化工进展 ›› 2024, Vol. 43 ›› Issue (9): 5095-5105.DOI: 10.16085/j.issn.1000-6613.2023-1342
• 材料科学与技术 • 上一篇
收稿日期:
2023-08-07
修回日期:
2023-10-17
出版日期:
2024-09-15
发布日期:
2024-09-30
通讯作者:
施静波
作者简介:
曹树扬(1998—),男,硕士,研究方向为木材与水分关系。E-mail:caosy@njfu.edu.cn。
基金资助:
CAO Shuyang(), SHI Jingbo(), DONG Youming, LYU Jianxiong
Received:
2023-08-07
Revised:
2023-10-17
Online:
2024-09-15
Published:
2024-09-30
Contact:
SHI Jingbo
摘要:
近年来斜叶桉(Eucalyptus obliqua)木材广受国内市场欢迎,需求量大,但尚无高效可行的常规干燥工艺,需对其吸湿性及热力学性质进行深入研究。本文利用恒温恒湿箱法研究了斜叶桉在不同温度下(30℃、45℃、60℃、75℃)的等温吸湿、解吸特性,并通过GAB和H-H模型对吸湿和解吸等温线进行拟合,对吸湿滞后现象,以及有效比表面积S、净等量吸湿热Qst、总润湿热W0、微分熵ΔS、吉布斯自由能变ΔG、扩张压力Φ、焓熵补偿等热力学性质进行了分析。结果表明,斜叶桉木材的吸湿和解吸等温线为Ⅱ型,且GAB和H-H模型均适用于木材-水分体系(R2大于0.999)。恒定温度下,试样平衡含水率(EMC)随水分活度的增加而增加。恒定水分活度下,EMC和吸湿滞后程度均随温度的升高而降低。有效比表面积随着温度升高而降低。总体上,吸湿过程净等量吸湿热和微分熵为负值,而解吸过程为正值,净等量吸湿热和微分熵的大小均随EMC先增大后减小,直至趋近于0。解吸过程总润湿热绝对值为83.7kJ/mol,远大于吸湿过程的32.2kJ/mol。等速温度和平均调和温度不一致,焓熵补偿理论成立。吸湿、解吸过程均为焓驱动,不同的是吸湿为自发过程,解吸为非自发过程。扩张压力会随着水分活度的升高而升高,吸湿过程中,温度对于扩张压力的影响无明显规律,而在解吸过程中,扩张压力随温度的升高而升高。
中图分类号:
曹树扬, 施静波, 董友明, 吕建雄. 不同温度下斜叶桉木材吸湿、解吸等温线与热力学性质[J]. 化工进展, 2024, 43(9): 5095-5105.
CAO Shuyang, SHI Jingbo, DONG Youming, LYU Jianxiong. Water adsorption and desorption isotherms and thermodynamic properties of Eucalyptus obliqua woods at different temperatures[J]. Chemical Industry and Engineering Progress, 2024, 43(9): 5095-5105.
阶段 | 水分活度 | 平衡时间/h | |||
---|---|---|---|---|---|
30℃ | 45℃ | 60℃ | 75℃ | ||
吸湿 | 0.1 | — | — | 4 | 2 |
0.17 | — | 8 | — | — | |
0.25 | 66 | — | — | — | |
0.3 | 79 | 12 | 4 | 4 | |
0.5 | 72 | 12 | 6 | 4 | |
0.65 | 96 | 20 | 8 | 4 | |
0.8 | 96 | 20 | 8 | 6 | |
0.95 | 264 | 36 | 14 | 10 | |
解吸 | 0.8 | 240 | 22 | 8 | 6 |
0.65 | 144 | 22 | 8 | 4 | |
0.5 | 144 | 16 | 8 | 4 | |
0.3 | 96 | 16 | 4 | 4 | |
0.25 | 96 | — | — | — | |
0.17 | — | 10 | — | — | |
0.1 | — | — | 4 | 2 |
表1 斜叶桉在不同温度和水分活度下平衡所需时间
阶段 | 水分活度 | 平衡时间/h | |||
---|---|---|---|---|---|
30℃ | 45℃ | 60℃ | 75℃ | ||
吸湿 | 0.1 | — | — | 4 | 2 |
0.17 | — | 8 | — | — | |
0.25 | 66 | — | — | — | |
0.3 | 79 | 12 | 4 | 4 | |
0.5 | 72 | 12 | 6 | 4 | |
0.65 | 96 | 20 | 8 | 4 | |
0.8 | 96 | 20 | 8 | 6 | |
0.95 | 264 | 36 | 14 | 10 | |
解吸 | 0.8 | 240 | 22 | 8 | 6 |
0.65 | 144 | 22 | 8 | 4 | |
0.5 | 144 | 16 | 8 | 4 | |
0.3 | 96 | 16 | 4 | 4 | |
0.25 | 96 | — | — | — | |
0.17 | — | 10 | — | — | |
0.1 | — | — | 4 | 2 |
模型 | 参数 | 吸湿 | 解吸 | ||||||
---|---|---|---|---|---|---|---|---|---|
30℃ | 45℃ | 60℃ | 75℃ | 30℃ | 45℃ | 60℃ | 75℃ | ||
GAB | Vm/cm3·g-1 | 0.05042 | 0.04876 | 0.0441 | 0.03755 | 0.08473 | 0.07372 | 0.0665 | 0.04842 |
C | 7.0358 | 5.80023 | 7.9611 | 8.5223 | 6.83001 | 6.67331 | 6.5971 | 7.22827 | |
K | 0.788 | 0.805 | 0.8285 | 0.8475 | 0.63 | 0.689 | 0.7259 | 0.79167 | |
R2 | 0.99936 | 0.99958 | 0.9994 | 0.9994 | 0.99942 | 0.99974 | 0.9996 | 0.9996 | |
SSE | 1.55×10-5 | 1.11×10-5 | 1.70×10-5 | 1.46×10-5 | 1.41×10-5 | 6.98×10-6 | 1.21×10-5 | 1.03×10-5 | |
H-H | W1/g·mol-1 | 35398.91 | 37120.47 | 40954.94 | 47646.97 | 21181.73 | 24301.4 | 26947.43 | 37082.32 |
K1 | 5.85426 | 4.88979 | 7.0538 | 7.3357 | 5.79242 | 5.60737 | 5.529 | 6.2284 | |
K2 | 0.78594 | 0.80625 | 0.8293 | 0.8462 | 0.629 | 0.68753 | 0.7246 | 0.7917 | |
R2 | 0.99936 | 0.99959 | 0.9994 | 0.9994 | 0.99942 | 0.99974 | 0.9996 | 0.9996 | |
SSE | 1.53×10-5 | 1.10×10-5 | 1.70×10-5 | 1.45×10-5 | 1.41×10-5 | 6.95×10-6 | 1.21×10-5 | 1.03×10-5 |
表2 利用GAB与H-H模型计算的水分吸附等温线参数
模型 | 参数 | 吸湿 | 解吸 | ||||||
---|---|---|---|---|---|---|---|---|---|
30℃ | 45℃ | 60℃ | 75℃ | 30℃ | 45℃ | 60℃ | 75℃ | ||
GAB | Vm/cm3·g-1 | 0.05042 | 0.04876 | 0.0441 | 0.03755 | 0.08473 | 0.07372 | 0.0665 | 0.04842 |
C | 7.0358 | 5.80023 | 7.9611 | 8.5223 | 6.83001 | 6.67331 | 6.5971 | 7.22827 | |
K | 0.788 | 0.805 | 0.8285 | 0.8475 | 0.63 | 0.689 | 0.7259 | 0.79167 | |
R2 | 0.99936 | 0.99958 | 0.9994 | 0.9994 | 0.99942 | 0.99974 | 0.9996 | 0.9996 | |
SSE | 1.55×10-5 | 1.11×10-5 | 1.70×10-5 | 1.46×10-5 | 1.41×10-5 | 6.98×10-6 | 1.21×10-5 | 1.03×10-5 | |
H-H | W1/g·mol-1 | 35398.91 | 37120.47 | 40954.94 | 47646.97 | 21181.73 | 24301.4 | 26947.43 | 37082.32 |
K1 | 5.85426 | 4.88979 | 7.0538 | 7.3357 | 5.79242 | 5.60737 | 5.529 | 6.2284 | |
K2 | 0.78594 | 0.80625 | 0.8293 | 0.8462 | 0.629 | 0.68753 | 0.7246 | 0.7917 | |
R2 | 0.99936 | 0.99959 | 0.9994 | 0.9994 | 0.99942 | 0.99974 | 0.9996 | 0.9996 | |
SSE | 1.53×10-5 | 1.10×10-5 | 1.70×10-5 | 1.45×10-5 | 1.41×10-5 | 6.95×10-6 | 1.21×10-5 | 1.03×10-5 |
参数 | 吸湿 | 解吸 | ||||||
---|---|---|---|---|---|---|---|---|
30℃ | 45℃ | 60℃ | 75℃ | 30℃ | 45℃ | 60℃ | 75℃ | |
S/m2∙g-1 | 192 | 186 | 168 | 143 | 323 | 281 | 254 | 185 |
表3 不同温度下吸湿、解吸的内比表面积
参数 | 吸湿 | 解吸 | ||||||
---|---|---|---|---|---|---|---|---|
30℃ | 45℃ | 60℃ | 75℃ | 30℃ | 45℃ | 60℃ | 75℃ | |
S/m2∙g-1 | 192 | 186 | 168 | 143 | 323 | 281 | 254 | 185 |
过程 | 等速温度Tβ/K | 决定系数R2 |
---|---|---|
吸湿 | 644.0 | 0.996 |
解吸 | 457.4 | 0.997 |
表4 吸湿和解吸阶段等速温度与决定系数
过程 | 等速温度Tβ/K | 决定系数R2 |
---|---|---|
吸湿 | 644.0 | 0.996 |
解吸 | 457.4 | 0.997 |
35 | LEFFLER John E. The enthalpy-entropy relationship and its implications for organic chemistry[J]. The Journal of Organic Chemistry, 1955, 20(9): 1202-1231. |
36 | KRUG R R, HUNTER W G, GRIEGER R A. Enthalpy-entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data[J]. The Journal of Physical Chemistry, 1976, 80(21): 2335-2341. |
37 | KRUG R R, HUNTER W G, GRIEGER R A. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect[J]. The Journal of Physical Chemistry, 1976, 80(21): 2341-2351. |
38 | BRUNAUER Stephen, DEMING Lola S, Edwards DEMING W, et al. On a theory of the van der Waals adsorption of gases[J]. Journal of the American Chemical Society, 1940, 62(7): 1723-1732. |
39 | DONOHUE M D, ARANOVICH G L. Classification of Gibbs adsorption isotherms[J]. Advances in Colloid and Interface Science, 1998, 76/77: 137-152. |
40 | SING Kenneth S W. Physisorption of gases by carbon blacks[J]. Carbon, 1994, 32(7): 1311-1317. |
41 | GONELI André Luis Duarte, CORRÊA Paulo Cesar, DE OLIVEIRA Gabriel Henrique Horta, et al. Water sorption isotherms and thermodynamic properties of pearl millet grain[J]. International Journal of Food Science & Technology, 2010, 45(4): 828-838. |
42 | FREDRIKSSON Maria, THYBRING Emil Engelund. Scanning or desorption isotherms? Characterising sorption hysteresis of wood[J]. Cellulose, 2018, 25(8): 4477-4485. |
43 | MERAKEB Seddik, DUBOIS Frédéric, PETIT Christophe. Modeling of the sorption hysteresis for wood[J]. Wood Science and Technology, 2009, 43(7): 575-589. |
44 | SHI Jingbo, AVRAMIDIS Stavros. Water sorption hysteresis in wood: Ⅰ Review and experimental patterns-geometric characteristics of scanning curves[J]. Holzforschung, 2017, 71(4): 307-316. |
45 | PATERA Alessandra, DERLUYN Hannelore, DEROME Dominique, et al. Influence of sorption hysteresis on moisture transport in wood[J]. Wood Science and Technology, 2016, 50(2): 259-283. |
46 | SALIN Jarl-Gunnar. Inclusion of the sorption hysteresis phenomenon in future drying models. Some basic considerations[J]. Maderas Ciencia y Tecnología, 2011, 13(2): 173-182. |
47 | 黄彦快, 王喜明. 木材吸湿机理及其应用[J]. 世界林业研究, 2014, 27(3): 35-40. |
HUANG Yankuai, WANG Ximing. Wood hygroscopic mechanism and its application[J]. World Forestry Research, 2014, 27(3): 35-40. | |
48 | 王舒, 魏洪斌, 伊松林, 等. 浸渍杉木吸湿滞后研究[J]. 安徽农业科学, 2010, 38(21): 11591-11593. |
WANG Shu, WEI Hongbin, YI Songlin, et al. Comparative research on sorption hysteresis of resin-impregnated Chinese fir[J]. Journal of Anhui Agricultural Sciences, 2010, 38(21): 11591-11593. | |
49 | PATERA Alessandra, DEROME Dominique, GRIFFA Michele, et al. Hysteresis in swelling and in sorption of wood tissue[J]. Journal of Structural Biology, 2013, 182(3): 226-234. |
50 | 杨昭, 李想, 陶志超. 豌豆种子吸附等温线与热力学性质研究[J]. 农业机械学报, 2017, 48(10): 323-329. |
YANG Zhao, LI Xiang, TAO Zhichao. Sorption isotherms and thermodynamic properties of pea seed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 323-329. | |
51 | TSAMI E. Net isosteric heat of sorption in dried fruits[J]. Journal of Food Engineering, 1991, 14(4): 327-335. |
52 | BOUGAYR El Houssayne, LAKHAL El Khadir, IDLIMAM Ali, et al. Experimental study of hygroscopic equilibrium and thermodynamic properties of sewage sludge[J]. Applied Thermal Engineering, 2018, 143: 521-531. |
53 | RAWAT S P S, KHALI D P. Enthalpy-entropy compensation during sorption of water in wood[J]. Journal of Applied Polymer Science, 1996, 60(5): 787-790. |
54 | 李莞璐, 李京予, 郭娟, 等. 古代与现代柏木的水分吸附热力学比较研究[J]. 北京林业大学学报, 2023, 45(4): 126-135. |
LI Wanlu, LI Jingyu, GUO Juan, et al. A comparative study on moisture sorption thermodynamics of ancient and recent cypress[J]. Journal of Beijing Forestry University, 2023, 45(4): 126-135. | |
55 | MIHOUBI D, BELLAGI A. Thermodynamic analysis of sorption isotherms of bentonite[J]. The Journal of Chemical Thermodynamics, 2006, 38(9): 1105-1110. |
1 | 刘文静, 张玉君. 细胞壁空隙对木材性能及加工利用的影响[J]. 世界林业研究, 2021, 34(2): 44-48. |
LIU Wenjing, ZHANG Yujun. Effects of pore structure in cell wall on wood properties and processing utilization[J]. World Forestry Research, 2021, 34(2): 44-48. | |
2 | 刘一星, 赵广杰. 木材学[M]. 2版. 北京: 中国林业出版社, 2012. |
LIU Yixing, ZHAO Guangjie. Wood science[M]. 2nd ed. Beijing: China Forestry Publishing House, 2012. | |
3 | 仲翔, 张少军, 马尔妮. 不同含水率状态下木材细胞壁孔径分布变化[J]. 北京林业大学学报, 2021, 43(11): 128-136. |
ZHONG Xiang, ZHANG Shaojun, MA Erni. Variation in pore size distribution of wood cell wall under different moisture states[J]. Journal of Beijing Forestry University, 2021, 43(11): 128-136. | |
4 | 施静波, 程帅, 董会军, 等. 30mm厚斜叶桉锯材常规间歇干燥基准[J]. 北京林业大学学报, 2022, 44(11): 132-139. |
SHI Jingbo, CHENG Shuai, DONG Huijun, et al. An intermittent conventional drying schedule for 30mm-thick Eucalyptus obliqua lumbers[J]. Journal of Beijing Forestry University, 2022, 44(11): 132-139. | |
5 | 程新峰, 潘玲, 徐保国, 等. 菊花粉水分吸附等温线及热力学特性[J]. 食品科学, 2022, 43(3): 62-69. |
CHENG Xinfeng, PAN Ling, XU Baoguo, et al. Moisture adsorption isotherms and thermodynamic properties of chrysanthemum powder[J]. Food Science, 2022, 43(3): 62-69. | |
6 | BUXTON Patrick A. The measurement and control of atmospheric humidity in relation to entomological problems[J]. Bulletin of Entomological Research, 1931, 22(3): 431-447. |
7 | CLOUTIER A, FORTIN Y. Moisture content-water potential relationship of wood from saturated to dry conditions[J]. Wood Science and Technology, 1991, 25(4): 263-280. |
8 | AVRAMIDIS S. Enthalpy-entropy compensation and thermodynamic considerations in sorption phenomena[J]. Wood Science and Technology, 1992, 26(5): 329-333. |
9 | JALALUDIN Zaihan, HILL Callum A S, XIE Yanjun, et al. Analysis of the water vapour sorption isotherms of thermally modified acacia and sesendok[J]. Wood Material Science and Engineering, 2010, 5(3/4): 194-203. |
10 | XIE Yanjun, HILL Callum A S, XIAO Zefang, et al. Water vapor sorption kinetics of wood modified with glutaraldehyde[J]. Journal of Applied Polymer Science, 2010, 117(3): 1674-1682. |
11 | HILL Callum A S, NORTON Andrew J, NEWMAN Gary. The water vapour sorption properties of Sitka spruce determined using a dynamic vapour sorption apparatus[J]. Wood Science and Technology, 2010, 44(3): 497-514. |
12 | POPESCU Carmen-Mihaela, HILL Callum A S, CURLING Simon, et al. The water vapour sorption behaviour of acetylated birch wood: How acetylation affects the sorption isotherm and accessible hydroxyl content[J]. Journal of Materials Science, 2014, 49(5): 2362-2371. |
13 | HIMMEL Sarah, Carsten MAI. Effects of acetylation and formalization on the dynamic water vapor sorption behavior of wood[J]. Holzforschung, 2015, 69(5): 633-643. |
14 | OUERTANI Sahbi, AZZOUZ Soufien, HASSINI Lamine, et al. Moisture sorption isotherms and thermodynamic properties of Jack pine and palm wood: Comparative study[J]. Industrial Crops and Products, 2014, 56: 200-210. |
15 | BRATASZ Ł, KOZŁOWSKA A, KOZŁOWSKI R. Analysis of water adsorption by wood using the Guggenheim-Anderson-de Boer equation[J]. European Journal of Wood and Wood Products, 2012, 70(4): 445-451. |
16 | 谷志攀, 阳季春, 张叶, 等. 市政污泥吸附等温线模型和热力学性质[J]. 化工进展, 2022, 41(2): 998-1008. |
GU Zhipan, YANG Jichun, ZHANG Ye, et al. Mathematical modelling of water sorption isotherms and thermodynamic properties of municipal sewage sludge[J]. Chemical Industry and Engineering Progress, 2022, 41(2): 998-1008. | |
17 | 赵亚, 张平平, 石启龙. 花生壳/仁的吸附等温线与热力学特性[J]. 食品科学, 2017, 38(7): 55-62. |
ZHAO Ya, ZHANG Pingping, SHI Qilong. Moisture adsorption isotherms and thermodynamic properties of peanut shell and kernel[J]. Food Science, 2017, 38(7): 55-62. | |
18 | OSWIN C R. The kinetics of package life. Ⅲ. The isotherm[J]. Journal of the Society of Chemical Industry, 1946, 65(12): 419-421. |
19 | DENT R W. A multilayer theory for gas sorption: Part Ⅰ: Sorption of a single gas [J]. Textile Research Journal, 1977, 47(3): 188-198. |
20 | BRUNAUER Stephen, EMMETT P H, TELLER Edward. Adsorption of gases in multimolecular layers[J]. Journal of the American Chemical Society, 1938, 60(2): 309-319. |
21 | HAILWOOD A J, HORROBIN S. Absorption of water by polymers: Analysis in terms of a simple model[J]. Transactions of the Faraday Society, 1946, 42(0): B084-B092. |
22 | PELEG Micha. Assessment of a semi-empirical four parameter general model for sigmoid moisture sorption isotherms1[J]. Journal of Food Process Engineering, 1993, 16(1): 21-37. |
23 | 万婕, 夏雪, 周国辉, 等. 方便米粉的水分吸附和热力学特性[J]. 食品科学, 2019, 40(15): 8-14. |
WAN Jie, XIA Xue, ZHOU Guohui, et al. Moisture sorption isotherms and thermodynamic properties of instant rice noodles[J]. Food Science, 2019, 40(15): 8-14. | |
24 | HILL Callum A S. The reduction in the fibre saturation point of wood due to chemical modification using anhydride reagents: A reappraisal[J]. Holzforschung, 2008, 62(4): 423-428. |
25 | Cristina SIMÓN, ESTEBAN Luis García, PALACIOS Paloma De, et al. Thermodynamic properties of the water sorption isotherms of wood of limba (Terminalia superba Engl. & Diels), obeche (Triplochiton scleroxylon K. Schum. ), radiata pine (Pinus radiata D. Don) and chestnut (Castanea sativa Mill.)[J]. Industrial Crops and Products, 2016, 94: 122-131. |
26 | 姚晴, 蔡家斌. 热处理辐射松吸湿解吸等温线的测定与分析[J]. 林业工程学报, 2018, 3(3): 35-41. |
YAO Qing, CAI Jiabin. Determination and analysis of moisture adsorption and desorption isotherms of heat-treated radiata pine[J]. Journal of Forestry Engineering, 2018, 3(3): 35-41. | |
27 | SHI Jingbo, KAWAI Yasuo, AVRAMIDIS Stavros, et al. Water sorption hysteresis in wood near 100℃[J]. Holzforschung, 2021, 75(1): 13-21. |
28 | 李珠, 殷方宇, 蒋佳荔, 等. 杉木应压木和对应木的水分吸附特性比较研究[J]. 木材科学与技术, 2022, 36(5): 37-42. |
LI Zhu, YIN Fangyu, JIANG Jiali, et al. Comparative studies on water vapor sorption characteristics between compression wood and opposite wood of Chinese fir[J]. Chinese Journal of Wood Science and Technology, 2022, 36(5): 37-42. | |
29 | SPALT Howard A. The fundamentals of water vapor sorption by wood[J]. Forest Products Journal, 1958, 8(10): 288-295. |
30 | 高鑫, 周凡, 付宗营, 等. 高温热处理对欧洲云杉和花旗松吸湿特性的影响[J]. 林业工程学报, 2018, 3(4): 25-29. |
GAO Xin, ZHOU Fan, FU Zongying, et al. Sorption isotherms characteristics of high temperature heat-treated Picea abies and Pseudotsuga menziesii [J]. Journal of Forestry Engineering, 2018, 3(4): 25-29. | |
31 | FAKHFAKH Rihab, MIHOUBI Daoued, KECHAOU Nabil. Moisture sorption isotherms and thermodynamic properties of bovine leather[J]. Heat and Mass Transfer, 2018, 54(4): 1163-1176. |
32 | AVIARA N A, AJIBOLA O O. Thermodynamics of moisture sorption in melon seed and cassava[J]. Journal of Food Engineering, 2002, 55(2): 107-113. |
33 | MASKAN Medeni, Fahrettin GÖĞÜŞ. Sorption isotherms and drying characteristics of mulberry (Morus alba)[J]. Journal of Food Engineering, 1998, 37(4): 437-449. |
34 | MADAMBA P S, DRISCOLL R H, BUCKLE K A. Enthalpy-entropy compensation models for sorption and browning of garlic[J]. Journal of Food Engineering, 1996, 28(2): 109-119. |
56 | Y N Nkolo MEZE’E, Noah NGAMVENG J, BARDET Sandrine. Effect of enthalpy-entropy compensation during sorption of water vapour in tropical woods: The case of Bubinga (Guibourtia Tessmanii J. Léonard; G. Pellegriniana J. L.)[J]. Thermochimica Acta, 2008, 468(1/2): 1-5. |
57 | ARSLAN Nurhan, Hasan TOGˇRUL. Modelling of water sorption isotherms of macaroni stored in a chamber under controlled humidity and thermodynamic approach[J]. Journal of Food Engineering, 2005, 69(2): 133-145. |
58 | KAYA Sevim, KAHYAOGLU Talip. Influence of dehulling and roasting process on the thermodynamics of moisture adsorption in sesame seed[J]. Journal of Food Engineering, 2006, 76(2): 139-147. |
[1] | 杨许召, 李庆, 袁康康, 张盈盈, 韩敬莉, 吴诗德. 含Gemini离子液体低共熔溶剂热力学性质[J]. 化工进展, 2023, 42(6): 3123-3129. |
[2] | 陈磊, 闫兴清, 胡延伟, 于帅, 杨凯, 陈绍云, 关辉, 喻健良, HMAHGEREFTE Haroun, MARTYNOV Sergey. 二氧化碳管道意外泄漏减压过程的断裂控制研究进展[J]. 化工进展, 2022, 41(3): 1241-1255. |
[3] | 谷志攀, 阳季春, 张叶, 陶乐仁, 刘泛函. 市政污泥吸附等温线模型和热力学性质[J]. 化工进展, 2022, 41(2): 998-1008. |
[4] | 张豪, 叶国华, 陈子杨, 谢禹, 左琪. 黏土钒矿直接常压活化酸浸提钒热力学分析[J]. 化工进展, 2021, 40(10): 5360-5369. |
[5] | 张凯,武多多,刘强,彭越,杨震,段远源. 高密度流体声速测量中脉冲回波传播时间的测定[J]. 化工进展, 2020, 39(4): 1219-1226. |
[6] | 邓建红, 费华, 王林雅, 顾庆军. 癸酸-石蜡/膨胀石墨定形相变材料的制备及性能[J]. 化工进展, 2020, 39(11): 4537-4543. |
[7] | 李光升,解强,张香兰,张海永. 基于分子模拟的低温煤焦油中酚类化合物的溶解特性[J]. 化工进展, 2020, 39(1): 137-144. |
[8] | 王珺瑶, 张月, 邓帅, 赵军, 孙太尉, 李恺翔, 徐耀锋. CO2 混合物热物性在CCS研究中的作用:实验数据、理论模型和典型应用[J]. 化工进展, 2019, 38(03): 1244-1258. |
[9] | 杨梦,张华,秦延斌,孟照峰. 混合制冷剂R134a/R1234yf(R513A)与R134a热力学性能对比及实验[J]. 化工进展, 2019, 38(03): 1182-1189. |
[10] | 纪珺, 陈跃, 章学来, 徐笑锋, 李玉洋, 陈启杨. 甘露醇水溶液低温储能相变材料的制备及热物性[J]. 化工进展, 2018, 37(03): 1111-1117. |
[11] | 李玉洋, 章学来, 徐笑锋, MUNYALO Jotham Muthoka, 陈跃, 陈启杨. 正辛酸-肉豆蔻酸低温相变材料的制备和循环性能[J]. 化工进展, 2018, 37(02): 689-693. |
[12] | 赵玉清, 吕冰. 新型低全球变暖潜能值混合制冷剂替代R22的试验研究[J]. 化工进展, 2017, 36(08): 2866-2873. |
[13] | 贾艳萍, 姜修平, 张兰河, 张海丰, 王嵬, 陈子成. HCl/H2SO4改性粉煤灰的制备及其吸附性能[J]. 化工进展, 2017, 36(06): 2331-2336. |
[14] | 樊铁林, 陈蜜蜜, 檀星, 赵风清. 脂肪酸/废加气块定形相变储能集料制备及性能[J]. 化工进展, 2017, 36(03): 996-1002. |
[15] | 李颖, 周丹, 徐琴琴, 银建中. 超临界二氧化碳微乳液系统的分子模拟研究进展[J]. 化工进展, 2017, 36(03): 774-782. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |