1 |
雷治红. 青海共和盆地干热岩储层特征及压裂试验模型研究[D]. 长春: 吉林大学, 2020.
|
|
LEI Zhihong. Study on reservoir characteristics and fracturing test model of dry-hot rocks in Gonghe Basin, Qinghai Province[D]. Changchun: Jilin University, 2020.
|
2 |
ZHANG Le, JIANG Peixue, WANG Zhenchuan, et al. Convective heat transfer of supercritical CO2 in a rock fracture for enhanced geothermal systems[J]. Applied Thermal Engineering, 2017, 115: 923-936.
|
3 |
NIKHIL BAGALKOT, SURESH KUMAR G. Thermal front propagation in variable aperture fracture-matrix system: A numerical study[J]. Sadhana, 2015, 40(2): 605-622.
|
4 |
HE Yuanyuan, BAI Bing, HU Shaobin, et al. Effects of surface roughness on the heat transfer characteristics of water flow through a single granite fracture[J]. Computers and Geotechnics, 2016, 80: 312-321.
|
5 |
DE LA BERNARDIE J, BOUR O, LE BORGNE T, et al. Thermal attenuation and lag time in fractured rock: Theory and field measurements from joint heat and solute tracer tests[J]. Water Resources Research, 2018, 54(12): 10053-10075.
|
6 |
SONG Xianzhi, SHI Yu, LI Gensheng, et al. Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells[J]. Applied Energy, 2018, 218: 325-337.
|
7 |
SHI Yu, SONG Xianzhi, LI Jiacheng, et al. Numerical investigation on heat extraction performance of a multilateral-well enhanced geothermal system with a discrete fracture network[J]. Fuel, 2019, 244: 207-226.
|
8 |
LUO Yinfei, XU Weilin, LEI Yude, et al. Experimental study of heat transfer by water flowing through smooth and rough rock fractures[J]. Energy Reports, 2019, 5: 1025-1029.
|
9 |
YAO Chi, SHAO Yulong, YANG Jianhua, et al. Effects of fracture density, roughness, and percolation of fracture network on heat-flow coupling in hot rock masses with embedded three-dimensional fracture network[J]. Geothermics, 2020, 87: 101846.
|
10 |
惠峥, 冯子军, 武治盛, 等. 多级围压下砂岩单裂隙渗流传热试验研究[J]. 矿业研究与开发, 2020, 40(9): 105-110.
|
|
HUI Zheng, FENG Zijun, WU Zhisheng, et al. Experimental study on seepage and heat transfer of sandstone with single fracture under multi-level confining pressure[J]. Mining Research and Development, 2020, 40(9): 105-110.
|
11 |
肖鹏, 窦斌, 田红, 等. 地热储层单裂隙岩体渗流传热数值模拟研究[J]. 钻探工程, 2021, 48(2): 16-28.
|
|
XIAO Peng, DOU Bin, TIAN Hong, et al. Numerical simulation of seepage and heat transfer in single fractured rock mass of geothermal reservoirs[J]. Drilling Engineering, 2021, 48(2): 16-28.
|
12 |
张博, 曲占庆, 郭天魁, 等. 粗糙单裂隙换热特征及全局灵敏度分析研究[J]. 地球物理学进展, 2022, 37(4): 1520-1527.
|
|
ZHANG Bo, QU Zhanqing, GUO Tiankui, et al. Study on heat transfer characteristics and global sensitivity analysis of a rough single fracture[J]. Progress in Geophysics, 2022, 37(4): 1520-1527.
|
13 |
单丹丹, 闫铁, 李玮, 等. 单裂隙热储热流耦合数值模拟分析[J]. 当代化工, 2020, 49(4): 716-719, 723.
|
|
SHAN Dandan, YAN Tie, LI Wei, et al. Numerical simulation and analysis of thermal-hydraulic coupling in a single-fracture thermal reservoir[J]. Contemporary Chemical Industry, 2020, 49(4): 716-719, 723.
|
14 |
ZHANG Ze, WANG Shuhong, YANG Tianjiao, et al. A fully coupled seepage-heat transfer model including a dynamic heat transfer coefficient in fractured rock sample with a single fissure[J]. Geomatics, Natural Hazards and Risk, 2021, 12(1): 2253-2276.
|
15 |
SONG Guofeng, SONG Xianzhi, XU Fuqiang, et al. Numerical parametric investigation of thermal extraction from the enhanced geothermal system based on the thermal-hydraulic-chemical coupling model[J]. Journal of Cleaner Production, 2022, 352: 131609.
|
16 |
SPAN Roland, WAGNER Wolfgang. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800MPa[J]. Journal of Physical and Chemical Reference Data, 1996, 25(6): 1509-1596.
|
17 |
HUBER M L, SYKIOTI E A, ASSAEL M J, et al. Reference correlation of the thermal conductivity of carbon dioxide from the triple point to 1100K and up to 200MPa[J]. Journal of Physical and Chemical Reference Data, 2016, 45(1): 013102.
|
18 |
ARNO Laesecke, MUZNY Chris D. Reference correlation for the viscosity of carbon dioxide[J]. Journal of Physical and Chemical Reference Data, 2017, 46: 013107.
|
19 |
李裴晨, 张慢来, 黄新宇, 等. 超临界二氧化碳热物性参数计算研究[J]. 内江科技, 2020, 41(1): 79-80.
|
|
LI Peichen, ZHANG Manlai, HUANG Xinyu, et al. Study on calculation of thermophysical parameters of supercritical carbon dioxide[J]. Nei Jiang Science & Technology, 2020, 41(1): 79-80.
|
20 |
司杨, 张学林, 梅生伟, 等. 干热岩发电技术及青海共和干热岩应用初探[J]. 全球能源互联网, 2018, 1(3): 322-329.
|
|
SI Yang, ZHANG Xuelin, MEI Shengwei, et al. Exploration of hot dry rock power generation technology and application in Qinghai Gonghe Basin[J]. Journal of Global Energy Interconnection, 2018, 1(3): 322-329.
|
21 |
许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程: 国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152.
|
|
XU Tianfu, YUAN Yilong, JIANG Zhenjiao, et al. Hot dry rock and enhanced geothermal engineering: International experience and China prospect[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1139-1152.
|
22 |
PARK Eui-Seob. Case studies of enhanced geothermal system: Fenton hill in USA and hijiori in Japan[J]. Journal of Korean Society for Rock Mechanics, 2013, 23(6): 547-560.
|
23 |
KELKAR Sharad, WOLDEGABRIEL Giday, REHFELDT Kenneth. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA[J]. Geothermics, 2016, 63: 5-14.
|