℃,2.0MPa,6h | 99 | [ |
JUC-1000 | PO | 25℃,0.1MPa,48h | 96 | [ |
HKUST-1 | SO | 100℃,2.0MPa,4h | 48 | [ |
MIL-68(In) | SO | 150℃,0.8MPa,8h | 39 | [ |
MIL-101(Cr)-TSIL | SO | 110℃,2.0MPa,6h | 95 | [ |
Co-POM@MIL-101(Cr) | SO | 110℃,2.0MPa,6h | 88 | [ |
MIL-101(Cr) | PO | 35℃,0.15MPa,24h | 99 | [ |
MIL-101(Cr)/TBAB | SO | 60℃,8.0MPa,3h | 99 | [ |
gea-MOF-1 | SO | 120℃,2.0MPa,6h | 85 | [ |
ZIF-8 | SO | 100℃,0.7MPa,5h | 54 | [ |
ZIF-68 | SO | 120℃,1.0MPa,12h | 93 | [ |
IRMOF-3 | SO | 100℃,2.0MPa,4h | 33 | [ |
Ni-TCPE1 | SO | 100℃,1.0MPa,12h | 99 | [ |
表3 MOFs和ZIFs催化剂对耦合反应的催化参数及产品收率对比
催化剂名称 | 底物 | 反应条件 | 收率 /% | 参考 文献 |
---|---|---|---|---|
MOF-5/TBAB | 环氧丙烷(PO) | 50℃,6.0MPa,4h | 98 | [ |
Co-MOF-74 | SO | 100℃,2.0MPa,4h | 96 | [ |
Mg-MOF-74 | SO | 100℃,2.0MPa,4h | 94 | [ |
Cr-MIL-101 | SO | 25℃,0.8MPa,48h | 95 | [ |
Fe-MIL-101 | SO | 25℃,0.8MPa,48h | 93 | [ |
MOF-505 | PO | 25℃,0.1MPa,48h | 48 | [ |
MOF-5/TBAB | PO | 50℃,0.4MPa,4h | 45 | [ |
ZnMOF-1-NH2 | SO | 80℃,0.8MPa,8h | 88 | [ |
Zn(Ⅱ)-MOF | SO | 70℃,0.1MPa,12h | 99 | [ |
Zn(Ⅱ)-MOF | SO | 100℃,2.0MPa,6h | 99 | [ |
JUC-1000 | PO | 25℃,0.1MPa,48h | 96 | [ |
HKUST-1 | SO | 100℃,2.0MPa,4h | 48 | [ |
MIL-68(In) | SO | 150℃,0.8MPa,8h | 39 | [ |
MIL-101(Cr)-TSIL | SO | 110℃,2.0MPa,6h | 95 | [ |
Co-POM@MIL-101(Cr) | SO | 110℃,2.0MPa,6h | 88 | [ |
MIL-101(Cr) | PO | 35℃,0.15MPa,24h | 99 | [ |
MIL-101(Cr)/TBAB | SO | 60℃,8.0MPa,3h | 99 | [ |
gea-MOF-1 | SO | 120℃,2.0MPa,6h | 85 | [ |
ZIF-8 | SO | 100℃,0.7MPa,5h | 54 | [ |
ZIF-68 | SO | 120℃,1.0MPa,12h | 93 | [ |
IRMOF-3 | SO | 100℃,2.0MPa,4h | 33 | [ |
Ni-TCPE1 | SO | 100℃,1.0MPa,12h | 99 | [ |
1 | WEBSTER Dean C. Cyclic carbonate functional polymers and their applications[J]. Progress in Organic Coatings, 2003, 47(1): 77-86. |
2 | BOBBINK Felix D, DYSON Paul J. Synthesis of carbonates and related compounds incorporating CO2 using ionic liquid-type catalysts: State-of-the-art and beyond[J]. Journal of Catalysis, 2016, 343: 52-61. |
3 | SUN Jianmin, FUJITA Shin-ichiro, ARAI Masahiko. Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids[J]. Journal of Organometallic Chemistry, 2005, 690(15): 3490-3497. |
4 | YU Wei, EDWARD Maynard, VIVIANE Chiaradia, et al. Aliphatic polycarbonates from cyclic carbonate monomers and their application as biomaterials[J]. Chemical Reviews, 2021, 121(18): 10865-10907. |
5 | MARCINIAK Aryane A, LAMB Katie J, OZORIO Leonardo P, et al. Heterogeneous catalysts for cyclic carbonate synthesis from carbon dioxide and epoxides[J]. Current Opinion in Green and Sustainable Chemistry, 2020, 26: 100365. |
6 | SHI Feng, DENG Youquan, SIMA Tianlong, et al. Alternatives to phosgene and carbon monoxide: Synthesis of symmetric urea derivatives with carbon dioxide in ionic liquids[J]. Angewandte Chemie International Edition, 2003, 42(28): 3257-3260. |
7 | GREGORY Georgina L, ULMANN Marion, BUCHARD Antoine. Synthesis of 6-membered cyclic carbonates from 1, 3-diols and low CO2 pressure: A novel mild strategy to replace phosgene reagents[J]. RSC Advances, 2015, 5(49): 39404-39408. |
8 | LIU Anhua, LI Yunong, HE Liangnian. Organic synthesis using carbon dioxide as phosgene-free carbonyl reagent[J]. Pure and Applied Chemistry, 2011, 84(3): 581-602. |
9 | DU Ya, HE Liangnian, KONG Delin. Magnesium-catalyzed synthesis of organic carbonate from 1,2-diol/alcohol and carbon dioxide[J]. Catalysis Communications, 2008, 9(8): 1754-1758. |
10 | LI Mingli, ABDOLMOHAMMADI Shahrzad, HOSEININEZHAD-NAMIN Mir S, et al. Carboxylative cyclization of propargylic alcohols with carbon dioxide: A facile and Green route to α-methylene cyclic carbonates[J]. Journal of CO2 Utilization, 2020, 38: 220-231. |
11 | WANG Liang, QUE Sisi, DING Ziwei, et al. Correction: Oxidative carboxylation of olefins with CO2: Environmentally benign access to five-membered cyclic carbonates[J]. RSC Advances, 2020, 10(18): 10806. |
12 | TRUONG Cong Chien, MISHRA Dinesh Kumar. Recent advances in the catalytic fixation of carbon dioxide to value-added chemicals over alkali metal salts[J]. Journal of CO2 Utilization, 2020, 41: 101252. |
13 | LIU Fusheng, GU Yongqiang, XIN Hao, et al. Multifunctional phosphonium-based deep eutectic ionic liquids: Insights into simultaneous activation of CO2 and epoxide and their subsequent cycloaddition[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(19): 16674-16681. |
14 | MA Jun, LIU Jinli, ZHANG Zhaofu, et al. The catalytic mechanism of KI and the co-catalytic mechanism of hydroxyl substances for cycloaddition of CO2 with propylene oxide[J]. Green Chemistry, 2012, 14(9): 2410-2420. |
15 | SONG Jinliang, ZHANG Zhaofu, HAN Buxing, et al. Synthesis of cyclic carbonates from epoxides and CO2 catalyzed by potassium halide in the presence of β-cyclodextrin[J]. Green Chemistry, 2008, 10(12): 1337. |
16 | ZHANG Yuanyuan, YIN Shuangfeng, LUO Shenglian, et al. Cycloaddition of CO2 to epoxides catalyzed by carboxyl-functionalized imidazolium-based ionic liquid grafted onto cross-linked polymer[J]. Industrial & Engineering Chemistry Research, 2012, 51(10): 3951-3957. |
17 | SUN Jian, WANG Jinquan, CHENG Weiguo, et al. Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2 [J]. Green Chemistry, 2012, 14(3): 654-660. |
18 | SUN Jian, CHENG Weiguo, FAN Wei, et al. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2 [J]. Catalysis Today, 2009, 148(3/4): 361-367. |
19 | ZHAO Yuqing, LIU Yingying, MA Jianfang. Polyoxometalate-based organic-inorganic hybrids as heterogeneous catalysts for cycloaddition of CO2 with epoxides and oxidative desulfurization reactions[J]. Crystal Growth & Design, 2021, 21(2): 1019-1027. |
20 | GE Weilin, WANG Xiaochen, ZHANG Lingyu, et al. Fully-occupied Keggin type polyoxometalate as solid base for catalyzing CO2 cycloaddition and Knoevenagel condensation[J]. Catalysis Science & Technology, 2016, 6(2): 460-467. |
21 | FERNANDES Diana M, PEIXOTO Andreia F, FREIRE Cristina. Nitrogen-doped metal-free carbon catalysts for (electro)chemical CO2 conversion and valorisation[J]. Dalton Transactions, 2019, 48(36): 13508-13528. |
22 | MA Xiaoyu, ZOU Bo, CAO Minhua, et al. Nitrogen-doped porous carbon monolith as a highly efficient catalyst for CO2 conversion[J]. Journal of Materials Chemistry A, 2014, 2(43): 18360-18366. |
23 | WANG X, HUI W, HU A, et al. A synthesis of porous activated carbon materials derived from vitamin B9 base for CO2 capture and conversion[J]. Materials Today Chemistry, 2021, 20: 100468. |
24 | AN Qiao, LI Zifeng, GRAFF Robert, et al. Core-double-shell Fe3O4@Carbon@Poly(InⅢ-carboxylate) microspheres: Cycloaddition of CO2 and epoxides on coordination polymer shells constituted by imidazolium-derived AlⅢ-salen bifunctional catalysts[J]. ACS Applied Materials & Interfaces, 2015, 7(8): 4969-4978. |
25 | MIN Jie, SONG Wei, HU Tianding, et al. Fe3O4@SiO2 nanoparticle-supported Co(Ⅲ)-Salen composites as recyclable heterogeneous catalyst for the fixation of CO2 [J]. Ceramics International, 2021, 47(24): 35320-35332. |
26 | Fernando CASTRO-GÓMEZ, SALASSA Giovanni, KLEIJ Arjan W, et al. A DFT study on the mechanism of the cycloaddition reaction of CO2 to epoxides catalyzed by Zn(salphen) complexes[J]. Chemistry-A European Journal, 2013, 19(20): 6289-6298. |
27 | ZHANG Chenjun, LU Dan, LENG Yan, et al. Metal-salen-bridged ionic networks as efficient bifunctional solid catalysts for chemical fixation of CO2 into cyclic carbonates[J]. Molecular Catalysis, 2017, 439: 193-199. |
28 | 梁均. 阳离子型金属-有机框架的设计、制备及对CO2的催化转化性能研究[D]. 厦门: 厦门大学, 2018. |
LIANG Jun. Design and preparation of cationic metal-organic framework and its catalytic conversion performance for CO2 [D]. Xiamen: Xiamen University, 2018. | |
29 | Jinmi NOH, KIM Youngik, PARK Hyojin, et al. Functional group effects on a metal-organic framework catalyst for CO2 cycloaddition[J]. Journal of Industrial and Engineering Chemistry, 2018, 64: 478-483. |
30 | DING Luogang, YAO Bingjian, JIANG Weiling, et al. Bifunctional imidazolium-based ionic liquid decorated UiO-67 type MOF for selective CO2 adsorption and catalytic property for CO2 cycloaddition with epoxides[J]. Inorganic Chemistry, 2017, 56(4): 2337-2344. |
31 | MOUSAVI Bibimaryam, CHAEMCHUEN Somboon, MOOSAVI Behrooz, et al. CO2 cycloaddition to epoxides by using M-DABCO metal-organic frameworks and the influence of the synthetic method on catalytic reactivity[J]. ChemistryOpen, 2017, 6(5): 674-680. |
32 | SENGUPTA Manideepa, Arijit BAG, GHOSH Swarbhanu, et al. Cu x O y @COF: An efficient heterogeneous catalyst system for CO2 cycloadditions under ambient conditions[J]. Journal of CO2 Utilization, 2019, 34: 533-542. |
33 | ZHAO Yuling, ZHAO Yue, QIU Jikuan, et al. Facile grafting of imidazolium salt in covalent organic frameworks with enhanced catalytic activity for CO2 fixation and the Knoevenagel reaction[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(50): 18413-18419. |
34 | GUGLIELMERO Luca, MEZZETTA Andrea, POMELLI Christian Silvio, et al. Evaluation of the effect of the dicationic ionic liquid structure on the cycloaddition of CO2 to epoxides[J]. Journal of CO2 Utilization, 2019, 34: 437-445. |
35 | LIU Fang, HU Yuhang, ZHOU Jingsheng, et al. “Responsive” ionic liquids to catalyze the transformation of carbon dioxide under atmospheric pressure[J]. Applied Catalysis A: General, 2021, 623: 118241. |
36 | SHANG Yuhan, GONG Qing, ZHENG Mai, et al. An efficient morpholinium ionic liquid based catalyst system for cycloaddition of CO2 and epoxides under mild conditions[J]. Journal of Molecular Liquids, 2019, 283: 235-241. |
37 | MENG Xianglei, JU Zhaoyang, ZHANG Suojiang, et al. Efficient transformation of CO2 to cyclic carbonates using bifunctional protic ionic liquids under mild conditions[J]. Green Chemistry, 2019, 21(12): 3456-3463. |
38 | SHI Guiling, ZHAI Ran, LI Haoran, et al. Highly efficient synthesis of alkylidene cyclic carbonates from low concentration CO2 using hydroxyl and azolate dual functionalized ionic liquids[J]. Green Chemistry, 2021, 23(1): 592-596. |
39 | HUI Wei, WANG Xiang, LI Xiaoning, et al. Protic ionic liquids tailored by different cationic structures for efficient chemical fixation of diluted and waste CO2 into cyclic carbonates[J]. New Journal of Chemistry, 2021, 45(24): 10741-10748. |
40 | LIU Ying, CAO Zhi, ZHOU Zheng, et al. Imidazolium-based deep eutectic solvents as multifunctional catalysts for multisite synergistic activation of epoxides and ambient synthesis of cyclic carbonates[J]. Journal of CO2 Utilization, 2021, 53: 101717. |
41 | LIU Fusheng, GU Yongqiang, ZHAO Penghui, et al. N-hydroxysuccinimide based deep eutectic catalysts as a promising platform for conversion of CO2 into cyclic carbonates at ambient temperature[J]. Journal of CO2 Utilization, 2019, 33: 419-426. |
42 | HE Liang, ZHANG Wenwen, YANG Yufan, et al. Novel biomass-derived deep eutectic solvents promoted cycloaddition of CO2 with epoxides under mild and additive-free conditions[J]. Journal of CO2 Utilization, 2021, 54: 101750. |
43 | TAN Liangxiao, TAN Bien. Hypercrosslinked porous polymer materials: Design, synthesis, and applications[J]. Chemical Society Reviews, 2017, 46(11): 3322-3356. |
44 | WANG Jinyuan, LIANG Yatao, ZHOU Dagang, et al. New crown ether complex cation ionic liquids with N-heterocycle anions: Preparation and application in CO2 fixation[J]. Organic Chemistry Frontiers, 2018, 5(5): 741-748. |
45 | JIANG Xu, GOU Faliang, CHEN Fengjuan, et al. Cycloaddition of epoxides and CO2 catalyzed by bisimidazole-functionalized porphyrin cobalt(Ⅲ) complexes[J]. Green Chemistry, 2016, 18(12): 3567-3576. |
46 | HU Tianding, SUN Yuwang, DING Yihong. A quantum-chemical insight on chemical fixation carbon dioxide with epoxides co-catalyzed by MIL-101 and tetrabutylammonium bromide[J]. Journal of CO2 Utilization, 2018, 28: 200-206. |
47 | GAO Xiangxiang, LIU Mengshuai, LAN Jianwen, et al. Lewis acid-base bifunctional crystals with a three-dimensional framework for selective coupling of CO2 and epoxides under mild and solvent-free conditions[J]. Crystal Growth & Design, 2017, 17(1): 51-57. |
48 | WANG Tingting, XIE Yong, DENG Weiqiao. Reaction mechanism of epoxide cycloaddition to CO2 catalyzed by salen-M (M=Co, Al, Zn)[J]. The Journal of Physical Chemistry A, 2014, 118(39): 9239-9243. |
49 | SONG Chengling, LING Yajing, JIN Liting, et al. CO2 adsorption of three isostructural metal-organic frameworks depending on the incorporated highly polarized heterocyclic moieties[J]. Dalton Transactions, 2016, 45(1): 190-197. |
50 | HE Jinling, WU Tianbin, ZHANG Zhaofu, et al. Cycloaddition of CO2 to epoxides catalyzed by polyaniline salts[J]. Chemistry-A European Journal, 2007, 13(24): 6992-6997. |
51 | Chee Koon NG, Ren Wei TOH, LIN Ting ting, et al. Metal-salen molecular cages as efficient and recyclable heterogeneous catalysts for cycloaddition of CO2 with epoxides under ambient conditions[J]. Chemical Science, 2019, 10(5): 1549-1554. |
52 | Saeideh GHAZALI-ESFAHANI, SONG Hongbing, Emilia PăUNESCU, et al. Cycloaddition of CO2 to epoxides catalyzed by imidazolium-based polymeric ionic liquids[J]. Green Chemistry, 2013, 15(6): 1584-1589. |
53 | UDAYAKUMAR Seshachalam, LEE Mi-Kyung, SHIM Hye-Lim, et al. Imidazolium derivatives functionalized MCM-41 for catalytic conversion of carbon dioxide to cyclic carbonate[J]. Catalysis Communications, 2009, 10(5): 659-664. |
54 | CHENG Weiguo, CHEN Xi, SUN Jian, et al. SBA-15 supported triazolium-based ionic liquids as highly efficient and recyclable catalysts for fixation of CO2 with epoxides[J]. Catalysis Today, 2013, 200: 117-124. |
55 | ZUCCA Paolo, SANJUST Enrico. Inorganic materials as supports for covalent enzyme immobilization: Methods and mechanisms[J]. Molecules, 2014, 19(9): 14139-14194. |
56 | HAN Lina, CHOI Hye-Ji, KIM Dong-Kyu, et al. Porous polymer bead-supported ionic liquids for the synthesis of cyclic carbonate from CO2 and epoxide[J]. Journal of Molecular Catalysis A: Chemical, 2011, 338(1/2): 58-64. |
57 | MOTOKURA Ken, ITAGAKI Shintaro, IWASAWA Yasuhiro, et al. Silica-supported aminopyridinium halides for catalytic transformations of epoxides to cyclic carbonates under atmospheric pressure of carbon dioxide[J]. Green Chemistry, 2009, 11(11): 1876-1880. |
58 | XIE Haibo, DUAN Haifeng, LI Shenghai, et al. The effective synthesis of propylene carbonate catalyzed by silica-supported hexaalkylguanidinium chloride[J]. New Journal of Chemistry, 2005, 29(9): 1199-1203. |
59 | WANG Jinquan, KONG Delin, CHEN Jianyu, et al. Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions[J]. Journal of Molecular Catalysis A: Chemical, 2006, 249(1/2): 143-148. |
60 | DU Ya, WANG Jinquan, CHEN Jianyu, et al. A poly(ethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions[J]. Tetrahedron Letters, 2006, 47(8): 1271-1275. |
61 | ZHAO Yuan, TIAN Jiesheng, QI Xinhua, et al. Quaternary ammonium salt-functionalized chitosan: An easily recyclable catalyst for efficient synthesis of cyclic carbonates from epoxides and carbon dioxide[J]. Journal of Molecular Catalysis A: Chemical, 2007, 271(1/2): 284-289. |
62 | CHEN Xi, SUN Jian, WANG Jinquan, et al. Polystyrene-bound diethanolamine based ionic liquids for chemical fixation of CO2 [J]. Tetrahedron Letters, 2012, 53(22): 2684-2688. |
63 | THARUN Jose, KIM Dong Woo, ROSHAN Roshith, et al. Microwave assisted preparation of quaternized chitosan catalyst for the cycloaddition of CO2 and epoxides[J]. Catalysis Communications, 2013, 31: 62-65. |
64 | KIM Doyun, SUBRAMANIAN Saravanan, THIRION Damien, et al. Quaternary ammonium salt grafted nanoporous covalent organic polymer for atmospheric CO2 fixation and cyclic carbonate formation[J]. Catalysis Today, 2020, 356: 527-534. |
65 | LIU Mengshuai, WANG Xin, JIANG Yichen, et al. Hydrogen bond activation strategy for cyclic carbonates synthesis from epoxides and CO2: Current state-of-the art of catalyst development and reaction analysis[J]. Catalysis Reviews, 2019, 61(2): 214-269. |
66 | GOU Haibin, MA Xifei, SU Qian, et al. Hydrogen bond donor functionalized poly(ionic liquid)s for efficient synergistic conversion of CO2 to cyclic carbonates[J]. Physical Chemistry Chemical Physics, 2021, 23(3): 2005-2014. |
67 | WAN Yali, ZHANG Zemin, DING Chao, et al. Facile construction of bifunctional porous ionic polymers for efficient and metal-free catalytic conversion of CO2 into cyclic carbonates[J]. Journal of CO2 Utilization, 2021, 52: 101673. |
68 | ZHANG Feng, WANG Yanyan, ZHANG Xiaochun, et al. Recent advances in the coupling of CO2 and epoxides into cyclic carbonates under halogen-free condition[J]. Green Chemical Engineering, 2020, 1(2): 82-93. |
69 | Tapan K PAL, DE Dinesh, BHARADWAJ Parimal K. Metal-organic frameworks for the chemical fixation of CO2 into cyclic carbonates[J]. Coordination Chemistry Reviews, 2020, 408: 213173. |
70 | SONG Jinliang, ZHANG Zhaofu, HU Suqin, et al. MOF-5/n-Bu4NBr: An efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions[J]. Green Chemistry, 2009, 11(7): 1031-1036. |
71 | ZALOMAEVA Olga V, MAKSIMCHUK Nataliya V, CHIBIRYAEV Andrey M, et al. Synthesis of cyclic carbonates from epoxides or olefins and CO2 catalyzed by metal-organic frameworks and quaternary ammonium salts[J]. Journal of Energy Chemistry, 2013, 22(1): 130-135. |
72 | MIRALDA Carmen M, MACIAS Eugenia E, ZHU Minqi, et al. Zeolitic imidazole framework-8 catalysts in the conversion of CO2 to chloropropene carbonate[J]. ACS Catalysis, 2012, 2(1): 180-183. |
73 | XU Wei, CHEN Hao, Kecheng JIE, et al. Entropy-driven mechanochemical synthesis of polymetallic zeolitic imidazolate frameworks for CO2 fixation[J]. Angewandte Chemie International Edition, 2019, 58(15): 5018-5022. |
74 | ZHU Minqi, SRINIVAS Darbha, BHOGESWARARAO Seemala, et al. Catalytic activity of ZIF-8 in the synthesis of styrene carbonate from CO2 and styrene oxide[J]. Catalysis Communications, 2013, 32: 36-40. |
75 | YANG Lili, YU Lin, DIAO Guiqiang, et al. Zeolitic imidazolate framework-68 as an efficient heterogeneous catalyst for chemical fixation of carbon dioxide[J]. Journal of Molecular Catalysis A: Chemical, 2014, 392: 278-283. |
76 | JOSE Tharun, HWANG Yeseul, KIM Dong-Woo, et al. Functionalized zeolitic imidazolate framework F-ZIF-90 as efficient catalyst for the cycloaddition of carbon dioxide to allyl glycidyl ether[J]. Catalysis Today, 2015, 245: 61-67. |
77 | THARUN Jose, MATHAI George, KATHALIKKATTIL Amal Cherian, et al. Exploring the catalytic potential of ZIF-90: Solventless and co-catalyst-free synthesis of propylene carbonate from propylene oxide and CO2 [J]. ChemPlusChem, 2015, 80(4): 715-721. |
78 | KATHALIKKATTIL Amal Cherian, ROSHAN Roshith, THARUN Jose, et al. Pillared cobalt-amino acid framework catalysis for styrene carbonate synthesis from CO2 and epoxide by metal-sulfonate-halide synergism[J]. ChemCatChem, 2014, 6(1): 284-292. |
79 | FENG Dawei, CHUNG Wan-Chun, WEI Zhangwen, et al. Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination[J]. Journal of the American Chemical Society, 2013, 135(45): 17105-17110. |
80 | CHO Hye-Young, YANG Da-Ae, KIM Jun, et al. CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating[J]. Catalysis Today, 2012, 185(1): 35-40. |
81 | KIM Yu-Jin, PARK Dae-Won. Functionalized IRMOF-3: An efficient heterogeneous catalyst for the cycloaddition of allyl glycidyl ether and CO2 [J]. Journal of Nanoscience and Nanotechnology, 2013, 13(3): 2307-2312. |
82 | ZALOMAEVA Olga V, CHIBIRYAEV Andrey M, KOVALENKO Konstantin A, et al. Cyclic carbonates synthesis from epoxides and CO2 over metal-organic framework Cr-MIL-101[J]. Journal of Catalysis, 2013, 298: 179-185. |
83 | GAO Wenyang, CHEN Yao, NIU Youhong, et al. Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions[J]. Angewandte Chemie International Edition, 2014, 53(10): 2615-2619. |
84 | KIM Hyunuk, MOON Hyun-Sik, SOHAIL Muhammad, et al. Synthesis of cyclic carbonate by CO2 fixation to epoxides using interpenetrated MOF-5/n-Bu4NBr[J]. Journal of Materials Science, 2019, 54(18): 11796-11803. |
85 | Patel Parth, Parmar Bhavesh, KURESHY Rukhsana I, et al. Amine-functionalized Zn(Ⅱ) MOF as an efficient multifunctional catalyst for CO2 utilization and sulfoxidation reaction[J]. Dalton Transactions, 2018, 47(24): 8041-8051. |
86 | GUPTA Mayank, DE Dinesh, TOMAR Kapil, et al. From Zn(Ⅱ)-carboxylate to double-walled Zn(Ⅱ)-carboxylato phosphate MOF: Change in the framework topology, capture and conversion of CO2, and catalysis of strecker reaction[J]. Inorganic Chemistry, 2017, 56(23): 14605-14611. |
87 | VERMA Ashish, DE Dinesh, TOMAR Kapil, et al. An amine functionalized metal-organic framework as an effective catalyst for conversion of CO2 and biginelli reactions[J]. Inorganic Chemistry, 2017, 56(16): 9765-9771. |
88 | HE Hongming, SUN Qi, GAO Wenyang, et al. A stable metal–organic framework featuring a local buffer environment for carbon dioxide fixation[J]. Angewandte Chemie International Edition, 2018, 57(17): 4657-4662. |
89 | KIM Jun, KIM Se-Na, JANG Hoi-Gu, et al. CO2 cycloaddition of styrene oxide over MOF catalysts[J]. Applied Catalysis A: General, 2013, 453: 175-180. |
90 | LESCOUET Tristan, CHIZALLET Céline, FARRUSSENG David. The origin of the activity of amine-functionalized metal-organic frameworks in the catalytic synthesis of cyclic carbonates from epoxide and CO2 [J]. ChemCatChem, 2012, 4(11): 1725-1728. |
91 | BAHADORI Mehrnaz, TANGESTANINEJAD Shahram, BERTMER Marko, et al. Task-specific ionic liquid functionalized-MIL-101(Cr) as a heterogeneous and efficient catalyst for the cycloaddition of CO2 with epoxides under solvent free conditions[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(4): 3962-3973. |
92 | MARANDI Afsaneh, BAHADORI Mehrnaz, TANGESTANINEJAD Shahram, et al. Cycloaddition of CO2 with epoxides and esterification reactions using the porous redox catalyst Co-POM@MIL-101(Cr)[J]. New Journal of Chemistry, 2019, 43(39): 15585-15595. |
93 | AKIMANA Emmanuelia, WANG Jichao, LIKHANOVA Natalya V, et al. MIL-101(Cr) for CO2 conversion into cyclic carbonates, under solvent and co-catalyst free mild reaction conditions[J]. Catalysts, 2020, 10(4): 453. |
94 | TAHERIMEHR Masoumeh, Ben VAN DE VOORDE, Lik H WEE, et al. Strategies for enhancing the catalytic performance of metal-organic frameworks in the fixation of CO2 into cyclic carbonates[J]. ChemSusChem, 2017, 10(6): 1283-1291. |
95 | ZHOU Zhen, HE Cheng, XIU Jinghai, et al. Metal-organic polymers containing discrete single-walled nanotube as a heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides[J]. Journal of the American Chemical Society, 2015, 137(48): 15066-15069. |
96 | HUANG Kuan, ZHANG Jiayin, LIU Fujian, et al. Synthesis of porous polymeric catalysts for the conversion of carbon dioxide[J]. ACS Catalysis, 2018, 8(10): 9079-9102. |
97 | SUN Qi, DAI Zhifeng, MENG Xiangju, et al. Porous polymer catalysts with hierarchical structures[J]. Chemical Society Reviews, 2015, 44(17): 6018-6034. |
98 | Søren KRAMER, BENNEDSEN Niklas R, Søren KEGNÆS. Porous organic polymers containing active metal centers as catalysts for synthetic organic chemistry[J]. ACS Catalysis, 2018, 8(8): 6961-6982. |
99 | LU Weigang, YUAN Daqiang, SCULLEY Julian, et al. Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure[J]. Journal of the American Chemical Society, 2011, 133(45): 18126-18129. |
100 | KIM Kahee, KIM Sungyoon, TALAPANENI Siddulu N, et al. Transition metal complex directed synthesis of porous cationic polymers for efficient CO2 capture and conversion[J]. Polymer, 2017, 126: 296-302. |
101 | LU Weigang, SCULLEY Julian P, YUAN Daqiang, et al. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas[J]. Angewandte Chemie International Edition, 2012, 51(30): 7480-7484. |
102 | LI He, FENG Xiao, SHAO Pengpeng, et al. Synthesis of covalent organic frameworks via in situ salen skeleton formation for catalytic applications[J]. Journal of Materials Chemistry A, 2019, 7(10): 5482-5492. |
103 | LIU Manying, GUO Liping, JIN Shangbin, et al. Covalent triazine frameworks: Synthesis and applications[J]. Journal of Materials Chemistry A, 2019, 7(10): 5153-5172. |
104 | GENG Tongmou, CHEN Guofeng, ZHANG Can, et al. A superacid-catalyzed synthesis of fluorescent covalent triazine based framework containing perylene tetraanhydride bisimide for sensing to O-nitrophenol with ultrahigh sensitivity[J]. Journal of Macromolecular Science A, 2019, 56(11): 1004-1011. |
105 | YU Soo-Young, MAHMOOD Javeed, Hyuk-Jun NOH, et al. Direct synthesis of a covalent triazine-based framework from aromatic amides[J]. Angewandte Chemie International Edition, 2018, 57(28): 8438-8442. |
106 | ROESER Jérôme, KAILASAM Kamalakannan, THOMAS Arne. Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxides[J]. ChemSusChem, 2012, 5(9): 1793-1799. |
107 | LI Yimeng, YANG Li, SUN Lei, et al. Chemical fixation of carbon dioxide catalyzed via covalent triazine frameworks as metal free heterogeneous catalysts without a cocatalyst[J]. Journal of Materials Chemistry A, 2019, 7(45): 26071-26076. |
108 | YU Wenguang, GU Shuai, FU Yu, et al. Carbazole-decorated covalent triazine frameworks: Novel nonmetal catalysts for carbon dioxide fixation and oxygen reduction reaction[J]. Journal of Catalysis, 2018, 362: 1-9. |
[1] | 王凯, 叶丁丁, 朱恂, 杨扬, 陈蓉, 廖强. 超亲气泡沫铜纳米线电极电化学还原CO2性能[J]. 化工进展, 2024, 43(3): 1232-1240. |
[2] | 张瑞凯, 张会书, 郑龙云, 曾爱武. CO2吸收过程中气相分压对Rayleigh对流传质特性的影响[J]. 化工进展, 2024, 43(2): 913-924. |
[3] | 朱兵国, 巩楷刚, 彭斌. 垂直管内高质量流速超临界CO2换热特性[J]. 化工进展, 2024, 43(2): 937-947. |
[4] | 陈晓贞, 刘丽, 杨成敏, 郑步梅, 尹晓莹, 孙进, 姚运海, 段为宇. 氧化铝基加氢脱硫催化剂研究进展[J]. 化工进展, 2024, 43(2): 948-961. |
[5] | 丁康, 何军桥, 陈元捷, 杨霞珍, 刘化章, 霍超. Ru/Ba-MgO氨合成催化剂模板棉纤维的盐酸处理对催化性能的影响[J]. 化工进展, 2024, 43(2): 962-970. |
[6] | 王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18. |
[7] | 罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163. |
[8] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
[9] | 张家昊, 李盈盈, 徐彦琳, 尹佳滨, 张吉松. 微反应器中连续还原胺化反应的研究进展[J]. 化工进展, 2024, 43(1): 186-197. |
[10] | 衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259. |
[11] | 王一棪, 王达锐, 沈震浩, 何俊琳, 孙洪敏, 杨为民. 全结晶MCM-22分子筛催化剂的制备及其催化性能[J]. 化工进展, 2024, 43(1): 285-291. |
[12] | 于笑笑, 巢艳红, 刘海燕, 朱文帅, 刘植昌. D-A共轭聚合强化光电性能及光催化CO2转化[J]. 化工进展, 2024, 43(1): 292-301. |
[13] | 孙进, 陈晓贞, 刘名瑞, 刘丽, 牛世坤, 郭蓉. 加氢脱硫催化剂钠中毒失活机理[J]. 化工进展, 2024, 43(1): 407-413. |
[14] | 张海鹏, 王树振, 马梦茜, 张巍, 向江南, 王玉婷, 王琰, 范彬彬, 郑家军, 李瑞丰. ZSM-22分子筛合成及其正十二烷烃临氢异构化性能:模板剂和动态晶化的影响[J]. 化工进展, 2024, 43(1): 414-421. |
[15] | 杨成功, 黄蓉, 王冬娥, 田志坚. 氮掺杂二硫化钼纳米催化剂的电催化析氢性能[J]. 化工进展, 2024, 43(1): 465-472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |