化工进展 ›› 2024, Vol. 43 ›› Issue (1): 232-245.DOI: 10.16085/j.issn.1000-6613.2023-1677

• 专栏:化工过程强化 • 上一篇    

酶催化固碳过程及其强化技术研究进展

王玉杰1(), 张艳梅2, 栾金义1(), 赵之平2   

  1. 1.中石化(北京)化工研究院有限公司,北京 100013
    2.北京理工大学化学与化工学院,北京 102488
  • 收稿日期:2023-09-21 修回日期:2023-11-06 出版日期:2024-01-20 发布日期:2024-02-05
  • 通讯作者: 栾金义
  • 作者简介:王玉杰(1980—),女,博士,高级工程师,研究方向为气体膜分离、CO2的捕集及利用。E-mail:wangyuj.bihy@sinopec.com
  • 基金资助:
    国家重点研发计划(2022YFC2105900)

Enzyme-catalyzed carbon sequestration processes and enhancement technologies

WANG Yujie1(), ZHANG Yanmei2, LUAN Jinyi1(), ZHAO Zhiping2   

  1. 1.Sinopec (Beijing) Research Institute of Chemical Industry Co. , Ltd. , Beijing 100013, China
    2.School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
  • Received:2023-09-21 Revised:2023-11-06 Online:2024-01-20 Published:2024-02-05
  • Contact: LUAN Jinyi

摘要:

全球范围迅猛发展的工业生产导致温室气体CO2的排放,引发人们对全球气候变化的普遍关切。在发展清洁能源、工业流程再造等减少碳排放的同时,开发高效、经济的CO2捕集、利用与储存(CCUS)技术显得尤为迫切。本文基于CO2资源化利用的目的,对生物体外酶催化固碳过程及其强化技术的研究进展进行综述。首先,介绍了CO2转化过程中涉及的关键催化酶及其优化,阐述了CO2资源化利用的具体策略,涵盖了将CO2催化转化为甲酸、甲醇、甲烷、淀粉以及L-乳酸、丙酮酸等特定产物分子。进而,重点阐述了辅因子的原位再生、酶的固定化、反应系统的优化设计、反应条件优化(pH、温度、底物浓度)以及产物原位分离等技术对CO2生物酶催化反应过程的强化,实现CO2的高效固定与资源化利用。旨在通过多方面交叉论述,为生物酶催化过程及路线设计包括固定化酶催化剂的制备、反应器选择设计与开发、酶催化过程调控、高值化产品定向合成等提供有益的启发和思考。最后,总结了酶催化固碳过程存在的问题和挑战,并对其未来值得研究的方向进行了展望。

关键词: 酶催化固碳, CO2资源化, 生物催化, 酶, 强化技术

Abstract:

The rapid expansion of the global industrial production has led to a sharp increase in the emission of the greenhouse gas CO2, triggering widespread concern about global climate change. While developing clean energy sources and industrial process reengineering to reduce carbon emissions, there is an urgent need to develop highly efficient and economical carbon capture, utilization, and storage (CCUS) technologies. This article provides a comprehensive overview of the research progress on the extracellular enzyme-catalyzed carbon sequestration and its enhancement technologies bases on the purpose of CO2 resource utilization. Firstly, it introduces the key biocatalytic enzymes involved in the CO2 conversion process and their optimization. It elaborates on the specific strategies for CO2 resource utilization, encompassing the catalytic transformation of CO2 into specific product molecules such as formic acid, methanol, methane, starch, L-lactide and pyruvic acid. The article further focused on the enhancement of the CO2 enzyme catalysis reaction processes through in-situ regeneration of cofactors, enzyme immobilization, optimization of reaction system design, optimization of reaction condition such as pH, temperature, substrate concentration, and in situ product separation. These measures aim to achieve efficient sequestration and resource utilization of CO2.The intention is to provide valuable insights and considerations for the design of enzyme catalysis processes and routes, encompassing the preparation of immobilized enzyme catalysts, reactor selection and design, regulation of enzyme catalysis processes, and targetes synthesis of high-value products through a comprehensive and interdisciplinary approach. Finally, the problems and challenges existing in the enzyme-catalyzed carbon sequestration processes are summarized, and the future research directions are prospected.

Key words: enzyme-catalyzed carbon sequestration, CO2 resource utilization, biocatalysis, enzyme, enhancement technologies

中图分类号: 

京ICP备12046843号-2;京公网安备 11010102001994号
版权所有 © 《化工进展》编辑部
地址:北京市东城区青年湖南街13号 邮编:100011
电子信箱:hgjz@cip.com.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn