化工进展 ›› 2024, Vol. 43 ›› Issue (1): 422-436.DOI: 10.16085/j.issn.1000-6613.2023-0259
• 材料科学与技术 • 上一篇
杨雪(), 刘可, 张程翔, 李东霖, 王江芹, 杨万亮()
收稿日期:
2023-02-24
修回日期:
2023-04-26
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
杨万亮
作者简介:
杨雪(2000—),女,硕士研究生,研究方向为环境催化。E-mail:xyang8882023@163.com。
基金资助:
YANG Xue(), LIU Ke, ZHANG Chengxiang, LI Donglin, WANG Jiangqin, YANG Wanliang()
Received:
2023-02-24
Revised:
2023-04-26
Online:
2024-01-20
Published:
2024-02-05
Contact:
YANG Wanliang
摘要:
二维(2D)层状材料因其独特的性质在燃料油氧化脱硫领域应用广泛,如石墨烯和类石墨烯材料(如类石墨相氮化碳和六方氮化硼等)、2D硅基材料、层状双金属氢氧化物、MXene、2D金属有机骨架材料、二硫化钼等。本文从不同2D层状材料出发,综述了如何构建催化氧化脱硫催化剂、催化剂脱硫效率以及脱硫过程和机制,并对2D层状材料在氧化脱硫领域的研究现状进行了梳理。然而,普通的2D层状材料大多因为材料本身的催化性能不足,不能直接应用于燃料油氧化脱硫工艺。因此,研究人员通过制造缺陷、元素掺杂、官能团改性和负载活性位点等方法对2D层状材料进行改性并将其应用于催化氧化脱硫工艺。最后,本文对2D层状材料在氧化脱硫领域的研究方向提出了展望,指出了构建具有可控、开放2D传输孔道的2D层状氧化脱硫催化剂是未来脱硫领域研究的重要方向之一。
中图分类号:
杨雪, 刘可, 张程翔, 李东霖, 王江芹, 杨万亮. 2D层状材料的燃料油氧化脱硫研究进展[J]. 化工进展, 2024, 43(1): 422-436.
YANG Xue, LIU Ke, ZHANG Chengxiang, LI Donglin, WANG Jiangqin, YANG Wanliang. Research progress of 2D layered materials for fuel oil oxidation desulfurization[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 422-436.
二维层状类型 | 结构 | 特征 |
---|---|---|
石墨烯 | 由六边形紧密排列的碳网络组成的二维结构 | 具有超高室温载流子迁移率、量子霍尔效应、超高比表面积、高杨氏模量、优异的光学透明度、优异的电导率和热传导率 |
类石墨相氮化碳 | 碳氮原子sp2杂化形成的三嗪环和3-s-三嗪环基本单元周期性无限延伸得到二维层状结构 | 具有优异的电子能带结构、富电子性质、表面官能化修饰、高理化稳定性、无毒以及原料丰富等特点 |
六方氮化硼 | 氮硼原子组成六角网状层面互相重叠构成的类石墨烯晶体 | 具有低密度、高熔点、低硬度、抗热振性和机械加工性能好、耐高温、热膨胀系数小、热导率高、介电常数低、可靠的电绝缘性等优异性能 |
黑磷烯 | 是反应活性最低的磷同素异形体,具有褶皱状的类石墨烯二维层状结构 | 具备可调的直接带隙、高迁移率和适度的开关比等优异性质,然而,少数层黑磷在环境中很容易发生降解,限制了二维黑磷烯的进一步应用发展 |
过渡金属硫硫组化合物 | 过渡金属层镶嵌在两层硫原子层中间,形成类似三明治形式(X-M-X,M代表过渡金属)的层状结构 | 具有特殊的能带结构、半导体或超导性质以及优秀的力学性能等 |
层状二氧化硅 | 具有结晶型和无定形两种形态的硅氧化物 | 具有吸附能力强、低毒、耐热、耐腐蚀、易于功能化和高化学稳定性 |
层状金属有机骨架 | 由有机配体和金属离子或团簇通过配位键自组装形成的具有分子内孔隙的有机-无机杂化材料 | 多孔、比表面积较大、结构可控、易于功能化具有功能多样性、具有不饱和的金属位点 |
层状共价有机骨架 | 由有机分子组成以共价键连接形成结晶性孔道有序的高分子材料 | 具有大比表面积、规整的孔道、易于调控的结构、超低密度以及高热稳定性和化学稳定性 |
MXene | 由几个原子层厚度的过渡金属碳化物、氮化物或碳氮化物构成二维无机化合物 | 具有优异的电学性质,是一种很有前途的储能电极材料 |
蒙脱石 | 颗粒极细的含水铝硅酸盐构成的天然层状矿物 | 具有优良吸附性、阳离子交换性、分散悬浮性、可塑性、黏结性 |
高岭土 | 由硅氧四面体和铝氢氧八面体组成的1∶1型层状硅酸盐 | 具有良好的可塑性和耐火性、强的耐酸性能,但其耐碱性能差 |
活性白土 | 表面具有不规则孔道的层状硅铝酸盐化合物 | 无臭、无味、无毒,吸附性能很强,能吸附有色物质、有机物质 |
层状双金属氢氧化物 | 由两种金属阳离子层与可交换的水合廊阴离子组成离子层状材料 | 层状双氢氧化合物中间的阴离子和层与层间作用力弱,可进行层间嵌入的应用研究,而且在嵌入方面具有形状选择性质,可进行分离异构物的应用研究 |
表1 主要2D材料的结构及其特性
二维层状类型 | 结构 | 特征 |
---|---|---|
石墨烯 | 由六边形紧密排列的碳网络组成的二维结构 | 具有超高室温载流子迁移率、量子霍尔效应、超高比表面积、高杨氏模量、优异的光学透明度、优异的电导率和热传导率 |
类石墨相氮化碳 | 碳氮原子sp2杂化形成的三嗪环和3-s-三嗪环基本单元周期性无限延伸得到二维层状结构 | 具有优异的电子能带结构、富电子性质、表面官能化修饰、高理化稳定性、无毒以及原料丰富等特点 |
六方氮化硼 | 氮硼原子组成六角网状层面互相重叠构成的类石墨烯晶体 | 具有低密度、高熔点、低硬度、抗热振性和机械加工性能好、耐高温、热膨胀系数小、热导率高、介电常数低、可靠的电绝缘性等优异性能 |
黑磷烯 | 是反应活性最低的磷同素异形体,具有褶皱状的类石墨烯二维层状结构 | 具备可调的直接带隙、高迁移率和适度的开关比等优异性质,然而,少数层黑磷在环境中很容易发生降解,限制了二维黑磷烯的进一步应用发展 |
过渡金属硫硫组化合物 | 过渡金属层镶嵌在两层硫原子层中间,形成类似三明治形式(X-M-X,M代表过渡金属)的层状结构 | 具有特殊的能带结构、半导体或超导性质以及优秀的力学性能等 |
层状二氧化硅 | 具有结晶型和无定形两种形态的硅氧化物 | 具有吸附能力强、低毒、耐热、耐腐蚀、易于功能化和高化学稳定性 |
层状金属有机骨架 | 由有机配体和金属离子或团簇通过配位键自组装形成的具有分子内孔隙的有机-无机杂化材料 | 多孔、比表面积较大、结构可控、易于功能化具有功能多样性、具有不饱和的金属位点 |
层状共价有机骨架 | 由有机分子组成以共价键连接形成结晶性孔道有序的高分子材料 | 具有大比表面积、规整的孔道、易于调控的结构、超低密度以及高热稳定性和化学稳定性 |
MXene | 由几个原子层厚度的过渡金属碳化物、氮化物或碳氮化物构成二维无机化合物 | 具有优异的电学性质,是一种很有前途的储能电极材料 |
蒙脱石 | 颗粒极细的含水铝硅酸盐构成的天然层状矿物 | 具有优良吸附性、阳离子交换性、分散悬浮性、可塑性、黏结性 |
高岭土 | 由硅氧四面体和铝氢氧八面体组成的1∶1型层状硅酸盐 | 具有良好的可塑性和耐火性、强的耐酸性能,但其耐碱性能差 |
活性白土 | 表面具有不规则孔道的层状硅铝酸盐化合物 | 无臭、无味、无毒,吸附性能很强,能吸附有色物质、有机物质 |
层状双金属氢氧化物 | 由两种金属阳离子层与可交换的水合廊阴离子组成离子层状材料 | 层状双氢氧化合物中间的阴离子和层与层间作用力弱,可进行层间嵌入的应用研究,而且在嵌入方面具有形状选择性质,可进行分离异构物的应用研究 |
1 | 王豪, 唐晓东, 周建军, 等. 柴油氧化脱硫技术研究进展[J]. 石油与天然气化工, 2003, 32(1): 38-41. |
WANG Hao, TANG Xiaodong, ZHOU Jianjun, et al. Progress in oxidation desulfurization for diesel fuel refining[J]. Chemical Engineering of Oil and Gas, 2003, 32(1): 38-41. | |
2 | 李林, 唐晓东, 邹雯炆, 等. 氧化脱硫生产低硫柴油[J]. 精细石油化工进展, 2007, 8(1): 51-55. |
LI Lin, TANG Xiaodong, ZOU Wenwen, et al. Production of diesel oil containg low content of sulfur by oxidation desulfurization[J]. Advances in Fine Petrochemicals, 2007, 8(1): 51-55. | |
3 | CHEN Meili, CUI Junya, WANG Yizhou, et al. Amine modified nano-sized hierarchical hollow system for highly effective and stable oxidative-adsorptive desulfurization[J]. Fuel, 2020, 266: 116960. |
4 | YANG Xue, YANG Wanliang, ZHANG Yuqi, et al. Constructing dual-function TiO2/MWCNTs-NH2-HPW composites as both catalysts and adsorbents for highly efficient oxidative adsorption desulfurization in fuel oil[J]. Energy & Fuels, 2021, 35(24): 20000-20015. |
5 | ZHANG Yuqi, YANG Wanliang, YANG Xue, et al. Rational design of efficient polar heterogeneous catalysts for catalytic oxidative-adsorptive desulfurization in fuel oil[J]. Applied Catalysis A: General, 2022, 632: 118498. |
6 | 王勇, 申海平, 任磊, 等. 燃料油氧化脱硫机理的研究进展[J]. 化工进展, 2019, 38(S1): 95-103. |
WANG Yong, SHEN Haiping, REN Lei, et al. Research progress of the oxidation desulfurization mechanism for fuel oil[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 95-103. | |
7 | 张铭, 高永康, 纪德龙, 等. 多酸材料在燃油脱硫中的研究进展[J]. 化工进展, 2022, 41(9): 4782-4789. |
ZHANG Ming, GAO Yongkang, JI Delong, et al. Research progress of polyoxometalate materials for fuel oil desulfurization[J]. Chemical Industry and Engineering Progress, 2022, 41(9): 4782-4789. | |
8 | 雷珂, 周魁, 史李刚. 汽柴油脱硫技术研究进展及发展趋势[J]. 化学工程师, 2015, 29(9): 61-64. |
LEI Ke, ZHOU Kui, SHI Ligang. Advances and development in desulphurization of gasoline and diesel[J]. Chemical Engineer, 2015, 29(9): 61-64. | |
9 | LI Jiarong, YANG Zhi, LI Siwen, et al. Review on oxidative desulfurization of fuel by supported heteropolyacid catalysts[J]. Journal of Industrial and Engineering Chemistry, 2020, 82: 1-16. |
10 | LI Feng, ZHOU Wending, YANG Wanliang, et al. Design of hierarchical self-assembly 2D silica and their derivative catalysts with accessible open transport channels for boosting oxidative-adsorptive desulfurization in fuel oil[J]. Fuel, 2022, 324: 124403. |
11 | 李丽娜. 燃料油脱硫技术的研究进展[J]. 精细石油化工进展, 2022, 23(2): 48-54. |
LI Lina. A review of the research progress in desulfurization technology for fuel oil[J]. Advances in Fine Petrochemicals, 2022, 23(2): 48-54. | |
12 | 吕志凤, 战风涛, 李林, 等. 用H2O2-有机酸氧化脱除催化裂化柴油中的硫化物[J]. 中国石油大学学报(自然科学版), 2001, 25(3): 26-29, 5. |
Zhifeng LYU, ZHAN Fengtao, LI Lin, et al. Desulfurization of catalytic diesel oil by hydroperoxide organic acid oxidation system[J]. Journal of China University of Petroleum(Edition of Natural Science), 2001, 25(3): 26-9, 5. | |
13 | Mure TE, FAIRBRIDGE Craig, RING Zbigniew. Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2O2 and formic acid/H2O2 systems[J]. Applied Catalysis A: General, 2001, 219(1/2): 267-280. |
14 | 陈美丽. 不同维数纳米SiO2复合催化剂制备及催化氧化吸附脱硫性能研究[D]. 贵阳: 贵州大学, 2020. |
CHEN Meili. Preparation of nano-SiO2 composite catalyst with different dimensions and its catalytic oxidation adsorption desulfurization performance[D]. Guiyang: Guizhou University, 2020. | |
15 | ABDI G, ASHOKKUMAR M, ALIZADEH A. Ultrasound-assisted oxidative-adsorptive desulfurization using highly acidic graphene oxide as a catalyst-adsorbent[J]. Fuel, 2017, 210: 639-645. |
16 | LIU Zijia, ZHANG Yingnan, BAI Jiabao, et al. MoO x nanoclusters decorated on spinel-type transition metal oxide porous nanosheets for aerobic oxidative desulfurization of fuels[J]. Fuel, 2023, 334: 126753. |
17 | 梁涛, 徐明生. 二维材料研究现状及展望[J]. 科学观察, 2018, 13(6): 40-41. |
LIANG Tao, XU Mingsheng. Research status and prospect of two-dimensional materials[J]. Science Focus, 2018, 13(6): 40-41. | |
18 | CHIA Xinyi, PUMERA Martin. Characteristics and performance of two-dimensional materials for electrocatalysis[J]. Nature Catalysis, 2018, 1(12): 909-921. |
19 | QIAN Xingyue, XIE Ke, GUO Shiying, et al. Beneficial restacking of 2D nanomaterials for electrocatalysis: A case of MoS2 membranes[J]. Chemical Communications, 2020, 56(51): 7005-7008. |
20 | GU Qingqing, WEN Guodong, DING Yuxiao, et al. Reduced graphene oxide: A metal-free catalyst for aerobic oxidative desulfurization[J]. Green Chemistry, 2017, 19(4): 1175-1181. |
21 | ZENG Xingye, XIAO Xinyan, LI Yang, et al. Deep desulfurization of liquid fuels with molecular oxygen through graphene photocatalytic oxidation[J]. Applied Catalysis B: Environmental, 2017, 209: 98-109. |
22 | 龙威, 黄荣华. 石墨烯的化学奥秘及研究进展[J]. 洛阳理工学院学报(自然科学版), 2012, 22(1): 1-4, 12. |
LONG Wei, HUANG Ronghua. The chemical secret and research progress of graphene[J]. Journal of Luoyang Institute of Science and Technology, 2012, 22(1): 1-4, 12. | |
23 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
24 | LI Jinliang, LIU Xinjuan, HOU Xian, et al. Novel reduced graphene oxide wrapped Bi2.38Mo0.81O6 microspheres for highly efficient visible light photocatalysis[J]. Journal of Colloid and Interface Science, 2015, 458: 235-240. |
25 | VADIVEL S, KEERTHI P, VANITHA M, et al. Solvothermal synthesis of Sm-doped BiOBr/RGO composite as an efficient photocatalytic material for methyl orange degradation[J]. Materials Letters, 2014, 128: 287-290. |
26 | SUN Bo, YU Xue, WANG Liang, et al. Enhanced visible light photocatalytic oxidative desulfurization by BiOBr-graphene composite[J]. Journal of Fuel Chemistry and Technology, 2016, 44(9): 1074-1081. |
27 | REZVANI M A, SHOKRI A Z, HOSSEINI M H, et al. Mono Mn(Ⅱ)-substituted phosphotungstate@modified graphene oxide as a high-performance nanocatalyst for oxidative demercaptanization of gasoline[J]. Journal of Industrial and Engineering Chemistry, 2017, 52: 42-50. |
28 | KHODADADI D A, MORTAHEB H R, MOKHTARANI B. Complete oxidative desulfurization using graphene oxide-based phosphomolybdic acid catalyst: Process optimization by two phase mass balance approach[J]. Chemical Engineering Journal, 2018, 335: 362-372. |
29 | LIAO Xiaoyuan, HUANG Yafei, ZHOU Yiqian, et al. Homogeneously dispersed HPW/graphene for high efficient catalytic oxidative desulfurization prepared by electrochemical deposition[J]. Applied Surface Science, 2019, 484: 917-924. |
30 | MA Zihao, ZHANG Jinhao, ZHAN Haoqi, et al. Immobilization of monodisperse metal-oxo-cluster on graphene for aerobic oxidative desulfurization of fuel[J]. Process Safety and Environmental Protection, 2020, 140: 26-33. |
31 | ZUO Peng, LIU Yefeng, JIAO Jiao, et al. Ultrafine W2C well-dispersed on N-doped graphene: Extraordinary catalyst for ultrafast oxidative desulfurization of high sulfur liquid fuels[J]. Applied Catalysis A: General, 2022, 643: 118791. |
32 | YASEEN Muhammad, SUBHAN Sidra, SUBHAN Fazle, et al. Hausmannite Mn3O4 functionalized graphene oxide-NaClO system for oxidative desulfurization and denitrogenation of fuel oils[J]. Fuel, 2022, 321: 124017. |
33 | PANDEY P A, BELL G R, ROURKE J P, et al. Physical vapor deposition of metal nanoparticles on chemically modified graphene: Observations on metal-graphene interactions[J]. Small, 2011, 7(22): 3202-3210. |
34 | NEJATI F M, SHAHHOSSEINI S, REZAEE M. Cobalt-based sandwich-type polyoxometalate supported on amino-silane decorated magnetic graphene oxide: A recoverable catalyst for extractive-catalytic oxidative desulfurization of model oil[J]. Journal of Environmental Chemical Engineering, 2022, 10(3): 107949. |
35 | ZHU Yunfeng, ZHU Mingyuan, KANG Lihua, et al. Phosphotungstic acid supported on mesoporous graphitic carbon nitride as catalyst for oxidative desulfurization of fuel[J]. Industrial & Engineering Chemistry Research, 2015, 54(7): 2040-2047. |
36 | JIA Qingdong, HE Jing, WU Peiwen, et al. Tuning interfacial electronic properties of carbon nitride as an efficient catalyst for ultra-deep oxidative desulfurization of fuels[J]. Molecular Catalysis, 2019, 468: 100-108. |
37 | ZHAO Rongxiang, LI Xiuping, SU Jianxun, et al. Preparation of WO3/g-C3N4 composites and their application in oxidative desulfurization[J]. Applied Surface Science, 2017, 392: 810-816. |
38 | MOEINIFARD B, NAJAFI C A. Mono lacunary phosphomolybdate supported on mesoporous graphitic carbon nitride: An eco-friendly and efficient catalyst for oxidative desulfurization of the model and real fuels[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105430. |
39 | JABAR Ghulam, SAEED Muhammad, KHOSO Sadaf, et al. Development of graphitic carbon nitride supported novel nanocomposites for green and efficient oxidative desulfurization of fuel oil[J]. Nanomaterials and Nanotechnology, 2022, 12: 184798042211063. |
40 | ZHANG Xibiao, SONG Haiyan, SUN Caiying, et al. Photocatalytic oxidative desulfurization and denitrogenation of fuels over sodium doped graphitic carbon nitride nanosheets under visible light irradiation[J]. Materials Chemistry and Physics, 2019, 226: 34-43. |
41 | GONÇALVES D A, PINHEIRO M V, KRAMBROCK K, et al. Oxidative desulfurization of dibenzothiophene over highly dispersed Mo-doped graphitic carbon nitride[J]. Chemical Papers, 2022, 76(6): 3401-3412. |
42 | WENG Qunhong, WANG Xuebin, WANG Xi, et al. Functionalized hexagonal boron nitride nanomaterials: Emerging properties and applications[J]. Chemical Society Reviews, 2016, 45(14): 3989-4012. |
43 | KIM K K, LEE H S, LEE Y H. Synthesis of hexagonal boron nitride heterostructures for 2D Van der Waals electronics[J]. Chemical Society Reviews, 2018, 47(16): 6342-6369. |
44 | WANG Chao, QIU Yue, WU Haoyu, et al. Construction of 2D-2D V2O5/BNNS nanocomposites for improved aerobic oxidative desulfurization performance[J]. Fuel, 2020, 270: 117498. |
45 | XIONG Jun, ZHU Wenshuai, LI Hongping, et al. Carbon-doped porous boron nitride: Metal-free adsorbents for sulfur removal from fuels[J]. Journal of Materials Chemistry A, 2015, 3(24): 12738-12747. |
46 | XIONG Jun, LUO Jing, YANG Lei, et al. Boron defect engineering in boron nitride nanosheets with improved adsorptive desulfurization performance[J]. Journal of Industrial and Engineering Chemistry, 2018, 64: 383-389. |
47 | XIONG Jun, ZHU Wenshuai, LI Hongping, et al. Few-layered graphene-like boron nitride induced a remarkable adsorption capacity for dibenzothiophene in fuels[J]. Green Chemistry, 2015, 17(3): 1647-1656. |
48 | LUO Jing, CHAO Yanhong, TANG Zeyu, et al. Design of lewis acid centers in bundlelike boron nitride for boosting adsorptive desulfurization performance[J]. Industrial & Engineering Chemistry Research, 2019, 58(29): 13303-12. |
49 | XIONG Jun, YANG Lei, CHAO Yanhong, et al. A large number of low coordinated atoms in boron nitride for outstanding adsorptive desulfurization performance[J]. Green Chemistry, 2016, 18(10): 3040-3047. |
50 | XIONG Jun, YANG Lei, CHAO Yanhong, et al. Boron nitride mesoporous nanowires with doped oxygen atoms for the remarkable adsorption desulfurization performance from fuels[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(8): 4457-4464. |
51 | LI Hongping, WANG Changwei, XUN Suhang, et al. An accurate empirical method to predict the adsorption strength for π-orbital contained molecules on two dimensional materials[J]. Journal of Molecular Graphics and Modelling, 2018, 82: 93-100. |
52 | LI Hongping, ZHU Siwen, ZHANG Ming, et al. Tuning the chemical hardness of boron nitride nanosheets by doping carbon for enhanced adsorption capacity[J]. ACS Omega, 2017, 2(9): 5385-5394. |
53 | ZHU Wenshuai, DAI Bilian, WU Peiwen, et al. Graphene-analogue hexagonal BN supported with tungsten-based ionic liquid for oxidative desulfurization of fuels[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(1): 186-194. |
54 | JI Haiyan, SUN Jia, WU Peiwen, et al. Deep oxidative desulfurization with a microporous hexagonal boron nitride confining phosphotungstic acid catalyst[J]. Journal of Molecular Catalysis A: Chemical, 2016, 423: 207-215. |
55 | DAI Bilian, WU Peiwen, ZHU Wenshuai, et al. Heterogenization of homogenous oxidative desulfurization reaction on graphene-like boron nitride with a peroxomolybdate ionic liquid[J]. RSC Advances, 2016, 6(1): 140-147. |
56 | LU L J, WU P W, HE J, et al. N-Hydroxyphthalimide anchored on hexagonal boron nitride as a metal-free heterogeneous catalyst for deep oxidative desulfurization[J]. Petroleum Science, 2022, 19(3): 1382-1389. |
57 | LU Linjie, HE Jing, WU Peiwen, et al. Stable Au nanoparticles confined in boron nitride shells for optimizing oxidative desulfurization[J]. Nano Research, 2022: 1-8. |
58 | WU Peiwen, LU Linjie, HE Jing, et al. Hexagonal boron nitride: A metal-free catalyst for deep oxidative desulfurization of fuel oils[J]. Green Energy & Environment, 2020, 5(2): 166-172. |
59 | WEI Yanchen, WU Peiwen, LUO Jing, et al. Synthesis of hierarchical porous BCN using ternary deep eutectic solvent as precursor and template for aerobic oxidative desulfurization[J]. Microporous and Mesoporous Materials, 2020, 293: 109788. |
60 | WU Peiwen, WU Yingcheng, CHEN Linlin, et al. Boosting aerobic oxidative desulfurization performance in fuel oil via strong metal-edge interactions between Pt and h-BN[J]. Chemical Engineering Journal, 2020, 380: 122526. |
61 | DAI Li, WEI Yanchen, XU Xinyuan, et al. Boron and nitride dual vacancies on metal-free oxygen doping boron nitride as initiating sites for deep aerobic oxidative desulfurization[J]. ChemCatChem, 2020, 12(6): 1734-1742. |
62 | KıRANŞAN M, SOLTANI R D, HASSANI A, et al. Preparation of cetyltrimethylammonium bromide modified montmorillonite nanomaterial for adsorption of a textile dye[J]. Journal of theTaiwan Institute of Chemical Engineers, 2014, 45(5): 2565-2577. |
63 | BOUDJEMA S, VISPE E, CHOUKCHOU-BRAHAM A, et al. Preparation and characterization of activated montmorillonite clay supported 11-molybdo-vanado-phosphoric acid for cyclohexene oxidation[J]. RSC Advances, 2015, 5(9): 6853-6863. |
64 | REZVANI M A, KHANDAN S. Synthesis and characterization of a new nanocomposite (FeW11V@CTAB-MMT) as an efficient heterogeneous catalyst for oxidative desulfurization of gasoline[J]. Applied Organometallic Chemistry, 2018, 32(11): e4524. |
65 | RAFIEE E, SAHRAEI S, MORADI G R. Extractive oxidative desulfurization of model oil/crude oil using KSF montmorillonite-supported 12-tungstophosphoric acid[J]. Petroleum Science, 2016, 13(4): 760-769. |
66 | LI Xiazhang, LI Feihong, LU Xiaowang, et al. Development of Bi2W1- x Mo x O6/montmorillonite nanocomposite asefficient catalyst for photocatalytic desulfurization[J]. Journal of Alloys and Compounds, 2017, 709: 285-292. |
67 | MAO Huihui, ZHU Kongnan, LI Baoshan, et al. Synthesis of titania modified silica-pillared clay (SPC) with highly ordered interlayered mesoporous structure for removing toxic metal ion Cr(Ⅵ) from aqueous state[J]. Applied Surface Science, 2014, 292: 1009-1019. |
68 | KANG Li, LIU Hongyu, HE Huijun, et al. Oxidative desulfurization of dibenzothiophene using molybdenum catalyst supported on Ti-pillared montmorillonite and separation of sulfones by filtration[J]. Fuel, 2018, 234: 1229-1237. |
69 | AHMAD W, RAHMAN A U, AHMAD I, et al. Preparation of Fe2O3, NiO2, and ZnO supported montmorillonite clay for oxidative desulfurization of transportation fuels in O2/CH3COOH oxidation system[J]. Petroleum Science and Technology, 2023, 41(12): 1292-1311. |
70 | 彭富昌. Zn-TiO2/高岭土复合光催化材料的制备及性能研究[J]. 非金属矿, 2022, 45(1): 83-86. |
PENG Fuchang. Study on preparation and performance of Zn-TiO2/Kaolin composite photocatalytic materials[J]. Non-Metallic Mines, 2022, 45(1): 83-86. | |
71 | BELVER C, BAÑARES M M, VICENTE M A. Chemical activation of a kaolinite under acid and alkaline conditions[J]. Chemistry of Materials, 2002, 14(5): 2033-2043. |
72 | HUANG Cheng, WU Pei, GUO Yunlong, et al. Facile synthesis of mesoporous Kaolin catalyst carrier and its application in deep oxidative desulfurization[J]. Microporous and Mesoporous Materials, 2020, 306: 110415. |
73 | ARZANYPOUR Pardis, MORADI Gholamreza, RESHADI Pourya. Oxidative desulfurization of model and real fuel samples with natural zeolite-based catalysts: Experimental design and optimization by Box-Behnken method[J]. International Journal of Chemical Reactor Engineering, 2023, 21(3): 273-283. |
74 | 高晓明, 宜沛沛, 付峰, 等. 活性白土-Bi2WO6的制备及其光催化氧化脱硫的研究[J]. 精细石油化工, 2015, 32(1): 4-9. |
GAO Xiaoming, YI Peipei, FU Feng, et al. Preparation of activated clay-Bi2WO6 and its application in the photocatalytic oxidative desulfurization[J]. Speciality Petrochemicals, 2015, 32(1): 4-9. | |
75 | KIM M J, KIM H, JEONG K E, et al. Catalytic decomposition of dibenzothiophene sulfones over layered double hydroxide catalysts[J]. Journal of Industrial and Engineering Chemistry, 2010, 16(4): 539-545. |
76 | HUANG Pengcheng, LIU Aili, KANG Lihua, et al. Heteropoly acid supported on sodium dodecyl benzene sulfonate modified layered double hydroxides as catalysts for oxidative desulfurization[J]. New Journal of Chemistry, 2018, 42(15): 12830-12837. |
77 | SONG Ya, BAI Jiabao, JIANG Shenqin, et al. Co-Fe-Mo mixed metal oxides derived from layered double hydroxides for deep aerobic oxidative desulfurization[J]. Fuel, 2021, 306: 121751. |
78 | CHOWDHURY P R, BHATTACHARYYA K G. Synthesis and characterization of Mn/Co/Ti LDH and its utilization as a photocatalyst in visible light assisted degradation of aqueous Rhodamine B[J]. RSC Advances, 2016, 6(113): 112016-112034. |
79 | GAO Liguo, LI Huanxiang, SONG Xiaoli, et al. Degradation of benzothiophene in diesel oil by LaZnAl layered double hydroxide: Photocatalytic performance and mechanism[J]. Petroleum Science, 2019, 16(1): 173-179. |
80 | MASOUMI S, HOSSEINI S A. Desulfurization of di-benzothiophene from gasoil model using Ni-Co2, Ni-Fe2 and Co-Fe2 nano layered-double hydroxides as photocatalysts under visible light[J]. Fuel, 2020, 277: 118137. |
81 | DIAO Jiangyong, HU Minmin, LIAN Zan, et al. Ti3C2T x MXene catalyzed ethylbenzene dehydrogenation: Active sites and mechanism exploration from both experimental and theoretical aspects[J]. ACS Catalysis, 2018, 8(11): 10051-10057. |
82 | LI Zhe, YU Liang, MILLIGAN Cory, et al. Two-dimensional transition metal carbides as supports for tuning the chemistry of catalytic nanoparticles[J]. Nature Communications, 2018, 9(1): 1-8. |
83 | LI Zhe, CUI Yanran, WU Zhenwei, et al. Reactive metal–support interactions at moderate temperature in two-dimensional niobium-carbide-supported platinum catalysts[J]. Nature Catalysis, 2018, 1(5): 349-355. |
84 | HE Jing, WU Peiwen, CHEN Linlin, et al. Dynamically-generated TiO2 active site on MXene Ti3C2: Boosting reactive desulfurization[J]. Chemical Engineering Journal, 2021, 416: 129022. |
85 | BAI Jiabao, ZHANG Yingnan, CHEN Hou, et al. V2CT x MXene: A promising catalyst for low-temperature aerobic oxidative desulfurization[J]. Catalysis Letters, 2023, 153(10): 3103-3110. |
86 | VAITSIS Christos, SOURKOUNI Georgia, ARGIRUSIS Christos. Metal organic frameworks (MOFs) and ultrasound: A review[J]. Ultrasonics Sonochemistry, 2019, 52: 106-119. |
87 | SANG Xinxin, LIU Dongyin, SONG Junling, et al. High-efficient liquid exfoliation of 2D metal-organic framework using deep-eutectic solvents[J]. Ultrasonics Sonochemistry, 2021, 72: 105461. |
88 | HUANG Chuanhui, LIU Cong, CHEN Xiangyu, et al. A metal-organic framework nanosheet-assembled frame film with high permeability and stability[J]. Advanced Science, 2020, 7(8): 1903180. |
89 | XU Lili, WANG Yang, XU Tingting, et al. Exfoliating polyoxometalate-encapsulating metal-organic framework into two-dimensional nanosheets for superior oxidative desulfurization[J]. ChemCatChem, 2018, 10(23): 5386-5390. |
90 | LI Xiazhang, ZHANG Zuosong, YAO Chao, et al. Attapulgite-CeO2/MoS2 ternary nanocomposite for photocatalytic oxidative desulfurization[J]. Applied Surface Science, 2016, 364: 589-596. |
91 | MAHMOUDABADI Z S, RASHIDI A, YOUSEFI M. Synthesis of 2D-porous MoS2 as a nanocatalyst for oxidative desulfurization of sour gas condensate: Process parameters optimization based on the Levenberg–Marquardt algorithm[J]. Journal of Environmental Chemical Engineering, 2021, 9(3): 105200. |
92 | LIU Weifeng, QIN Lei, AN Zhuolin, et al. Selective adsorption and separation of dibenzothiophene by molecularly imprinted polymer on the surface of porous magnetic carbon nanospheres[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2019, 27(1): 14-22. |
93 | ZHU Lijun, Xinfeng LYU, TONG Shuyue, et al. Modification of zeolite by metal and adsorption desulfurization of organic sulfide in natural gas[J]. Journal of Natural Gas Science and Engineering, 2019, 69: 102941. |
[1] | 王达锐, 孙洪敏, 王一棪, 唐智谋, 李芮, 范雪研, 杨为民. 分子筛催化反应过程高效化的技术进展[J]. 化工进展, 2024, 43(1): 1-18. |
[2] | 罗芬, 杨晓琪, 段方麟, 李小江, 吴亮, 徐铜文. 双极膜研究进展及应用展望[J]. 化工进展, 2024, 43(1): 145-163. |
[3] | 盖宏伟, 张辰君, 屈晶莹, 孙怀禄, 脱永笑, 王斌, 金旭, 张茜, 冯翔, CHEN De. 有机液体储氢技术催化脱氢过程强化研究进展[J]. 化工进展, 2024, 43(1): 164-185. |
[4] | 张家昊, 李盈盈, 徐彦琳, 尹佳滨, 张吉松. 微反应器中连续还原胺化反应的研究进展[J]. 化工进展, 2024, 43(1): 186-197. |
[5] | 王玉杰, 张艳梅, 栾金义, 赵之平. 酶催化固碳过程及其强化技术研究进展[J]. 化工进展, 2024, 43(1): 232-245. |
[6] | 衡霖宇, 邓卓然, 程道建, 魏彬, 赵利强. 高通量合成装置强化金属催化剂制备过程的研究进展[J]. 化工进展, 2024, 43(1): 246-259. |
[7] | 刘锋, 褚阳, 李会峰, 李明丰, 朱玫, 张润强. 汽油中大分子硫醇催化转化反应过程强化[J]. 化工进展, 2024, 43(1): 279-284. |
[8] | 王一棪, 王达锐, 沈震浩, 何俊琳, 孙洪敏, 杨为民. 全结晶MCM-22分子筛催化剂的制备及其催化性能[J]. 化工进展, 2024, 43(1): 285-291. |
[9] | 于笑笑, 巢艳红, 刘海燕, 朱文帅, 刘植昌. D-A共轭聚合强化光电性能及光催化CO2转化[J]. 化工进展, 2024, 43(1): 292-301. |
[10] | 孙进, 陈晓贞, 刘名瑞, 刘丽, 牛世坤, 郭蓉. 加氢脱硫催化剂钠中毒失活机理[J]. 化工进展, 2024, 43(1): 407-413. |
[11] | 张海鹏, 王树振, 马梦茜, 张巍, 向江南, 王玉婷, 王琰, 范彬彬, 郑家军, 李瑞丰. ZSM-22分子筛合成及其正十二烷烃临氢异构化性能:模板剂和动态晶化的影响[J]. 化工进展, 2024, 43(1): 414-421. |
[12] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[13] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[14] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[15] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |