化工进展 ›› 2024, Vol. 43 ›› Issue (1): 76-86.DOI: 10.16085/j.issn.1000-6613.2023-1095
周媚1(), 曾浩桀1, 卢俊宁1, 蒲婷1, 刘宝玉1,2()
收稿日期:
2023-07-02
修回日期:
2023-08-17
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
刘宝玉
作者简介:
周媚(1999—),女,硕士研究生,研究方向为多级孔材料合成。E-mail:zhoumei0404@126.com。
基金资助:
ZHOU Mei1(), ZENG Haojie1, LU Junning1, PU Ting1, LIU Baoyu1,2()
Received:
2023-07-02
Revised:
2023-08-17
Online:
2024-01-20
Published:
2024-02-05
Contact:
LIU Baoyu
摘要:
传统微孔分子筛具有均一孔径、较高比表面积、良好的择形选择性等优点,但受到传质扩散阻力限制,导致其性能严重降低。而等级孔分子筛具有多级孔道结构,可以强化大分子的扩散,减少焦炭堆积,从而改善催化剂利用率、寿命和催化性能。等级孔分子筛通常采用“自上而下法”和“自下而上法”进行制备。本文主要对近年来等级孔分子筛的合成方法进行梳理,并重点介绍了具有较高应用潜力的“自上而下法”。综合评述了等级孔分子筛在催化应用中的扩散过程强化研究,指出等级孔分子筛在提升催化性能方面(如活性、选择性、稳定性等)具有独特优势。通过在分子筛骨架中引入等级孔道,缩短晶内扩散路程,减少传质扩散限制,减少二次副反应和积炭。此外,等级孔道结构也有利于金属活性物种的稳定,在催化反应中抑制其烧结,增加了负载型分子筛催化剂的稳定性。最后,总结了等级孔分子筛的独特优势(强化内扩散性能和提升分子筛内部中心利用率),并对等级孔分子筛的制备方法和绿色生产进行展望。
中图分类号:
周媚, 曾浩桀, 卢俊宁, 蒲婷, 刘宝玉. 等级孔分子筛构筑及扩散过程强化研究进展[J]. 化工进展, 2024, 43(1): 76-86.
ZHOU Mei, ZENG Haojie, LU Junning, PU Ting, LIU Baoyu. Progress in the synthesis of hierarchical zeolites for diffusion intensification[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 76-86.
样品① | 转化率/% | SBET/m2·g-1 | Si/Ti | 产物/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | P7 | ||||
S1② | 72 | 260 | 98 | 9.5 | 63.5 | 4.0 | 9.5 | 13.5 | — | — |
S2② | 85 | 580 | 104 | — | 82.4 | 17.6 | — | — | — | — |
S1③ | 5 | 260 | 98 | 100 | — | — | — | — | — | — |
S2③ | 45 | 580 | 104 | 50 | 10.3 | 6.8 | 10 | 5.4 | 14 | 3.5 |
S2③, ④ | 31 | 580 | 104 | 49 | 9.7 | 8.3 | 10.1 | 6.1 | 14.4 | 2.4 |
表1 纳米晶体TS-1和MMM -TS-1(3)产物对苯乙烯和2,4,6-三甲基苯乙烯环氧化反应的催化活性,以及不同样品通过BET的结构参数[25]
样品① | 转化率/% | SBET/m2·g-1 | Si/Ti | 产物/% | ||||||
---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | P5 | P6 | P7 | ||||
S1② | 72 | 260 | 98 | 9.5 | 63.5 | 4.0 | 9.5 | 13.5 | — | — |
S2② | 85 | 580 | 104 | — | 82.4 | 17.6 | — | — | — | — |
S1③ | 5 | 260 | 98 | 100 | — | — | — | — | — | — |
S2③ | 45 | 580 | 104 | 50 | 10.3 | 6.8 | 10 | 5.4 | 14 | 3.5 |
S2③, ④ | 31 | 580 | 104 | 49 | 9.7 | 8.3 | 10.1 | 6.1 | 14.4 | 2.4 |
1 | SUN Minghui, ZHOU Jian, HU Zhiyi, et al. Hierarchical zeolite single-crystal reactor for excellent catalytic efficiency[J]. Matter, 2020, 3(4): 1226-1245. |
2 | ARGAUER R J, LANDOLT G R. Crystalline zeolite ZSM-5 and method of preparing the same: US3702886DA[P]. 1972-11-14. |
3 | PÉREZ-RAMÍREZ J, CHRISTENSEN C H, EGEBLAD K, et al. Hierarchical zeolites: Enhanced utilisation of microporous crystals in catalysis by advances in materials design[J]. Chemical Society Reviews, 2008, 37(11): 2530-2542. |
4 | HARTMANN M, MACHOKE A G, SCHWIEGER W. Catalytic test reactions for the evaluation of hierarchical zeolites[J]. Chemical Society Reviews, 2016, 45(12): 3313-3330. |
5 | DAVIS M E, SALDARRIAGA C, MONTES C, et al. VPI-5: The first molecular sieve with pores larger than 10 Ångstroms[J]. Zeolites, 1988, 8(5): 362-366. |
6 | YOSHIKAWA M, WAGNER P, LOVALLO M, et al. Synthesis, characterization, and structure solution of CIT-5, a new, high-silica, extra-large-pore molecular sieve[J]. The Journal of Physical Chemistry B, 1998, 102(37): 7139-7147. |
7 | KÄRGER J, RUTHVEN D M. Diffusion in nanoporous materials: Fundamental principles, insights and challenges[J]. New Journal of Chemistry, 2016, 40(5): 4027-4048. |
8 | CORMA A, DÍAZ-CABAÑAS M J, REY F, et al. ITQ-15: The first ultralarge pore zeolite with a bi-directional pore system formed by intersecting 14- and 12-ring channels, and its catalytic implications[J]. Chemical Communications, 2004(12): 1356-1357. |
9 | CORMA A, DÍAZ-CABAÑAS M J, JORDÁ J L, et al. High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings[J]. Nature, 2006, 443(7113): 842-845. |
10 | SUN Junliang, BONNEAU C, CANTÍN Á, et al. The ITQ-37 mesoporous chiral zeolite[J]. Nature, 2009, 458(7242): 1154-1157. |
11 | LIN Qingfang, GAO Zihao Rei, LIN Cong, et al. A stable aluminosilicate zeolite with intersecting three-dimensional extra-large pores[J]. Science, 2021, 374(6575): 1605-1608. |
12 | SUN Jian, ZHU Guangshan, YIN Xiaoju, et al. Preparation of an ordered zeolite MFI film by epitaxial growth[J]. Chemical Communications, 2005(8): 1070-1072. |
13 | YU Miao, NOBLE R D, FALCONER J L. Zeolite membranes: Microstructure characterization and permeation mechanisms[J]. Accounts of Chemical Research, 2011, 44(11): 1196-1206. |
14 | ZHANG Xueyi, TSAPATSIS M. Mesoporous silica nanoparticles from a clear sol and their transformation to lamellar silicalite-1 particles and films[J]. Microporous and Mesoporous Materials, 2011, 138(1/2/3): 239-242. |
15 | TOSHEVA L, VALTCHEV V P. Nanozeolites: Synthesis, crystallization mechanism, and applications[J]. Chemistry of Materials, 2005, 17(10): 2494-2513. |
16 | TAO Yousheng, KANOH H, ABRAMS L, et al. Mesopore-modified zeolites: Preparation, characterization, and applications[J]. Chemical Reviews, 2006, 106(3): 896-910. |
17 | DE JONG K P, ZEČEVIĆ J, FRIEDRICH H, et al. Zeolite Y crystals with trimodal porosity as ideal hydrocracking catalysts[J]. Angewandte Chemie International Edition, 2010, 49(52): 10074-10078. |
18 | CHO Kanghee, NA Kyungsu, KIM Jaeheon, et al. Zeolite synthesis using hierarchical structure-directing surfactants: Retaining porous structure of initial synthesis gel and precursors[J]. Chemistry of Materials, 2012, 24(14): 2733-2738. |
19 | SERRANO D P, ESCOLA J M, PIZARRO P. Synthesis strategies in the search for hierarchical zeolites[J]. Chemical Society Reviews, 2013, 42(9): 4004-4035. |
20 | WHITE R J, FISCHER A, GOEBEL C, et al. A sustainable template for mesoporous zeolite synthesis[J]. Journal of the American Chemical Society, 2014, 136(7): 2715-2718. |
21 | JIN Junsu, PENG Chaoyun, WANG Jiujiang, et al. Facile synthesis of mesoporous zeolite Y with improved catalytic performance for heavy oil fluid catalytic cracking[J]. Industrial & Engineering Chemistry Research, 2014, 53(8): 3406-3411. |
22 | MITCHELL S, N-L MICHELS, KUNZE K, et al. Visualization of hierarchically structured zeolite bodies from macro to nano length scales[J]. Nature Chemistry, 2012, 4(10): 825-831. |
23 | TONG Yangchuan, ZHAO Tianbo, LI Fengyan, et al. Synthesis of monolithic zeolite beta with hierarchical porosity using carbon as a transitional template[J]. Chemistry of Materials, 2006, 18(18): 4218-4220. |
24 | LIU Jia, JIANG Guiyuan, LIU Ying, et al. Hierarchical macro-meso-microporous ZSM-5 zeolite hollow fibers with highly efficient catalytic cracking capability[J]. Scientific Reports, 2014, 4(1): 7276. |
25 | CHEN Lihua, LI Xiaoyun, TIAN Ge, et al. Highly stable and reusable multimodal zeolite TS-1 based catalysts with hierarchically interconnected three-level micro-meso-macroporous structure[J]. Angewandte Chemie International Edition, 2011, 50(47): 11156-11161. |
26 | HOLM M S, TAARNING E, EGEBLAD K, et al. Catalysis with hierarchical zeolites[J]. Catalysis Today, 2011, 168(1): 3-16. |
27 | SUN Yinyong, PRINS R. Friedel-Crafts alkylations over hierarchical zeolite catalysts[J]. Applied Catalysis A: General, 2008, 336(1/2): 11-16. |
28 | TSAI Shang-Tien, CHEN Chien-Hao, TSAI Tseng-Chang. Base treated H-mordenite as stable catalyst in alkylbenzene transalkylation[J]. Green Chemistry, 2009, 11(9): 1349-1356. |
29 | ONO Y. A survey of the mechanism in catalytic isomerization of alkanes[J]. Catalysis Today, 2003, 81(1): 3-16. |
30 | CUMMING K A, WOJCIECHOWSKI B W. Hydrogen transfer, coke formation, and catalyst decay and their role in the chain mechanism of catalytic cracking[J]. Catalysis Reviews, 1996, 38(1): 101-157. |
31 | BLACKMOND D G, GOODWIN J G, LESTER J E. In situ Fourier transform infrared spectroscopy study of HY cracking catalysts: Coke formation and the nature of the active sites[J]. Journal of Catalysis, 1982, 78(1): 34-43. |
32 | MEI Changsong, WEN Pengyu, LIU Zhicheng, et al. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5[J]. Journal of Catalysis, 2008, 258(1): 243-249. |
33 | KIM Jeongnam, CHOI Minkee, RYOO Ryong. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. Journal of Catalysis, 2010, 269(1): 219-228. |
34 | LESTHAEGHE David, VAN DER MYNSBRUGGE J, VANDICHEL M, et al. Full theoretical cycle for both ethene and propene formation during methanol-to-olefin conversion in H-ZSM-5[J]. ChemCatChem, 2011, 3(1): 208-212. |
35 | VAN SPEYBROECK V, HEMELSOET K, DE WISPELAERE K, et al. Mechanistic studies on chabazite-type methanol-to-olefin catalysts: Insights from time-resolved UV/Vis microspectroscopy combined with theoretical simulations[J]. ChemCatChem, 2013, 5(1): 173-184. |
36 | ADAM F, BATAGARAWA M S, HELLO K M, et al. One-step synthesis of solid sulfonic acid catalyst and its application in the acetalization of glycerol: Crystal structure of cis-5-hydroxy-2-phenyl-1,3-dioxane trimer[J]. Chemical Papers, 2012, 66(11): 1048-1058. |
37 | NIJHUIS T A, HUIZINGA B J, MAKKEE M, et al. Direct epoxidation of propene using gold dispersed on TS-1 and other titanium-containing supports[J]. Industrial & Engineering Chemistry Research, 1999, 38(3): 884-891. |
38 | LAUFER W, HOELDERICH W F. Direct oxidation of propylene and other olefins on precious metal containing Ti-catalysts[J]. Applied Catalysis A: General, 2001, 213(2): 163-171. |
39 | PALKOVITS R, SCHMIDT W, ILHAN Y, et al. Crosslinked TS-1 as stable catalyst for the Beckmann rearrangement of cyclohexanone oxime[J]. Microporous and Mesoporous Materials, 2009, 117(1/2): 228-232. |
40 | BOTELLA P, CORMA A, IBORRA S, et al. Nanosized and delayered zeolitic materials for the liquid-phase Beckmann rearrangement of cyclododecanone oxime[J]. Journal of Catalysis, 2007, 250(1): 161-170. |
41 | XU Dongdong, MA Yanhang, JING Zhifeng, et al. π-π interaction of aromatic groups in amphiphilic molecules directing for single-crystalline mesostructured zeolite nanosheets[J]. Nature Communications, 2014, 5(1): 4262. |
42 | WEI Ying, PARMENTIER T E, DE JONG K P, et al. Tailoring and visualizing the pore architecture of hierarchical zeolites[J]. Chemical Society Reviews, 2015, 44(20): 7234-7261. |
43 | JACOBSEN C J H, MADSEN C, HOUZVICKA J, et al. Mesoporous zeolite single crystals[J]. Journal of the American Chemical Society, 2000, 122(29): 7116-7117. |
44 | LI Qiuping, ZHOU You. Brief history, preparation method, and biological application of mesoporous silica molecular sieves: A narrative review[J]. Molecules, 2023, 28(5): 2013. |
45 | MENG Xiangju, NAWAZ F, XIAO Fengshou. Templating route for synthesizing mesoporous zeolites with improved catalytic properties[J]. Nano Today, 2009, 4(4): 292-301. |
46 | CHEN Zhuwen, ZHANG Jian, YU Bole, et al. Amino acid mediated mesopore formation in LTA zeolites[J]. Journal of Materials Chemistry A, 2016, 4(6): 2305-2313. |
47 | PARK Dong Ho, KIM Seong Su, WANG Hui, et al. Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores[J]. Angewandte Chemie International Edition, 2009, 48(41): 7645-7648. |
48 | TROMP M, VAN BOKHOVEN J A, GARRIGA OOSTENBRINK M T, et al. Influence of the generation of mesopores on the hydroisomerization activity and selectivity of n-hexane over Pt/mordenite[J]. Journal of Catalysis, 2000, 190(2): 209-214. |
49 | VAN DONK S, JANSSEN A H, BITTER J H, et al. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catalysis Reviews, 2003, 45(2): 297-319. |
50 | YOUNG D A, LINDA Y. Hydrocarbon conversion process and catalyst comprising a crystalline alumino-silicate leached with sodium hydroxide: US36962064A[P]. 1967-6-20. |
51 | OGURA M, SHINOMIYA S, TATENO J, et al. Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution[J]. Chemistry Letters, 2000, 29(8): 882-883. |
52 | GROEN J C, JANSEN J C, MOULIJN J A, et al. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J]. The Journal of Physical Chemistry B, 2004, 108(35): 13062-13065. |
53 | GROEN J C, PEFFER L A A, MOULIJN J A, et al. Mechanism of hierarchical porosity development in MFI zeolites by desilication: The role of aluminium as a pore-directing agent[J]. Chemistry, 2005, 11(17): 4983-4994. |
54 | GROEN J C, MOULIJN J A, PÉREZ-RAMÍREZ J. Desilication: On the controlled generation of mesoporosity in MFI zeolites[J]. Journal of Materials Chemistry, 2006, 16(22): 2121-2131. |
55 | VERBOEKEND D, PÉREZ-RAMÍREZ J. Desilication mechanism revisited: Highly mesoporous all-silica zeolites enabled through pore-directing agents[J]. Chemistry-A European Journal, 2011, 17(4): 1137-1147. |
56 | VERBOEKEND D, VILÉ G, PÉREZ-RAMÍREZ J. Mesopore formation in USY and beta zeolites by base leaching: Selection criteria and optimization of pore-directing agents[J]. Crystal Growth & Design, 2012, 12(6): 3123-3132. |
57 | ABELLÓ S, BONILLA A, PÉREZ-RAMÍREZ J. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J]. Applied Catalysis A: General, 2009, 364(1/2): 191-198. |
58 | IVANOVA I I, KNYAZEVA E E. Micro-mesoporous materials obtained by zeoliterecrystallization: Synthesis, characterization and catalytic applications[J]. Chemical Society Reviews, 2013, 42(9): 3671-3688. |
59 | IVANOVA I I, KASYANOV I A, MAERLE A A, et al. Mechanistic study of zeolites recrystallization into micro-mesoporous materials[J]. Microporous and Mesoporous Materials, 2014, 189: 163-172. |
60 | LIU Baoyu, HUANG Jiajin, LIAO Zhantu, et al. Integrating pore interconnectivity and adaptability in a single crystal hierarchical zeolite for liquid alkylation[J]. AIChE Journal, 2021, 67(6): 17177. |
61 | HUANG Jiajin, LIU Baoyu, LIAO Zhantu, et al. Fabrication of Cu-encapsulated hierarchical MEL zeolites for alkylation of mesitylene with benzyl alcohol[J]. Industrial & Engineering Chemistry Research, 2019, 58(36): 16636-16644. |
62 | LIU Baoyu, HUANG Jiajin, YAN Jian, et al. Tailoring the catalytic properties of alkylation using Cu- and Fe-containing mesoporous MEL zeolites[J]. New Journal of Chemistry, 2021, 45(19): 8639-8646. |
63 | GRAÇA I, BACARIZA M C, FERNANDES A, et al. Desilicated NaY zeolites impregnated with magnesium as catalysts for glucose isomerisation into fructose[J]. Applied Catalysis B: Environmental, 2018, 224: 660-670. |
64 | GOŁĄBEK K, PALOMARES A E, MARTÍNEZ-TRIGUERO J, et al. Ce-modified zeolite BEA catalysts for the trichloroethylene oxidation. The role of the different and necessary active sites[J]. Applied Catalysis B: Environmental, 2019, 259: 118022. |
65 | MILINA M, MITCHELL S, CRIVELLI P, et al. Mesopore quality determines the lifetime of hierarchically structured zeolite catalysts[J]. Nature Communications, 2014, 5(1): 3922. |
66 | LU Weijian, ZHANG Jianwen, ZHANG Shiqi, et al. Synthesis of linear alkylbenzenes over beta zeolites with enhanced transport and surface activity[J]. Industrial & Engineering Chemistry Research, 2021, 60(33): 12275-12281. |
67 | PETROV A W, FERRI D, KRÖCHER O, et al. Design of stable palladium-based zeolite catalysts for complete methane oxidation by postsynthesis zeolite modification[J]. ACS Catalysis, 2019, 9(3): 2303-2312. |
[1] | 王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18. |
[2] | 罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163. |
[3] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
[4] | 张家昊, 李盈盈, 徐彦琳, 尹佳滨, 张吉松. 微反应器中连续还原胺化反应的研究进展[J]. 化工进展, 2024, 43(1): 186-197. |
[5] | 王玉杰, 张艳梅, 栾金义, 赵之平. 酶催化固碳过程及其强化技术研究进展[J]. 化工进展, 2024, 43(1): 232-245. |
[6] | 衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259. |
[7] | 刘锋, 褚阳, 李会峰, 李明丰, 朱玫, 张润强. 汽油中大分子硫醇催化转化反应过程强化[J]. 化工进展, 2024, 43(1): 279-284. |
[8] | 王一棪, 王达锐, 沈震浩, 何俊琳, 孙洪敏, 杨为民. 全结晶MCM-22分子筛催化剂的制备及其催化性能[J]. 化工进展, 2024, 43(1): 285-291. |
[9] | 于笑笑, 巢艳红, 刘海燕, 朱文帅, 刘植昌. D-A共轭聚合强化光电性能及光催化CO2转化[J]. 化工进展, 2024, 43(1): 292-301. |
[10] | 孙进, 陈晓贞, 刘名瑞, 刘丽, 牛世坤, 郭蓉. 加氢脱硫催化剂钠中毒失活机理[J]. 化工进展, 2024, 43(1): 407-413. |
[11] | 张海鹏, 王树振, 马梦茜, 张巍, 向江南, 王玉婷, 王琰, 范彬彬, 郑家军, 李瑞丰. ZSM-22分子筛合成及其正十二烷烃临氢异构化性能:模板剂和动态晶化的影响[J]. 化工进展, 2024, 43(1): 414-421. |
[12] | 杨雪, 刘可, 张程翔, 李东霖, 王江芹, 杨万亮. 2D层状材料的燃料油氧化脱硫研究进展[J]. 化工进展, 2024, 43(1): 422-436. |
[13] | 杨成功, 黄蓉, 王冬娥, 田志坚. 氮掺杂二硫化钼纳米催化剂的电催化析氢性能[J]. 化工进展, 2024, 43(1): 465-472. |
[14] | 王棵旭, 张香平, 王红岩, 柏䶮, 王慧. 电流响应催化剂及其强化典型反应的研究进展[J]. 化工进展, 2024, 43(1): 49-59. |
[15] | 徐诗琪, 朱颖, 陈宁华, 陆彩妹, 江露莹, 王俊辉, 覃岳隆, 张寒冰. 环境因素对水体中四环素光催化降解行为的影响[J]. 化工进展, 2024, 43(1): 551-559. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |