化工进展 ›› 2024, Vol. 43 ›› Issue (1): 232-245.DOI: 10.16085/j.issn.1000-6613.2023-1677
• 专栏:化工过程强化 • 上一篇
收稿日期:
2023-09-21
修回日期:
2023-11-06
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
栾金义
作者简介:
王玉杰(1980—),女,博士,高级工程师,研究方向为气体膜分离、CO2的捕集及利用。E-mail:wangyuj.bihy@sinopec.com。
基金资助:
WANG Yujie1(), ZHANG Yanmei2, LUAN Jinyi1(), ZHAO Zhiping2
Received:
2023-09-21
Revised:
2023-11-06
Online:
2024-01-20
Published:
2024-02-05
Contact:
LUAN Jinyi
摘要:
全球范围迅猛发展的工业生产导致温室气体CO2的排放,引发人们对全球气候变化的普遍关切。在发展清洁能源、工业流程再造等减少碳排放的同时,开发高效、经济的CO2捕集、利用与储存(CCUS)技术显得尤为迫切。本文基于CO2资源化利用的目的,对生物体外酶催化固碳过程及其强化技术的研究进展进行综述。首先,介绍了CO2转化过程中涉及的关键催化酶及其优化,阐述了CO2资源化利用的具体策略,涵盖了将CO2催化转化为甲酸、甲醇、甲烷、淀粉以及L-乳酸、丙酮酸等特定产物分子。进而,重点阐述了辅因子的原位再生、酶的固定化、反应系统的优化设计、反应条件优化(pH、温度、底物浓度)以及产物原位分离等技术对CO2生物酶催化反应过程的强化,实现CO2的高效固定与资源化利用。旨在通过多方面交叉论述,为生物酶催化过程及路线设计包括固定化酶催化剂的制备、反应器选择设计与开发、酶催化过程调控、高值化产品定向合成等提供有益的启发和思考。最后,总结了酶催化固碳过程存在的问题和挑战,并对其未来值得研究的方向进行了展望。
中图分类号:
王玉杰, 张艳梅, 栾金义, 赵之平. 酶催化固碳过程及其强化技术研究进展[J]. 化工进展, 2024, 43(1): 232-245.
WANG Yujie, ZHANG Yanmei, LUAN Jinyi, ZHAO Zhiping. Enzyme-catalyzed carbon sequestration processes and enhancement technologies[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 232-245.
酶 | 产物 | 反应 | 优势 | 参考文献 |
---|---|---|---|---|
甲酸脱氢酶 | 甲酸盐(HCOO-) | 易获取增值产品、底物广泛 | [ | |
碳酸酐酶 | 碳酸氢盐( | 快速催化CO2水合反应、低能耗 | [ | |
重塑固氮酶 | 甲烷(CH4) | H2无抑制作用 | [ | |
一氧化碳脱氢酶 | 一氧化碳(CO) | 大气氛围下稳定、独特的催化活性中心、反应产物易转化为增值产品 | [ | |
多重脱氢酶 | 甲醇(CH3OH) | 易获取增值产品 | [ | |
丙酮酸脱羧酶 | 羧酸类化合物 | 对环境友好 | [ |
表1 不同酶催化CO2转化
酶 | 产物 | 反应 | 优势 | 参考文献 |
---|---|---|---|---|
甲酸脱氢酶 | 甲酸盐(HCOO-) | 易获取增值产品、底物广泛 | [ | |
碳酸酐酶 | 碳酸氢盐( | 快速催化CO2水合反应、低能耗 | [ | |
重塑固氮酶 | 甲烷(CH4) | H2无抑制作用 | [ | |
一氧化碳脱氢酶 | 一氧化碳(CO) | 大气氛围下稳定、独特的催化活性中心、反应产物易转化为增值产品 | [ | |
多重脱氢酶 | 甲醇(CH3OH) | 易获取增值产品 | [ | |
丙酮酸脱羧酶 | 羧酸类化合物 | 对环境友好 | [ |
固定化方法 | 具体策略 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
吸附法 | 主要分为表面吸附和孔道吸附两类,通过弱相互作用力(如氢键、范德华力、亲疏水作用和静电作用等)实现酶的固定化 | 操作简单 载体种类广泛 酶构象变化小 | 酶与载体间的结合力较弱,易发生酶泄露 | [ |
共价结合法 | 改性载体表面的胺基、羟基、羧基或环氧基等官能团和酶的氨基酸残基之间可以形成共价键 | 酶与载体间作用力强,基本不发生酶泄露 | 操作相对复杂 易影响酶的构象 | [ |
包埋法 | 将载体与酶“一锅反应”,通过机械搅拌、加入交联剂等将酶包裹在凝胶等材料中 | 操作简单 不涉及酶的构象转变 | 酶被限制在载体中,存在扩散受限、传质受阻 | [ |
交联法 | 利用酶自身的双官能团结构或者加入一些交联剂(如戊二醛、甲苯二异氰酸酯等)连接起来形成酶聚集体 | 不需要载体 | 机械强度差 | [ |
原位合成法 | 将酶的溶液与合成MOF的前体溶液(金属和配体溶液)混合在一起,诱导MOF晶核生成、晶体生长,同时实现酶的包覆 | 酶的固定与载体的制备同时发生,结合牢固 | 易影响酶的构象 反应不易控制 | [ |
表2 固定化方法优缺点
固定化方法 | 具体策略 | 优点 | 缺点 | 参考文献 |
---|---|---|---|---|
吸附法 | 主要分为表面吸附和孔道吸附两类,通过弱相互作用力(如氢键、范德华力、亲疏水作用和静电作用等)实现酶的固定化 | 操作简单 载体种类广泛 酶构象变化小 | 酶与载体间的结合力较弱,易发生酶泄露 | [ |
共价结合法 | 改性载体表面的胺基、羟基、羧基或环氧基等官能团和酶的氨基酸残基之间可以形成共价键 | 酶与载体间作用力强,基本不发生酶泄露 | 操作相对复杂 易影响酶的构象 | [ |
包埋法 | 将载体与酶“一锅反应”,通过机械搅拌、加入交联剂等将酶包裹在凝胶等材料中 | 操作简单 不涉及酶的构象转变 | 酶被限制在载体中,存在扩散受限、传质受阻 | [ |
交联法 | 利用酶自身的双官能团结构或者加入一些交联剂(如戊二醛、甲苯二异氰酸酯等)连接起来形成酶聚集体 | 不需要载体 | 机械强度差 | [ |
原位合成法 | 将酶的溶液与合成MOF的前体溶液(金属和配体溶液)混合在一起,诱导MOF晶核生成、晶体生长,同时实现酶的包覆 | 酶的固定与载体的制备同时发生,结合牢固 | 易影响酶的构象 反应不易控制 | [ |
31 | HOU Jingwei, JI Chao, DONG Guangxi, et al. Biocatalytic Janus membranes for CO2 removal utilizing carbonic anhydrase[J]. Journal of Materials Chemistry A, 2015, 3(33): 17032-17041. |
32 | 孟令玎, 崇汝青, 孙菲雪, 等. 改性聚乙烯膜和氧化硅固定化碳酸酐酶[J]. 化工学报, 2023, 74(8): 3472-3484. |
MENG Lingding, CHONG Ruqing, SUN Feixue, et al. Immobilization of carbonic anhydrase on modified polyethylene membrane and silica[J]. CIESC Journal, 2023, 74(8): 3472-3484. | |
33 | MONDAL M, KHANRA S, TIWARI O N, et al. Role of carbonic anhydrase on the way to biological carbon capture through microalgae—A mini review[J]. Environmental Progress & Sustainable Energy, 2016, 35(6): 1605-1615. |
34 | BOND G M, STRINGER J, BRANDVOLD D K, et al. Development of integrated system for biomimetic CO2 sequestration using the enzyme carbonic anhydrase[J]. Energy & Fuels, 2001, 15(2): 309-316. |
35 | SUPURAN C T. Carbonic anhydrases: Novel therapeutic applications for inhibitors and activators[J]. Nature Reviews Drug Discovery, 2008, 7(2): 168-181. |
36 | LINDSKOG S, COLEMAN J E. The catalytic mechanism of carbonic anhydrase[J]. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(9): 2505-2508. |
37 | SILVERMAN D N, LINDSKOG S. The catalytic mechanism of carbonic anhydrase: Implications of a rate-limiting protolysis of water[J]. Accounts of Chemical Research, 1988, 21(1): 30-36. |
38 | WANG Yanzi, LI Manfeng, ZHAO Zhiping, et al. Effect of carbonic anhydrase on enzymatic conversion of CO2 to formic acid and optimization of reaction conditions[J]. Journal of Molecular Catalysis B: Enzymatic, 2015, 116: 89-94. |
39 | SAKAKURA Toshiyasu, CHOI Jun-Chul, YASUDA Hiroyuki. Transformation of carbon dioxide[J]. Chemical Reviews, 2007, 107(6): 2365-2387. |
40 | Sara NAVARRO-JAÉN, VIRGINIE Mirella, BONIN Julien, et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol[J]. Nature Reviews Chemistry, 2021, 5(8): 564-579. |
41 | ZHANG Zhibo, Muschiol J, HUANG Yuhong, et al. Efficient ionic liquid-based platform for multi-enzymatic conversion of carbon dioxide to methanol[J]. Green Chemistry, 2018, 20(18): 4339-4348. |
42 | SINGH Raushan Kumar, SINGH Ranjitha, SIVAKUMAR Dakshinamurthy, et al. Insights into cell-free conversion of CO2 to chemicals by a multienzyme cascade reaction[J]. ACS Catalysis, 2018, 8(12): 11085-11093. |
43 | KUWABATA Susumu, TSUDA Ryo, YONEYAMA Hiroshi. Electrochemical conversion of carbon dioxide to methanol with the assistance of formate dehydrogenase and methanol dehydrogenase as biocatalysts[J]. Journal of the American Chemical Society, 1994, 116(12): 5437-5443. |
44 | BASKAYA F S, ZHAO Xueyan, FLICKINGER M C, et al. Thermodynamic feasibility of enzymatic reduction of carbon dioxide to methanol[J]. Applied Biochemistry and Biotechnology, 2010, 162(2): 391-398. |
45 | CALZADIAZ-RAMIREZ L, MEYER A S. Formate dehydrogenases for CO2 utilization[J]. Current Opinion in Biotechnology, 2022, 73: 95-100. |
46 | STRIPP S T, DUFFUS B R, VINCENT F, et al. Second and outer coordination sphere effects in nitrogenase, hydrogenase, formate dehydrogenase, and CO dehydrogenase[J]. Chemical Reviews, 2022, 122(14): 11900-11973. |
47 | 梁珊, 宗敏华, 娄文勇. 酶法催化二氧化碳制备高附加值化学品研究进展[J]. 化学学报, 2019, 77(11): 1099-1114. |
LIANG Shan, ZONG Minhua, LOU Wenyong. Recent advances in enzymatic catalysis for preparation of high value-added chemicals from carbon dioxide[J]. Acta Chimica Sinica, 2019, 77(11): 1099-1114. | |
48 | CHEN Han, HUANG Yu, SHA Chong, et al. Enzymatic carbon dioxide to formate: Mechanisms, challenges and opportunities[J]. Renewable and Sustainable Energy Reviews, 2023, 178: 113271. |
49 | MAIA L B, MOURA J J G, ISABEL M. Molybdenum and tungsten-dependent formate dehydrogenases[J]. Journal of Biological Inorganic Chemistry, 2015, 20(2): 287-309. |
50 | WANG Bingwen, Sandra ALBARRACÍN-SUAZO, Yomaira PAGÁN-TORRES, et al. Advances in methane conversion processes[J]. Catalysis Today, 2017, 285: 147-158. |
51 | ZHENG Yanning, HARRIS D F, YU Zheng, et al. A pathway for biological methane production using bacterial iron-only nitrogenase[J]. Nature Microbiology, 2018, 3(3): 281-286. |
52 | FIXEN K R, ZHENG Yanning, HARRIS D F, et al. Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(36): 10163-10167. |
53 | YANG Zhiyong, MOURE V R, DEAN D R, et al. Carbon dioxide reduction to methane and coupling with acetylene to form propylene catalyzed by remodeled nitrogenase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(48): 19644-19648. |
54 | DOBBEK Holger. A fuel-producing microbe[J]. Nature Chemical Biology, 2017, 13(2): 134-135. |
55 | WANG Ling, HE Zhangwei, GUO Zechong, et al. Microbial community development on different cathode metals in a bioelectrolysis enhanced methane production system[J]. Journal of Power Sources, 2019, 444: 227306. |
1 | SUN Hemin, WANG Anqian, ZHAI Jianqing, et al. Impacts of global warming of 1.5℃ and 2.0℃ on precipitation patterns in China by regional climate model (COSMO-CLM)[J]. Atmospheric Research, 2018, 203: 83-94. |
2 | XIAO Yuting, GUO Shien, TIAN Guohui, et al. Synergetic enhancement of surface reactions and charge separation over holey C3N4/TiO2 2D heterojunctions[J]. Science Bulletin, 2021, 66(3): 275-283. |
3 | JIA Zhichao, DANG Jianan, WEN Guobin, et al. Constructing nanocaged enzymes for synergistic catalysis of CO2 reduction[J]. Advanced Science, 2023, 10(20): e2300752. |
4 | LI Yangshuo, LI Fangfang, LAAKSONEN Aatto, et al. Electrochemical CO2 reduction with ionic liquids: Review and evaluation[J]. Industrial Chemistry & Materials, 2023, 1(3): 410-430. |
5 | SHI Jiafu, JIANG Yanjun, JIANG Zhongyi, et al. Enzymatic conversion of carbon dioxide[J]. Chemical Society Reviews, 2015, 44(17): 5981-6000. |
6 | KARMAKAR A, POMBEIRO A J L. Recent advances in amide functionalized metal organic frameworks for heterogeneous catalytic applications[J]. Coordination Chemistry Reviews, 2019, 395: 86-129. |
7 | SALEHIZADEH Hossein, YAN Ning, FARNOOD Ramin. Recent advances in microbial CO2 fixation and conversion to value-added products[J]. Chemical Engineering Journal, 2020, 390: 124584. |
8 | 刘文芳, 魏利娜. 碳酸酐酶固定化研究进展[J]. 分子催化, 2016, 30(2): 182-197. |
LIU Wenfang, WEI Lina. Research progress on carbonic anhydrase immobilization[J]. Journal of Molecular Catalysis (China), 2016, 30(2): 182-197. | |
9 | TONG Xiaodong, El-Zahab Bilal, ZHAO Xueyan, et al. Enzymatic synthesis of L-lactic acid from carbon dioxide and ethanol with an inherent cofactor regeneration cycle[J]. Biotechnology and Bioengineering, 2011, 108(2): 465-469. |
10 | JIANG Yanjun, SUN Qianyun, ZHANG Lei, et al. Capsules-in-bead scaffold: A rational architecture for spatially separated multienzyme cascade system[J]. Journal of Materials Chemistry, 2009, 19(47): 9068-9074. |
11 | WU Ranran, MA Chunling, ZHU Zhiguang. Enzymatic electrosynthesis as an emerging electrochemical synthesis platform[J]. Current Opinion in Electrochemistry, 2020, 19: 1-7. |
56 | XU Heng, WANG Kaijun, HOLMES D E. Bioelectrochemical removal of carbon dioxide (CO2): An innovative method for biogas upgrading[J]. Bioresource Technology, 2014, 173: 392-398. |
57 | YE Jie, YU Jing, ZHANG Yiyun, et al. Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri-CdS biohybrid[J]. Applied Catalysis B: Environmental, 2019, 257: 117916. |
58 | 蔡韬, 刘玉万, 朱蕾蕾, 等. 二氧化碳人工生物转化[J]. 生物工程学报, 2022, 38(11): 4101-4114. |
CAI Tao, LIU Yuwan, ZHU Leilei, et al. Artificial biotransformation of carbon dioxide[J]. Chinese Journal of Biotechnology, 2022, 38(11): 4101-4114. | |
59 | SADEGHI Kambiz, JEON Yukwon, SEO Jongchul. Roadmap to the sustainable synthesis of polymers: From the perspective of CO2 upcycling[J]. Progress in Materials Science, 2023, 135: 101103. |
60 | CAI Tao, SUN Hongbing, QIAO Jing, et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide[J]. Science, 2021, 373(6562): 1523-1527. |
61 | MIYAZAKI Masaya, OGINO Kazuya, SHIBUE Mitsukuni, et al. A one-pot, two-step enzymatic synthesis of L-lactic acid from acetaldehyde[J]. Chemistry Letters, 2002, 31(7): 758-759. |
62 | MASAYA Miyazaki, MITSUKUNI Shibue, KAZUYA Ogino, et al. Enzymatic synthesis of pyruvic acid from acetaldehyde and carbon dioxide[J]. Chemical Communications, 2001(18): 1800-1801. |
63 | ATSUMI S, HIGASHIDE W, LIAO J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde[J]. Nature Biotechnology, 2009, 27(12): 1177-1180. |
64 | JI Xiaoyuan, SU Zhiguo, WANG Ping, et al. Tethering of nicotinamide adenine dinucleotide inside hollow nanofibers for high-yield synthesis of methanol from carbon dioxide catalyzed by coencapsulated multienzymes[J]. ACS Nano, 2015, 9(4): 4600-4610. |
65 | SONG Haiyan, MA Chunling, LIU Pi, et al. A hybrid CO2 electroreduction system mediated by enzyme-cofactor conjugates coupled with Cu nanoparticle-catalyzed cofactor regeneration[J]. Journal of CO2 Utilization, 2019, 34: 568-575. |
66 | 詹悦, 王新, 宋雨轩, 等. 碳酸酐酶的固定化及其在二氧化碳转化中的应用[J]. 环境化学, 2023, 42(9): 3157-3166. |
12 | Aişe ÜNLÜ, DUMAN-ÖZDAMAR Zeynep Efsun, Buse ÇALOĞLU, et al. Enzymes for efficient CO2 conversion[J]. The Protein Journal, 2021, 40(4): 489-503. |
13 | ZHENG Yun, ZHANG Wenqiang, LI Yifeng, et al. Energy related CO2 conversion and utilization: Advanced materials/nanomaterials, reaction mechanisms and technologies[J]. Nano Energy, 2017, 40: 512-539. |
14 | NETTO C G C M, NAKAMURA M, ANDRADE L H, et al. Improving the catalytic activity of formate dehydrogenase from Candida boidinii by using magnetic nanoparticles[J]. Journal of Molecular Catalysis B: Enzymatic, 2012, 84: 136-143. |
15 | 孟令玎, 毛梦雷, 廖奇勇, 等. 碳酸酐酶和甲酸脱氢酶的稳定性研究进展[J]. 化工进展, 2022, 41(S1): 436-447. |
MENG Lingding, MAO Menglei, LIAO Qiyong, et al. Recent advance in stability of carbonic anhydrase and formate dehydrogenase[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 436-447. | |
16 | Manuel GÖTZ, LEFEBVRE Jonathan, Friedemann MÖRS, et al. Renewable power-to-gas: A technological and economic review[J]. Renewable Energy, 2016, 85: 1371-1390. |
17 | XU Songwei, LU Yang, LI Jian, et al. Efficient conversion of CO2 to methanol catalyzed by three dehydrogenases co-encapsulated in an alginate-silica (ALG-SiO2) hybrid gel[J]. Industrial & Engineering Chemistry Research, 2006, 45(13): 4567-4573. |
18 | OBERT R, DAVE B C. Enzymatic conversion of carbon dioxide to methanol: Enhanced methanol production in silica sol-gel matrices[J]. Journal of the American Chemical Society, 1999, 121(51): 12192-12193. |
19 | Seung-Hyun JUN, YANG Jusang, JEON Hancheol, et al. Stabilized and immobilized carbonic anhydrase on electrospun nanofibers for enzymatic CO2 conversion and utilization in expedited microalgal growth[J]. Environmental Science & Technology, 2020, 54(2): 1223-1231. |
20 | NICHOLS E M, GALLAGHER J J, LIU Chong, et al. Hybrid bioinorganic approach to solar-to-chemical conversion[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(37): 11461-11466. |
21 | BURKART M D, HAZARI N, TWAY C L, et al. Opportunities and challenges for catalysis in carbon dioxide utilization[J]. ACS Catalysis, 2019, 9(9): 7937-7956. |
22 | WOOLERTON T W, SALLY S, ERWIN R, et al. Efficient and clean photoreduction of CO2 to CO by enzyme-modified TiO2 nanoparticles using visible light[J]. Journal of the American Chemical Society, 2010, 132(7): 2132-2133. |
23 | ALISON P, JAVIER S, VINCENT K A, et al. Rapid and efficient electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase Ⅰ on an electrode[J]. Journal of the American Chemical Society, 2007, 129(34): 10328-10329. |
66 | ZHAN Yue, WANG Xin, SONG Yuxuan, et al. Immobilization of carbonic anhydrase and its application in carbon dioxide conversion[J]. Environmental Chemistry, 2023, 42(9): 3157-3166. |
67 | NELSON J M, GRIFFIN E G. Adsorption of invertase[J]. Journal of the American Chemical Society, 1916, 38(5): 1109-1115. |
68 | Cristhian MOLINA-FERNÁNDEZ, LUIS Patricia. Immobilization of carbonic anhydrase for CO2 capture and its industrial implementation: A review[J]. Journal of CO2 Utilization, 2021, 47: 101475. |
69 | REN Sizhu, CHEN Ruixue, WU Zhangfei, et al. Enzymatic characteristics of immobilized carbonic anhydrase and its applications in CO2 conversion[J]. Colloids and Surfaces B: Biointerfaces, 2021, 204: 111779. |
70 | SHAMNA I, JEONG S K, MARGANDAN B. Covalent immobilization of carbonic anhydrase on amine functionalized alumino-siloxane aerogel beads for biomimetic sequestration of CO2 [J]. Journal of Industrial and Engineering Chemistry, 2021, 100: 288-295. |
71 | IMAM H T, MARR P C, MARR A C. Enzyme entrapment, biocatalyst immobilization without covalent attachment[J]. Green Chemistry, 2021, 23(14): 4980-5005. |
72 | CHEN Ning, CHANG Baogen, SHI Nian, et al. Cross-linked enzyme aggregates immobilization: Preparation, characterization, and applications[J]. Critical Reviews in Biotechnology, 2023, 43(3): 369-383. |
73 | CHAI Milton, RAZMJOU Amir, CHEN Vicki. Metal-organic-framework protected multi-enzyme thin-film for the cascade reduction of CO2 in a gas-liquid membrane contactor[J]. Journal of Membrane Science, 2021, 623: 118986. |
74 | 陈海欣, 张赛男, 赵力民, 等. 固定化酶: 从策略到材料设计[J]. 生物加工过程, 2020, 18(1): 88-95. |
CHEN Haixin, ZHANG Sainan, ZHAO Limin, et al. Immobilized enzyme: From strategy to material design[J]. Chinese Journal of Bioprocess Engineering, 2020, 18(1): 88-95. | |
75 | LIAO Yuan, Chun-Heng LOH, TIAN Miao, et al. Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications[J]. Progress in Polymer Science, 2018, 77: 69-94. |
76 | Ping-Chung KUO, LIN Zhixun, WU Tzi-Yi, et al. Effects of morphology and pore size of mesoporous silicas on the efficiency of an immobilized enzyme[J]. RSC Advances, 2021, 11(17): 10010-10017. |
24 | APPEL A M, BERCAW J E, BOCARSLY A B, et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation[J]. Chemical Reviews, 2013, 113(8): 6621-6658. |
25 | DEKA Tanmay J, OSMAN Ahmed I, BARUAH Debendra C, et al. Methanol fuel production, utilization, and techno-economy: A review[J]. Environmental Chemistry Letters, 2022, 20(6): 3525-3554. |
26 | LUO J Q, MEYER A S, MATEIU R V, et al. Cascade catalysis in membranes with enzyme immobilization for multi-enzymatic conversion of CO2 to methanol[J]. New Biotechnology, 2015, 32(3): 319-327. |
27 | 葛喜珍, 赵有玺, 刘晓宇, 等. 生物固定CO2代谢途径及关键酶的研究进展[J]. 北京联合大学学报, 2013, 27(1): 63-68. |
GE Xizhen, ZHAO Youxi, LIU Xiaoyu, et al. Research advances in biological CO2 fixation pathways and key enzymes[J]. Journal of Beijing Union University, 2013, 27(1): 63-68. | |
28 | OSCAR A, NGUYEN L J, SAVILE C K, et al. Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(46): 16436-16441. |
29 | FISHER Z, BOONE C D, BISWAS S M, et al. Kinetic and structural characterization of thermostabilized mutants of human carbonic anhydrase Ⅱ[J]. Protein Engineering, Design and Selection, 2012, 25(7): 347-355. |
30 | ROJKOVA A M, GALKIN A G, KULAKOVA L B, et al. Bacterial formate dehydrogenase. Increasing the enzyme thermal stability by hydrophobization of alpha-helices[J]. FEBS Letters, 1999, 445(1): 183-188. |
77 | WU Lingtian, WU Shanshan, XU Zheng, et al. Modified nanoporous titanium dioxide as a novel carrier for enzyme immobilization[J]. Biosensors and Bioelectronics, 2016, 80: 59-66. |
78 | AL-DHRUB A H A, SAHIN S, OZMEN I, et al. Immobilization and characterization of human carbonic anhydrase Ⅰ on amine functionalized magnetic nanoparticles[J]. Process Biochemistry, 2017, 57: 95-104. |
79 | RASOULI Hannaneh, ILIUTA Ion, BOUGIE Francis, et al. Enhanced CO2 capture in packed-bed column bioreactors with immobilized carbonic anhydrase[J]. Chemical Engineering Journal, 2022, 432: 134029. |
80 | 毛梦雷, 孟令玎, 高蕊, 等. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
MAO Menglei, MENG Lingding, GAO Rui, et al. Research progress on enzyme immobilization on porous framework materials[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2516-2535. | |
81 | YAN Lihang, LIU Guanhua, LIU Jianqiao, et al. Hierarchically porous metal organic framework immobilized formate dehydrogenase for enzyme electrocatalytic CO2 reduction[J]. Chemical Engineering Journal, 2022, 450: 138164. |
82 | REN Sizhu, FENG Yuxiao, WEN Huan, et al. Immobilized carbonic anhydrase on mesoporous cruciate flower-like metal organic framework for promoting CO2 sequestration[J]. International Journal of Biological Macromolecules, 2018, 117: 189-198. |
83 | ILIUTA I, ILIUTA M C. Enhanced enzyme-based CO2 capture in countercurrent packed-bed column reactors[J]. Separation and Purification Technology, 2020, 248: 116908. |
84 | CHOOK Kay Yi, AROUA Mohamed Kheireddine, Lai Ti GEW. Enzyme biocatalysis for sustainability applications in reactors: A systematic review[J]. Industrial & Engineering Chemistry Research, 2023, 62(28): 10800-10812. |
85 | 朱昊, 徐刘佳, 郑明明, 等. 连续流酶反应器的应用研究进展[J]. 现代化工, 2021, 41(12): 17-21. |
ZHU Hao, XU Liujia, ZHENG Mingming, et al. Research progress in application of continuous flow enzyme reactor[J]. Modern Chemical Industry, 2021, 41(12): 17-21. | |
86 | PRAZERES D M F, CABRAL J M S. Enzymatic membrane bioreactors and their applications[J]. Enzyme and Microbial Technology, 1994, 16(9): 738-750. |
87 | SITANGGANG Azis Boing, DREWS Anja, KRAUME Matthias. Enzymatic membrane reactors: Designs, applications, limitations and outlook[J]. Chemical Engineering and Processing-Process Intensification, 2022, 180: 108729. |
88 | SONG Chunfeng, LIU Qingling, JI Na, et al. Alternative pathways for efficient CO2 capture by hybrid processes—A review[J]. Renewable and Sustainable Energy Reviews, 2018, 82: 215-231. |
89 | LI Zonglin, SHEN Su, LI Zhimin. Towards the conversion of CO2 into optically pure N-carbamoyl-l-aspartate and orotate by an in vitro multi-enzyme cascade[J]. Green Chemistry, 2020, 22(17): 5798-5805. |
90 | GAO Song, MOHAMMAD Munirah, YANG Haocheng, et al. Janus reactors with highly efficient enzymatic CO2 nanocascade at air-liquid interface[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 42806-42815. |
91 | 陈日志, 姜红, 范益群, 等. 膜分散技术及其强化反应过程的研究进展[J]. 化工进展, 2020, 39(12): 4812-4822. |
CHEN Rizhi, JIANG Hong, FAN Yiqun, et al. Perspective on membrane dispersion technology and its enhanced reaction processes[J]. Chemical Industry and Engineering Progress, 2020, 39(12): 4812-4822. | |
92 | GOSSAYE T, NORDDAHL B. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors[J]. Bioprocess and Biosystems Engineering, 2016, 39(4): 613-626. |
93 | WANG Yanzi, ZHAO Zhiping, LI Manfeng, et al. Development of a hollow fiber membrane micro-reactor for biocatalytic production of formate from CO2 [J]. Journal of Membrane Science, 2016, 514: 44-52. |
94 | 刘文芳, 侯本象, 侯延慧, 等. 中空纤维膜固定化甲酸脱氢酶催化CO2合成甲酸[J]. 催化学报, 2012, 33(4): 730-735. |
LIU Wenfang, HOU Benxiang, HOU Yanhui, et al. Synthesis of formic acid from CO2 catalyzed by formate dehydrogenase immobilized on hollow fiber membrane[J]. Chinese Journal of Catalysis, 2012, 33(4): 730-735. | |
95 | BAO Lihong, TRACHTENBERG Michael C. Facilitated transport of CO2 across a liquid membrane: Comparing enzyme, amine, and alkaline[J]. Journal of Membrane Science, 2006, 280(1/2): 330-334. |
96 | ILIUTA I, ILIUTA M C. Investigation of CO2 removal by immobilized carbonic anhydrase enzyme in a hollow-fiber membrane bioreactor[J]. AIChE Journal, 2017, 63(7): 2996-3007. |
97 | 薛培俭, 姜绍通, 李兴江, 等. 发酵秸秆糖产丁二酸放线杆菌的CO2固定关键酶特性分析[J]. 合肥工业大学学报(自然科学版), 2010, 33(7): 1066-1069. |
XUE Peijian, JIANG Shaotong, LI Xingjiang, et al. Character analysis of CO2-fixing key enzyme for Actinobacillus succinogenes producing succinic acid from crop straw hydrolate[J]. Journal of Hefei University of Technology (Natural Science), 2010, 33(7): 1066-1069. | |
98 | 宋艳艳, 孔维宝, 宋昊, 等. 磁性壳聚糖微球的制备及其用于甲酸脱氢酶的固定化[J]. 工业催化, 2012, 20(8): 20-25. |
SONG Yanyan, KONG Weibao, SONG Hao, et al. Preparation of magnetic chitosan microspheres and their application to immobilization of formate dehydrogenase[J]. Industrial Catalysis, 2012, 20(8): 20-25. | |
99 | CHEN Yijing, LI Peng, Hyunho NOH, et al. Stabilization of formate dehydrogenase in a metal-organic framework for bioelectrocatalytic reduction of CO2 [J]. Angewandte Chemie International Edition, 2019, 58(23): 7682-7686. |
100 | DUAN Linlin, LI Hui, ZHANG Yatao. Synthesis of hybrid nanoflower-based carbonic anhydrase for enhanced biocatalytic activity and stability[J]. ACS Omega, 2018, 3(12): 18234-18241. |
101 | ZHU Chunying, GUO Hengjie, CHU Chunyan, et al. Gas-liquid distribution and mass transfer of CO2 absorption into sodium glycinate aqueous solution in parallel multi-channel microreactor[J]. International Journal of Heat and Mass Transfer, 2020, 157: 119943. |
102 | ZHU Yilin, LI Weiyi, SUN Guanzhong, et al. Enzymatic properties of immobilized carbonic anhydrase and the biocatalyst for promoting CO2 capture in vertical reactor[J]. International Journal of Greenhouse Gas Control, 2016, 49: 290-296. |
103 | VÁZQUEZ G, CANCELA M A, VARELA R, et al. Influence of surfactants on absorption of CO2 in a stirred tank with and without bubbling[J]. Chemical Engineering Journal, 1997, 67(2): 131-137. |
104 | KIM Sungrye, KIM Min Koo, LEE Sang Hyun, et al. Conversion of CO2 to formate in an electroenzymatic cell using Candida boidinii formate dehydrogenase[J]. Journal of Molecular Catalysis B: Enzymatic, 2014, 102: 9-15. |
105 | Dennis HÜLSEWEDE, MEYER Lars-Erik, Jan VON LANGERMANN. Application of in situ product crystallization and related techniques in biocatalytic processes[J]. Chemistry-A European Journal, 2019, 25(19): 4871-4884. |
106 | REN Jie, YAO Peiyuan, YU Shanshan, et al. An unprecedented effective enzymatic carboxylation of phenols[J]. ACS Catalysis, 2016, 6(2): 564-567. |
107 | OHDE Daniel, THOMAS Benjamin, BUBENHEIM Paul, et al. Enhanced CO2 fixation in the biocatalytic carboxylation of resorcinol: Utilization of amines for amine scrubbing and in situ product precipitation[J]. Biochemical Engineering Journal, 2021, 166: 107825. |
108 | LARACHI F, LACROIX O, GRANDJEAN B P A. CO2 hydration by immobilized carbonic anhydrase in Robinson-Mahoney and packed-bed scrubbers—Role of mass transfer and inhibitor removal[J]. Chemical Engineering Science, 2012, 73: 99-115. |
109 | ILIUTA I, LARACHI F. New scrubber concept for catalytic CO2 hydration by immobilized carbonic anhydrase Ⅱ and in situ inhibitor removal in three-phase monolith slurry reactor[J]. Separation and Purification Technology, 2012, 86: 199-214. |
110 | GUO Shengyuan, ASSET Tristan, ATANASSOV Plamen. Catalytic hybrid electrocatalytic/biocatalytic cascades for carbon dioxide reduction and valorization[J]. ACS Catalysis, 2021, 11(9): 5172-5188. |
[1] | 李由, 吴越, 钟禹, 林琦璇, 任俊莉. 酸性熔盐水合物预处理麦秆高效制备木糖及其对酶解效率的影响[J]. 化工进展, 2023, 42(9): 4974-4983. |
[2] | 陈娜, 张肖静, 张楠, 马冰冰, 张涵, 杨浩洁, 张宏忠. 淬灭酶对亚硝化-混合自养脱氮系统的影响[J]. 化工进展, 2023, 42(7): 3816-3823. |
[3] | 张耀丹, 孙若溪, 陈鹏程. 以级联反应为基础的多酶共固定载体研究进展[J]. 化工进展, 2023, 42(6): 3167-3176. |
[4] | 秦凯, 杨仕林, 李俊, 储震宇, 薄翠梅. 基于卡尔曼滤波算法的葡萄糖酶生物传感器高精度检测方法[J]. 化工进展, 2023, 42(6): 3177-3186. |
[5] | 孙鲁芹, 卢会霞, 王建友. 电渗析/超滤内在耦合过程分离蛋清中溶菌酶[J]. 化工进展, 2023, 42(5): 2262-2271. |
[6] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[7] | 李华华, 李逸航, 金北辰, 李隆昕, 成少安. 厌氧氨氧化-生物电化学耦合废水处理系统的研究进展[J]. 化工进展, 2023, 42(5): 2678-2690. |
[8] | 董友情, 唐爱星, 刘幽燕, 李青云. 苹果酸脱氢酶协同纤维素酶水解纤维素:理论分析与实验[J]. 化工进展, 2023, 42(12): 6641-6648. |
[9] | 刘艳辉, 周明芳, 马铭, 王凯, 谭天伟. 可再生能源驱动的生物催化固定CO2的研究进展[J]. 化工进展, 2023, 42(1): 1-15. |
[10] | 吴中杰, 谢连科, 王晶辉, 黄仁亮. 多级结构羟基硝酸铜纳米酶的制备及其对酚类污染物的降解[J]. 化工进展, 2023, 42(1): 497-505. |
[11] | 孟令玎, 毛梦雷, 廖奇勇, 孟子晖, 刘文芳. 碳酸酐酶和甲酸脱氢酶的稳定性研究进展[J]. 化工进展, 2022, 41(S1): 436-447. |
[12] | 肖周荣, 李国柱, 王涖, 张香文, 谷建民, 王德松. 液体碳氢燃料蒸汽重整制氢催化剂研究进展[J]. 化工进展, 2022, 41(S1): 97-107. |
[13] | 蒲福龙, 伍尚炜, 郑映玲, 郑玉意, 侯雪丹. 基于乳酸的深度共熔溶剂提取秸秆木质素对纤维素酶水解效率的影响[J]. 化工进展, 2022, 41(9): 4937-4945. |
[14] | 刘亚利, 张宏伟, 康晓荣. 微塑料对污泥厌氧消化的影响和机理[J]. 化工进展, 2022, 41(9): 5037-5046. |
[15] | 唐婷, 周文凤, 王志, 朱晨杰, 许敬亮, 庄伟, 应汉杰, 欧阳平凯. 多酶共固定化技术在糖类催化中的研究进展[J]. 化工进展, 2022, 41(5): 2636-2648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |