化工进展 ›› 2024, Vol. 43 ›› Issue (1): 215-231.DOI: 10.16085/j.issn.1000-6613.2023-1595
• 专栏:化工过程强化 • 上一篇
李文鹏1(), 刘晴1, 杨志荣1(), 高展鹏1, 王景涛1, 周鸣亮2, 张金利3()
收稿日期:
2023-09-08
修回日期:
2023-11-04
出版日期:
2024-01-20
发布日期:
2024-02-05
通讯作者:
杨志荣,张金利
作者简介:
李文鹏(1990—),男,直聘副教授,硕士生导师,研究方向为连续流反应与先进分离技术。E-mail:liwenpeng@zzu.edu.cn。
基金资助:
LI Wenpeng1(), LIU Qing1, YANG Zhirong1(), GAO Zhanpeng1, WANG Jingtao1, ZHOU Mingliang2, ZHANG Jinli3()
Received:
2023-09-08
Revised:
2023-11-04
Online:
2024-01-20
Published:
2024-02-05
Contact:
YANG Zhirong, ZHANG Jinli
摘要:
石墨烯是一种具有优良物理化学性质的二维纳米材料,广泛应用于电池、催化、传感器、印刷、生物医药等领域。然而,石墨烯及其衍生产品的应用与发展面临着巨大挑战——低成本、高品质、规模化生产。本文综述了液相剥离法高效制备石墨烯的研究进展,重点探讨了电化学插层法、溶剂插层法、高温膨胀法和微波膨胀法等液相剥离的前处理方法原理以及对石墨烯剥离效果的影响;分析了水基溶剂、有机溶剂和混合溶剂等剥离溶剂的优缺点与选取原则;对比了超声、高剪切和微通道等过程强化设备的剥离原理和优缺点;简述了离心分离的后处理方法以及分离效果;最后对液相剥离法宏量制备石墨烯的发展趋势进行了展望:通过结合人工智能等方法进行多目标优化,开发无残留的功能化插层剂并匹配温和快速的膨胀方法,寻找低毒、低沸点、高分散的溶剂体系,精确调控液相剥离设备作用机理,设计连续化梯级离心设备,实现液相剥离制备石墨烯的连续化、规模化、低成本快速制备。
中图分类号:
李文鹏, 刘晴, 杨志荣, 高展鹏, 王景涛, 周鸣亮, 张金利. 液相剥离法高效制备石墨烯的研究进展[J]. 化工进展, 2024, 43(1): 215-231.
LI Wenpeng, LIU Qing, YANG Zhirong, GAO Zhanpeng, WANG Jingtao, ZHOU Mingliang, ZHANG Jinli. Advances in efficient preparation of graphene by liquid-phase exfoliation[J]. Chemical Industry and Engineering Progress, 2024, 43(1): 215-231.
年份 | 插层方法 | 插层剂 | 插层效果 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | |||||
2023 | 化学氧化插层 | 浓硫酸(H2SO4)、过硫酸钾(K2S2O8) | 层间距明显变大,呈手风琴状结构 | — | — | [ |
2023 | 电化学插层 | 硫酸铵 | 石墨层间距离迅速扩大 | 4~6层 | 1~10 | [ |
2022 | 化学氧化插层 | 过氧化氢、过氧乙酸(PAA) | 石墨层片迅速膨胀剥落 | 5~8层 | — | [ |
2022 | 电化学插层 | 六氟磷酸锂 | — | 单层;<1 | 约1 | [ |
多层;<4 | ||||||
2021 | 电化学插层 | 硫酸、磷酸 | 石墨晶粒尺寸急剧减小 | 3~7层 | — | [ |
2020 | 电化学插层 | 高铼酸 | — | — | — | [ |
2020 | 溶剂插层 | 钠萘、N,N-二甲基乙酰胺(DMAC) | — | — | — | [ |
2019 | 电化学插层 | 季铵盐、高氯酸盐 | 短时间内剧烈膨胀 | 1~3层 | 1~5 | [ |
2019 | 溶剂插层 | 碳酸氢铵 | 层与层之间的距离变大 | — | — | [ |
2018 | 溶剂插层 | 氨溶液 | 大大提高石墨烯的剥离效果 | 2.3 | 约3 | [ |
2018 | 溶剂插层 | 尿素(Urea) | 增加石墨层间的间距 | 1 | >2 | [ |
2018 | 化学氧化插层 | 浓硫酸、高锰酸钾 | 石墨颗粒减少 | 约1.2 | — | [ |
2017 | 干球磨插层 | 碳酸氢铵 | — | 5~8层 | 0.4~0.8 | [ |
2017 | 电化学插层 | 四氟硼酸四丁铵 | 石墨显著膨胀 | 4~6层 | 0.4~1.5 | [ |
表1 不同插层剥离方法与插层剂的对比
年份 | 插层方法 | 插层剂 | 插层效果 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | |||||
2023 | 化学氧化插层 | 浓硫酸(H2SO4)、过硫酸钾(K2S2O8) | 层间距明显变大,呈手风琴状结构 | — | — | [ |
2023 | 电化学插层 | 硫酸铵 | 石墨层间距离迅速扩大 | 4~6层 | 1~10 | [ |
2022 | 化学氧化插层 | 过氧化氢、过氧乙酸(PAA) | 石墨层片迅速膨胀剥落 | 5~8层 | — | [ |
2022 | 电化学插层 | 六氟磷酸锂 | — | 单层;<1 | 约1 | [ |
多层;<4 | ||||||
2021 | 电化学插层 | 硫酸、磷酸 | 石墨晶粒尺寸急剧减小 | 3~7层 | — | [ |
2020 | 电化学插层 | 高铼酸 | — | — | — | [ |
2020 | 溶剂插层 | 钠萘、N,N-二甲基乙酰胺(DMAC) | — | — | — | [ |
2019 | 电化学插层 | 季铵盐、高氯酸盐 | 短时间内剧烈膨胀 | 1~3层 | 1~5 | [ |
2019 | 溶剂插层 | 碳酸氢铵 | 层与层之间的距离变大 | — | — | [ |
2018 | 溶剂插层 | 氨溶液 | 大大提高石墨烯的剥离效果 | 2.3 | 约3 | [ |
2018 | 溶剂插层 | 尿素(Urea) | 增加石墨层间的间距 | 1 | >2 | [ |
2018 | 化学氧化插层 | 浓硫酸、高锰酸钾 | 石墨颗粒减少 | 约1.2 | — | [ |
2017 | 干球磨插层 | 碳酸氢铵 | — | 5~8层 | 0.4~0.8 | [ |
2017 | 电化学插层 | 四氟硼酸四丁铵 | 石墨显著膨胀 | 4~6层 | 0.4~1.5 | [ |
年份 | 原料 | 膨胀预处理条件 | 膨胀方法 | 膨胀效果 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | ||||||
2023 | 片状石墨(FG) | 不同比例的FG∶H2SO4∶K2S2O8 | 微波辅助氧化5min,800W 功率下微波辐照40s | 膨胀体积(EV)值至455mL/g | — | — | [ |
2023 | 废石墨(SG) | 硫磷酸和高锰酸钾氧化膨胀 | 80℃干燥6h,900℃马弗炉15s | 层间距由0.338nm 增加到0.392nm | — | — | [ |
2022 | 天然石墨 | 石墨粉与浓硫酸氧化,KMnO4和 过氧化氢混合物 | 800~900℃与水混合1∶3压缩、1200W、30kHz超声 | — | 7~10层 | — | [ |
2022 | FG | FG与27mL PAA和3mL过氧化氢 混合,室温静置10h | 50℃下真空干燥12h,700W微波照射30s | 层间距在0.332~0.335nm内 | 5~8层 | — | [ |
2020 | 六方石墨 | 硝酸、硫酸处理12h | 950℃处理 | — | 3~5层 | — | [ |
2019 | 高定向裂解石墨 | 季铵盐、高氯酸盐电化学插层 | 800℃处理数秒 | 膨胀1000倍 | 1~3层 | 1~5 | [ |
2019 | 插层石墨 | 商业购买 | 800℃处理180s | — | — | — | [ |
2019 | 天然石墨 | 石墨、高锰酸钾、高氯酸、乙酸酐质量比1∶0.5∶1∶0.4混合10s | 720W、2.45GHz微波处理40s | 膨胀至300mL/g | — | — | [ |
2018 | 可膨胀石墨 | — | 750W微波处理1min | — | 3.6 | — | [ |
2018 | 普通石墨 | — | 微波处理10s,冷却20s, 循环处理30min | 层间距增至0.3378nm | 2.3 | 约3 | [ |
2017 | 天然石墨 | 硫酸、过硫酸铵超声混合5min, 再加入石墨搅拌30s | 室温静置12h | 膨胀225倍 | — | — | [ |
2016 | EG | 石墨、甲苯质量比2∶1超声5min | 600W微波照射10min、冷却 | — | 3~12层 | 约10 | [ |
2016 | 六方石墨 | 75℃真空干燥2h后加入饱和硫酸、硝酸处理12h | 800℃处理数秒 | — | <5 | — | [ |
表2 不同膨胀剥离方法对比
年份 | 原料 | 膨胀预处理条件 | 膨胀方法 | 膨胀效果 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | ||||||
2023 | 片状石墨(FG) | 不同比例的FG∶H2SO4∶K2S2O8 | 微波辅助氧化5min,800W 功率下微波辐照40s | 膨胀体积(EV)值至455mL/g | — | — | [ |
2023 | 废石墨(SG) | 硫磷酸和高锰酸钾氧化膨胀 | 80℃干燥6h,900℃马弗炉15s | 层间距由0.338nm 增加到0.392nm | — | — | [ |
2022 | 天然石墨 | 石墨粉与浓硫酸氧化,KMnO4和 过氧化氢混合物 | 800~900℃与水混合1∶3压缩、1200W、30kHz超声 | — | 7~10层 | — | [ |
2022 | FG | FG与27mL PAA和3mL过氧化氢 混合,室温静置10h | 50℃下真空干燥12h,700W微波照射30s | 层间距在0.332~0.335nm内 | 5~8层 | — | [ |
2020 | 六方石墨 | 硝酸、硫酸处理12h | 950℃处理 | — | 3~5层 | — | [ |
2019 | 高定向裂解石墨 | 季铵盐、高氯酸盐电化学插层 | 800℃处理数秒 | 膨胀1000倍 | 1~3层 | 1~5 | [ |
2019 | 插层石墨 | 商业购买 | 800℃处理180s | — | — | — | [ |
2019 | 天然石墨 | 石墨、高锰酸钾、高氯酸、乙酸酐质量比1∶0.5∶1∶0.4混合10s | 720W、2.45GHz微波处理40s | 膨胀至300mL/g | — | — | [ |
2018 | 可膨胀石墨 | — | 750W微波处理1min | — | 3.6 | — | [ |
2018 | 普通石墨 | — | 微波处理10s,冷却20s, 循环处理30min | 层间距增至0.3378nm | 2.3 | 约3 | [ |
2017 | 天然石墨 | 硫酸、过硫酸铵超声混合5min, 再加入石墨搅拌30s | 室温静置12h | 膨胀225倍 | — | — | [ |
2016 | EG | 石墨、甲苯质量比2∶1超声5min | 600W微波照射10min、冷却 | — | 3~12层 | 约10 | [ |
2016 | 六方石墨 | 75℃真空干燥2h后加入饱和硫酸、硝酸处理12h | 800℃处理数秒 | — | <5 | — | [ |
年份 | 剥离方法 | DSA | DSA用量/mg·mL-1 | 剥离浓度/mg·mL-1 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | ||||||
2021 | 超声 | MCC | 石墨质量的一半 | 8.54 | 约6 | 约0.15 | [ |
2019 | 微通道 | 十二烷基硫酸钠(SDS) | 4 | 1.19 | 0.8~1.2 | 约0.54 | [ |
2019 | 微通道 | F127 | 4 | 1.52 | 0.8~1.2 | 约0.58 | [ |
2019 | 微通道 | TW80 | 4 | 1.71 | 0.8~1.2 | 约0.67 | [ |
2019 | 微通道 | SMA | 10 | 0.522 | 5层 | 0.5~0.9 | [ |
2019 | 微通道 | SC | 1 | 0.5 | 0.52~0.92 | 0.3 | [ |
2018 | 超声 | 羧甲基纤维素(CMC) | 2 | 0.1 | — | <1 | [ |
2018 | 高剪切 | NaOH | 0.4 | 50 | <1 | 0.5~5 | [ |
2017 | 高剪切 | SC | 4 | 1.1 | 5层 | 约0.5 | [ |
2017 | 高剪切 | PVP | 20 | 0.7 | 5层 | 约0.5 | [ |
2017 | 超声 | PTCA | 0.6 | 0.8 | 1.5~3 | 约5 | [ |
表3 水基溶剂对剥离效果的影响
年份 | 剥离方法 | DSA | DSA用量/mg·mL-1 | 剥离浓度/mg·mL-1 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | ||||||
2021 | 超声 | MCC | 石墨质量的一半 | 8.54 | 约6 | 约0.15 | [ |
2019 | 微通道 | 十二烷基硫酸钠(SDS) | 4 | 1.19 | 0.8~1.2 | 约0.54 | [ |
2019 | 微通道 | F127 | 4 | 1.52 | 0.8~1.2 | 约0.58 | [ |
2019 | 微通道 | TW80 | 4 | 1.71 | 0.8~1.2 | 约0.67 | [ |
2019 | 微通道 | SMA | 10 | 0.522 | 5层 | 0.5~0.9 | [ |
2019 | 微通道 | SC | 1 | 0.5 | 0.52~0.92 | 0.3 | [ |
2018 | 超声 | 羧甲基纤维素(CMC) | 2 | 0.1 | — | <1 | [ |
2018 | 高剪切 | NaOH | 0.4 | 50 | <1 | 0.5~5 | [ |
2017 | 高剪切 | SC | 4 | 1.1 | 5层 | 约0.5 | [ |
2017 | 高剪切 | PVP | 20 | 0.7 | 5层 | 约0.5 | [ |
2017 | 超声 | PTCA | 0.6 | 0.8 | 1.5~3 | 约5 | [ |
年份 | 剥离方法 | 溶剂 | 沸点/℃ | 黏度/mPa·s | 表面张力/mN·m-1 | 分散浓度/mg·mL-1 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | ||||||||
2020 | 超声 | TCM | 61.2 | 0.539 | 26.5 | 0.12 | 约2 | 约0.5 | [ |
2020 | 超声 | DMF | 153.0 | 0.815 | 35.9 | 0.0781 | — | 3~5 | [ |
2019 | 高剪切 | PG | 184.8 | 40.7 | 36.0 | 高于同条件NMP | — | — | [ |
2019 | 球磨 | THF | 68.3 | 0.456 | 26.7 | 0.6 | 0.6~1 | — | [ |
2019 | 球磨 | 丙酮(PK) | 56.5 | 0.306 | 22.7 | 0.32 | 0.6~1 | — | [ |
2019 | 球磨 | IPA | 82.5 | 2.05 | 21.0 | 极低 | 0.6~1 | — | [ |
2018 | 微通道 | NMP | 202.0 | 1.89 | 40.8 | 0.65 | 0.7 | — | [ |
2018 | 超声 | 甲苯(MB) | 110.6 | 0.554 | 27.9 | 0.33 | <10 | 2~10 | [ |
2017 | 超声 | DMSO | 189.0 | 1.98 | 43.2 | 0.065 | 约6.55 | 约0.5 | [ |
2016 | 超声 | 环己酮(CYC) | 155.8 | 2.02 | 34.4 | 0.141 | 1.2 | — | [ |
2016 | 超声 | THF | 68.3 | 0.456 | 26.7 | 0.02 | 1.2 | — | [ |
表4 有机溶剂对剥离效果的影响
年份 | 剥离方法 | 溶剂 | 沸点/℃ | 黏度/mPa·s | 表面张力/mN·m-1 | 分散浓度/mg·mL-1 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | ||||||||
2020 | 超声 | TCM | 61.2 | 0.539 | 26.5 | 0.12 | 约2 | 约0.5 | [ |
2020 | 超声 | DMF | 153.0 | 0.815 | 35.9 | 0.0781 | — | 3~5 | [ |
2019 | 高剪切 | PG | 184.8 | 40.7 | 36.0 | 高于同条件NMP | — | — | [ |
2019 | 球磨 | THF | 68.3 | 0.456 | 26.7 | 0.6 | 0.6~1 | — | [ |
2019 | 球磨 | 丙酮(PK) | 56.5 | 0.306 | 22.7 | 0.32 | 0.6~1 | — | [ |
2019 | 球磨 | IPA | 82.5 | 2.05 | 21.0 | 极低 | 0.6~1 | — | [ |
2018 | 微通道 | NMP | 202.0 | 1.89 | 40.8 | 0.65 | 0.7 | — | [ |
2018 | 超声 | 甲苯(MB) | 110.6 | 0.554 | 27.9 | 0.33 | <10 | 2~10 | [ |
2017 | 超声 | DMSO | 189.0 | 1.98 | 43.2 | 0.065 | 约6.55 | 约0.5 | [ |
2016 | 超声 | 环己酮(CYC) | 155.8 | 2.02 | 34.4 | 0.141 | 1.2 | — | [ |
2016 | 超声 | THF | 68.3 | 0.456 | 26.7 | 0.02 | 1.2 | — | [ |
年份 | 剥离方法 | 分散剂组成 | 浓度/mg·mL-1 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | |||||
2020 | 高剪切 | 环氧树脂(EP)∶PK=1∶3(质量比) | 0.17mg/g | — | — | [ |
2019 | 超声 | 水∶NMP=1∶4(质量比) | 0.43 | 2~4 | — | [ |
2019 | 超声 | 1mg/mL的腺嘌呤桥接芳苯二腈(AAPN)/NMP | 0.07 | — | — | [ |
2018 | 微通道 | 水∶NMP=1∶4(质量比) | 0.4 | 2.3 | 1.9 | [ |
2018 | 超声 | 水∶TMU=3∶7(体积比) | 0.992 | — | — | [ |
2018 | 微通道 | IPA∶水=2∶3(体积比) | 1 | 约0.9 | — | [ |
2017 | 微通道 | 0.5mg/mL的NaOH/NMP | 0.47 | — | 约0.6 | [ |
2017 | 超声 | 2mg/mL的蒽(Anthr)/苄腈(BZN) | 0.03 | — | — | [ |
2017 | 超声 | 2mg/mL的Anthr/NMP | 0.04 | — | — | [ |
2017 | 超声 | 2mg/mL的Anthr/邻二氯苯(ODCB) | 0.04 | — | — | [ |
2017 | 高剪切 | 1mmol/L的四丁基季铵盐(Bu4N+)/NMP | 1 | 4~6层 | 0.4~1.5 | [ |
2016 | 超声 | 16.2mmol/L的偶氮苯(Azobenzene)/NMP | 0.11 | — | — | [ |
表5 混合溶剂对剥离效果的影响
年份 | 剥离方法 | 分散剂组成 | 浓度/mg·mL-1 | 石墨烯产品 | 文献 | |
---|---|---|---|---|---|---|
厚度/nm | 尺寸/μm | |||||
2020 | 高剪切 | 环氧树脂(EP)∶PK=1∶3(质量比) | 0.17mg/g | — | — | [ |
2019 | 超声 | 水∶NMP=1∶4(质量比) | 0.43 | 2~4 | — | [ |
2019 | 超声 | 1mg/mL的腺嘌呤桥接芳苯二腈(AAPN)/NMP | 0.07 | — | — | [ |
2018 | 微通道 | 水∶NMP=1∶4(质量比) | 0.4 | 2.3 | 1.9 | [ |
2018 | 超声 | 水∶TMU=3∶7(体积比) | 0.992 | — | — | [ |
2018 | 微通道 | IPA∶水=2∶3(体积比) | 1 | 约0.9 | — | [ |
2017 | 微通道 | 0.5mg/mL的NaOH/NMP | 0.47 | — | 约0.6 | [ |
2017 | 超声 | 2mg/mL的蒽(Anthr)/苄腈(BZN) | 0.03 | — | — | [ |
2017 | 超声 | 2mg/mL的Anthr/NMP | 0.04 | — | — | [ |
2017 | 超声 | 2mg/mL的Anthr/邻二氯苯(ODCB) | 0.04 | — | — | [ |
2017 | 高剪切 | 1mmol/L的四丁基季铵盐(Bu4N+)/NMP | 1 | 4~6层 | 0.4~1.5 | [ |
2016 | 超声 | 16.2mmol/L的偶氮苯(Azobenzene)/NMP | 0.11 | — | — | [ |
年份 | 超声剥离 | 石墨 | 石墨烯产品 | 离心 | 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 方法 | 时间/h | 浓度/mg·mL-1 | 体积/mL | 浓度/mg·mL-1 | 厚度/nm | 尺寸/μm | ID/IG | 转速/103r·min-1 | 时间/min | ||
2021 | Water-MCC | 浴式 | 5 | 97.5 | — | 8.54 | 约6 | 约0.15 | 0.53 | 1.5 | 15 | [ |
2020 | TMC-HBPE | 浴式 | — | 10 | 80 | 0.12 | 约2 | 约0.5 | — | 4 | 45 | [ |
2018 | Water-TA | 浴式 | 1 | 50 | 50 | 1.25 | 0.75~1.85 | 0.8~6.5 | 0.31 | 3 | 60 | [ |
2018 | Ethanol-Water | 尖端 | 1~3 | — | — | — | — | 1~3 | 0.1~0.3 | 1 | 30 | [ |
2017 | DMSO | 浴式 | 12 | 10 | — | 0.065 | 6.55 | 约0.5 | — | 3.5 | — | [ |
2017 | Water-PTCA | 浴式 | 12 | 5 | 400 | 0.3~0.8 | 1.5~3 | 约5 | 0.38~0.45 | — | — | [ |
2016 | NMP-azobenzene | 尖端 | 3 | 100 | 10 | 0.11 | — | 约0.2 | — | 10 | 60 | [ |
2015 | NMP | 尖端 | 1/6 | 50 | 100 | 1.8 | 约4.53层 | 约0.92 | 0.2~0.4 | 1.5 | 45 | [ |
2010 | NMP | 浴式 | 460 | 3.3 | 700 | 1.2 | — | — | — | — | — | [ |
表6 超声法液相剥离效果对比
年份 | 超声剥离 | 石墨 | 石墨烯产品 | 离心 | 文献 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 方法 | 时间/h | 浓度/mg·mL-1 | 体积/mL | 浓度/mg·mL-1 | 厚度/nm | 尺寸/μm | ID/IG | 转速/103r·min-1 | 时间/min | ||
2021 | Water-MCC | 浴式 | 5 | 97.5 | — | 8.54 | 约6 | 约0.15 | 0.53 | 1.5 | 15 | [ |
2020 | TMC-HBPE | 浴式 | — | 10 | 80 | 0.12 | 约2 | 约0.5 | — | 4 | 45 | [ |
2018 | Water-TA | 浴式 | 1 | 50 | 50 | 1.25 | 0.75~1.85 | 0.8~6.5 | 0.31 | 3 | 60 | [ |
2018 | Ethanol-Water | 尖端 | 1~3 | — | — | — | — | 1~3 | 0.1~0.3 | 1 | 30 | [ |
2017 | DMSO | 浴式 | 12 | 10 | — | 0.065 | 6.55 | 约0.5 | — | 3.5 | — | [ |
2017 | Water-PTCA | 浴式 | 12 | 5 | 400 | 0.3~0.8 | 1.5~3 | 约5 | 0.38~0.45 | — | — | [ |
2016 | NMP-azobenzene | 尖端 | 3 | 100 | 10 | 0.11 | — | 约0.2 | — | 10 | 60 | [ |
2015 | NMP | 尖端 | 1/6 | 50 | 100 | 1.8 | 约4.53层 | 约0.92 | 0.2~0.4 | 1.5 | 45 | [ |
2010 | NMP | 浴式 | 460 | 3.3 | 700 | 1.2 | — | — | — | — | — | [ |
年份 | 高剪切剥离 | 石墨 | 石墨烯产品 | 离心 | 文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 转速 /103r·min-1 | 时间/h | 浓度 /mg·mL-1 | 体积/L | 浓度 /mg·mL-1 | 收率/% | 厚度/nm | 尺寸/μm | ID/IG | 转速 /103r·min-1 | 时间 /min | ||
2021 | 水-SC | 16.5 | 2 | 100 | — | 3 | 3 | 5层 | — | — | 1.5 | 60 | [ |
2019 | 水-氧化石墨 | 4 | 6 | 37.5 | 0.4 | 3.96 | — | 0.89 | 5~10 | 0.95 | 3 | 15 | [ |
2018 | 水-NaOH | 20 | 1 | 50 | 2 | 50 | 82.5 | — | — | 0.23 | 10 | 10 | [ |
2017 | 水-PVP | 20 | 2 | 40 | 0.5 | 1.1 | — | 5层 | 0.5 | 0.1~0.3 | 4.7 | 60 | [ |
2014 | NMP | 4.5 | 1~3 | 50 | 4.5 | — | 3 | 5~8层 | 0.3~0.8 | — | 420g | 150 | [ |
2014 | NMP | 3 | 约4 | 100 | 300 | 0.07 | — | — | — | 0.18 | — | — | [ |
2014 | 水-IPA | — | 1 | 10 | — | 0.27 | — | 2 | 1 | 0.14~0.18 | 0.45 | 45 | [ |
2013 | NMP | 6 | 1 | 1 | 0.1 | 0.211 | 16 | 4~6层 | 0.4~1.5 | 0.14~0.34 | 750g | 20 | [ |
表7 高剪切液相剥离效果对比
年份 | 高剪切剥离 | 石墨 | 石墨烯产品 | 离心 | 文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 转速 /103r·min-1 | 时间/h | 浓度 /mg·mL-1 | 体积/L | 浓度 /mg·mL-1 | 收率/% | 厚度/nm | 尺寸/μm | ID/IG | 转速 /103r·min-1 | 时间 /min | ||
2021 | 水-SC | 16.5 | 2 | 100 | — | 3 | 3 | 5层 | — | — | 1.5 | 60 | [ |
2019 | 水-氧化石墨 | 4 | 6 | 37.5 | 0.4 | 3.96 | — | 0.89 | 5~10 | 0.95 | 3 | 15 | [ |
2018 | 水-NaOH | 20 | 1 | 50 | 2 | 50 | 82.5 | — | — | 0.23 | 10 | 10 | [ |
2017 | 水-PVP | 20 | 2 | 40 | 0.5 | 1.1 | — | 5层 | 0.5 | 0.1~0.3 | 4.7 | 60 | [ |
2014 | NMP | 4.5 | 1~3 | 50 | 4.5 | — | 3 | 5~8层 | 0.3~0.8 | — | 420g | 150 | [ |
2014 | NMP | 3 | 约4 | 100 | 300 | 0.07 | — | — | — | 0.18 | — | — | [ |
2014 | 水-IPA | — | 1 | 10 | — | 0.27 | — | 2 | 1 | 0.14~0.18 | 0.45 | 45 | [ |
2013 | NMP | 6 | 1 | 1 | 0.1 | 0.211 | 16 | 4~6层 | 0.4~1.5 | 0.14~0.34 | 750g | 20 | [ |
年份 | 微通道 | 石墨 | 石墨烯产品 | 离心 | 文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 通道宽度 /μm | 通道形式 | 压力 /MPa | 浓度 /mg·mL-1 | 体积/L | 浓度 /mg·mL-1 | 厚度/nm | 尺寸/μm | ID/IG | 转速 /103r·min-1 | 时间 /min | ||
2019 | 水-TW80 | 约100 | Y型 | 100 | 10 | 0.5 | 1.71 | 0.8~1.2 | 0.4~1.1 | 0.07~0.56 | 3 | 30 | [ |
2019 | 水-SMA | — | Y型 | 120 | 15 | 0.5 | 0.522 | 5层 | 0.5~0.9 | 0.38 | 3 | 30 | [ |
2019 | 水-SC | 132 | — | — | 50 | 0.4 | 0.11 | — | 0.3 | — | 2 | 60 | [ |
2018 | NMP | — | 针阀型 | 20 | 10 | — | 0.4 | 2.3 | 1.9 | 0.1 | 0.5 | 60 | [ |
2017 | 水-SC | 87 | Z型 | 209 | 10 | — | 0.31 | 2~4 | 1.43 | 1.4 | 1 | — | [ |
2017 | DMF | — | Nanovater L-ED | 30~35 | 5 | 0.1 | 0.94 | — | — | 0.34 | 1.5 | 45 | [ |
2017 | 水-CMC | 约100 | Z型 | 207 | 100 | — | 100 | 19 | 约1.1 | 3.2 | — | — | [ |
2016 | 水-聚乙烯醇 (PVA) | 10 | 15MR, APV Gaulin | 50 | 40 | 1 | 7 | — | 1.4 | 0.21 | 1.5 | 45 | [ |
表8 微通道液相剥离效果对比
年份 | 微通道 | 石墨 | 石墨烯产品 | 离心 | 文献 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 通道宽度 /μm | 通道形式 | 压力 /MPa | 浓度 /mg·mL-1 | 体积/L | 浓度 /mg·mL-1 | 厚度/nm | 尺寸/μm | ID/IG | 转速 /103r·min-1 | 时间 /min | ||
2019 | 水-TW80 | 约100 | Y型 | 100 | 10 | 0.5 | 1.71 | 0.8~1.2 | 0.4~1.1 | 0.07~0.56 | 3 | 30 | [ |
2019 | 水-SMA | — | Y型 | 120 | 15 | 0.5 | 0.522 | 5层 | 0.5~0.9 | 0.38 | 3 | 30 | [ |
2019 | 水-SC | 132 | — | — | 50 | 0.4 | 0.11 | — | 0.3 | — | 2 | 60 | [ |
2018 | NMP | — | 针阀型 | 20 | 10 | — | 0.4 | 2.3 | 1.9 | 0.1 | 0.5 | 60 | [ |
2017 | 水-SC | 87 | Z型 | 209 | 10 | — | 0.31 | 2~4 | 1.43 | 1.4 | 1 | — | [ |
2017 | DMF | — | Nanovater L-ED | 30~35 | 5 | 0.1 | 0.94 | — | — | 0.34 | 1.5 | 45 | [ |
2017 | 水-CMC | 约100 | Z型 | 207 | 100 | — | 100 | 19 | 约1.1 | 3.2 | — | — | [ |
2016 | 水-聚乙烯醇 (PVA) | 10 | 15MR, APV Gaulin | 50 | 40 | 1 | 7 | — | 1.4 | 0.21 | 1.5 | 45 | [ |
年份 | 设备 | 石墨 | 石墨烯产品 | 离心 | 文献 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 设备类型 | 转速 /103r·min-1 | 时间 /h | 浓度 /mg·mL-1 | 处理 体积/L | 浓度 /mg·mL-1 | 收率/% | 厚度/nm | 尺寸/μm | ID/IG | 转速 /103r·min-1 | 时间/min | ||
2021 | 可口可乐 | 旋片 | — | 8 | 110 | 0.4 | 2 | 1.6 | — | — | 0.39 | 5 | 5 | [ |
2020 | DMF | 旋片 | 6 | 1 | 3 | 0.5 | — | — | 0.4~1 | — | 0.505 | — | — | [ |
2017 | 动物血清溶液 | 旋片 | 17 | 1 | 100 | 0.2 | 5 | 5 | 3~4层 | 0.5 | 0.32 | 1.5 | 45 | [ |
2016 | NMP | 泰勒流 | 1.5 | 1 | 50 | 0.2 | 0.65 | 1.1 | 0.16 | 0.5~1.5 | 0.14 | 1 | 30 | [ |
2016 | DMF | 旋片 | 5 | 8 | 3 | 0.4 | 0.22 | 7.3 | 1.5 | — | 0.12 | 0.5 | 45 | [ |
2014 | NMP | 旋转管 | 7 | 0.5 | — | 0.001 | — | — | 约1 | 约1 | — | — | — | [ |
2012 | Water-SDBS | 超重力 | 1 | 8 | 10 | 0.3 | 0.31 | — | 2.98 | 0.2~2.6 | 0.17 | 4 | 2 | [ |
表9 其他液相剥离设备类型对比
年份 | 设备 | 石墨 | 石墨烯产品 | 离心 | 文献 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
溶剂 | 设备类型 | 转速 /103r·min-1 | 时间 /h | 浓度 /mg·mL-1 | 处理 体积/L | 浓度 /mg·mL-1 | 收率/% | 厚度/nm | 尺寸/μm | ID/IG | 转速 /103r·min-1 | 时间/min | ||
2021 | 可口可乐 | 旋片 | — | 8 | 110 | 0.4 | 2 | 1.6 | — | — | 0.39 | 5 | 5 | [ |
2020 | DMF | 旋片 | 6 | 1 | 3 | 0.5 | — | — | 0.4~1 | — | 0.505 | — | — | [ |
2017 | 动物血清溶液 | 旋片 | 17 | 1 | 100 | 0.2 | 5 | 5 | 3~4层 | 0.5 | 0.32 | 1.5 | 45 | [ |
2016 | NMP | 泰勒流 | 1.5 | 1 | 50 | 0.2 | 0.65 | 1.1 | 0.16 | 0.5~1.5 | 0.14 | 1 | 30 | [ |
2016 | DMF | 旋片 | 5 | 8 | 3 | 0.4 | 0.22 | 7.3 | 1.5 | — | 0.12 | 0.5 | 45 | [ |
2014 | NMP | 旋转管 | 7 | 0.5 | — | 0.001 | — | — | 约1 | 约1 | — | — | — | [ |
2012 | Water-SDBS | 超重力 | 1 | 8 | 10 | 0.3 | 0.31 | — | 2.98 | 0.2~2.6 | 0.17 | 4 | 2 | [ |
1 | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. |
2 | LEE Changgu, WEI Xiaoding, KYSAR Jeffrey W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388. |
3 | BALANDIN A A, GHOSH S, BAO Wenzhong, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. |
4 | BOLOTIN K I, SIKES K J, JIANG Z, et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Communications, 2008, 146(9/10): 351-355. |
5 | PUAH Perng Yang, YUSOFF Umul Hanim, LEE Ping Chin, et al. Surface characterization, biocompatibility and osteogenic differentiation of drop-casted multilayer graphene oxide film towards human wharton’s jelly derived mesenchymal stem cells[J]. Materials Technology, 2020, 35(4): 238-247. |
6 | MALLICK Madhusmita, ARUNACHALAM N. Electrophoretic deposited graphene based functional coatings for biocompatibility improvement of Nitinol[J]. Thin Solid Films, 2019, 692: 137616. |
7 | HAN X, CHEN Y, ZHU H, et al. Scalable, printable, surfactant-free graphene ink directly from graphite[J]. Nanotechnology, 2013, 24(20): 205304. |
8 | YAN Yinglin, LIN Jiaming, CHEN Shiyu, et al. Investigation on the electrochemical properties of antimony tin oxide nanoparticle-modified graphene aerogel as cathode matrix in lithium-sulfur battery[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(11): 7027-7033. |
9 | 张利辉, 徐宇兴, 刘振法, 等. 钛酸锂/石墨烯复合负极材料的制备及电化学性能[J]. 化工进展, 2019, 38(2): 949-955. |
ZHANG Lihui, XU Yuxing, LIU Zhenfa, et al. Synthesis and electrochemical properties of Li4Ti5O12/graphene composite as an anode material for Li-ion batteries[J]. Chemical Industry and Engineering Progress, 2019, 38(2): 949-955. | |
10 | LI Chuanchuan, ZHU Lin, QI Siyun, et al. Ultrahigh-areal-capacity battery anodes enabled by free-standing vanadium Nitride@N-doped carbon/graphene architecture[J]. ACS Applied Materials & Interfaces, 2020, 12(44): 49607-49616. |
11 | ZHENG Yanmei, LIU Yuanyuan, GUO Xinli, et al. S, Na co-doped graphitic carbon nitride/reduced graphene oxide hollow mesoporous spheres for photoelectrochemical catalysis application[J]. ACS Applied Nano Materials, 2020, 3(8): 7982-7991. |
12 | SHI Heng, HE Yi, LI Yubin, et al. Mixed-dimensional assembled superhydrophilic graphene-based aerogel with enhanced mass/charge transportation for efficient photoredox catalysis[J]. Separation and Purification Technology, 2020, 252: 117454. |
13 | 陈思, 胡腾飞, 于永波, 等. 硫掺杂石墨烯电催化降解有机染料甲基橙[J]. 化工进展, 2021, 40(1): 550-558. |
CHEN Si, HU Tengfei, YU Yongbo, et al. Electrocatalytic degradation of organic dye methyl orange by sulfur-doped graphene[J]. Chemical Industry and Engineering Progress, 2021, 40(1): 550-558. | |
14 | MANNA Kausik, WANG Long, Kenneth J LOH, et al. Printed strain sensors using graphene nanosheets prepared by water-assisted liquid phase exfoliation[J]. Advanced Materials Interfaces, 2019, 6(9): 1900034. |
15 | MIAO Dandan, LI Jianjun, YANG Ran, et al. Supersensitive electrochemical sensor for the fast determination of rutin in pharmaceuticals and biological samples based on poly(diallyldimethylammonium chloride)-functionalized graphene[J]. Journal of Electroanalytical Chemistry, 2014, 732: 17-24. |
16 | YU Yong, WU Laosheng. Application of graphene for the analysis of pharmaceuticals and personal care products in wastewater[J]. Analytical and Bioanalytical Chemistry, 2013, 405(14): 4913-4919. |
17 | KUMAR Neeraj, SALEHIYAN Reza, CHAUKE Vongani, et al. Top-down synthesis of graphene: A comprehensive review[J]. FlatChem, 2021, 27: 100224. |
18 | AMIRI Ahmad, NARAGHI Mohammad, AHMADI Goodarz, et al. A review on liquid-phase exfoliation for scalable production of pure graphene, wrinkled, crumpled and functionalized graphene and challenges[J]. FlatChem, 2018, 8: 40-71. |
19 | XU Yanyan, CAO Huizhe, XUE Yanqin, et al. Liquid-phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges[J]. Nanomaterials, 2018, 8(11): 942. |
20 | YOON Gabin, SEO Dong-Hwa, KU Kyojin, et al. Factors affecting the exfoliation of graphite intercalation compounds for graphene synthesis[J]. Chemistry of Materials, 2015, 27(6): 2067-2073. |
21 | WEI Qun, XU Lei, TANG Zhimeng, et al. High-performance expanded graphite from flake graphite by microwave-assisted chemical intercalation process[J]. Journal of Industrial and Engineering Chemistry, 2023, 122: 562-572. |
22 | HYO-GUK U, HONG J-C, KIM S-I, et al. Fabrication of low defect multi-layer graphene using electrochemical intercalation of graphite electrode and its application for graphene/Al nanocomposites[J]. Chemical Physics Letters, 2023, 825: 140592. |
23 | YU M, ZHU Y R, LIN R P, et al. Study on preparation of few layers graphene in the C2H4O3-based system under the assist of microwave irradiation and its capacitive performance[J]. Journal of Materials Science: Materials in Electronics, 2022, 33(12): 9785-9797. |
24 | YANG Ruijie, MEI Liang, ZHANG Qingyong, et al. High-yield production of mono-or few-layer transition metal dichalcogenide nanosheets by an electrochemical lithium ion intercalation-based exfoliation method[J]. Nature Protocols, 2022, 17(2): 358-377. |
25 | MOMODU Damilola, MADITO Moshawe J, SINGH Ashutosh, et al. Mixed-acid intercalation for synthesis of a high conductivity electrochemically exfoliated graphene[J]. Carbon, 2021, 171: 130-141. |
26 | Bartosz GURZĘDA, BUCHWALD Tomasz, KRAWCZYK Piotr. Thermal exfoliation of electrochemically synthesized graphite intercalation compound with perrhenic acid[J]. Journal of Solid State Electrochemistry, 2020, 24(6): 1363-1370. |
27 | Heather AU, RUBIO Noelia, BUCKLEY David J, et al. Thermal decomposition of ternary sodium graphite intercalation compounds[J]. Chemistry: A European Journal, 2020, 26(29): 6545-6553. |
28 | ZHANG Yuan, XU Youlong. Simultaneous electrochemical dual-electrode exfoliation of graphite toward scalable production of high-quality graphene[J]. Advanced Functional Materials, 2019, 29(37): 1902171. |
29 | YU Zhenzhu, Fei NAN, SU Lu, et al. Effect of ammonium bicarbonate on intercalation and exfoliation of graphite materials[J]. Journal of Nanomaterials, 2019, 2019: 1-8. |
30 | JIANG Feng, YU Yun, FENG Aihu, et al. Effects of ammonia on graphene preparation via microwave assisted intercalation exfoliation method[J]. Ceramics International, 2018, 44(11): 12763-12766. |
31 | HOU Dandan, LIU Qinfu, WANG Xianshuai, et al. Urea-assisted liquid-phase exfoliation of natural graphite into few-layer graphene[J]. Chemical Physics Letters, 2018, 700: 108-113. |
32 | CHONG Kai Yin, CHIA Chin Hua, CHOOK Soon Wei, et al. Simplified production of graphene oxide assisted by high shear exfoliation of graphite with controlled oxidation[J]. New Journal of Chemistry, 2018, 42(6): 4507-4512. |
33 | LIN Juxiang, HUANG Yajing, WANG Shi, et al. Microwave-assisted rapid exfoliation of graphite into graphene by using ammonium bicarbonate as the intercalation agent[J]. Industrial & Engineering Chemistry Research, 2017, 56(33): 9341-9346. |
34 | BJERGLUND Emil Tveden, KRISTENSEN Michael Ellevang Pagh, STAMBULA Samantha, et al. Efficient graphene production by combined bipolar electrochemical intercalation and high-shear exfoliation[J]. ACS Omega, 2017, 2(10): 6492-6499. |
35 | 杨锐捷, 曾志远. 原子薄层材料的插层剥离制备[J]. 科学通报, 2023, 68(11): 1281-1283. |
YANG Ruijie, ZENG Zhiyuan. Synthesis of atomically thin materials via an intercalation-based exfoliation strategy[J]. Chinese Science Bulletin, 2023, 68(11): 1281-1283. | |
36 | GONG Haiqiang, XIAO Hougui, YE Long, et al. High-performance expanded graphite regenerated from spent lithium-ion batteries by integrated oxidation and purification method[J]. Waste Management, 2023, 171: 292-302. |
37 | STRATIVNOV E, KHOVAVKO A, GUACHAO N. Obtaining of globular graphene based on thermally expanded graphite[J]. Applied Nanoscience, 2022, 12(10): 2791-2811. |
38 | LIU Ting, ZHANG Ruijun, ZHANG Xuesha, et al. One-step room-temperature preparation of expanded graphite[J]. Carbon, 2017, 119: 544-547. |
39 | Ömer GÜLER, Ali SÖNMEZ. The effect of liquid media on the efficiency of graphene production by liquid-phase exfoliation from micromechanically pre-exfoliated graphite[J]. Journal of Electronic Materials, 2020, 49(9): 5335-5345. |
40 | LIONETTO Francesca, Roberto LÓPEZ-MUÑOZ, Carlos ESPINOZA-GONZÁLEZ, et al. A study on exfoliation of expanded graphite stacks in candelilla wax[J]. Materials, 2019, 12(16): 2530. |
41 | HOANG Ngoc Bich, NGUYEN Thi Thuong, NGUYEN Tien Sy, et al. The application of expanded graphite fabricated by microwave method to eliminate organic dyes in aqueous solution[J]. Cogent Engineering, 2019, 6(1): 1584939. |
42 | ZDRAZIL L, ZAHRADNICEK R, MOHAN R, et al. Preparation of graphene quantum dots through liquid phase exfoliation method[J]. Journal of Luminescence, 2018, 204: 203-208. |
43 | PIRZADO Azhar, DALMAS Guillaume, Lam NGUYEN-DINH, et al. The electrical property of large few layer graphene flakes obtained by microwaves assisted exfoliation of expanded graphite[J]. Current Microwave Chemistry, 2016, 3(2): 139-144. |
44 | GÜLER Ö, GÜLER S H, SELEN V, et al. Production of graphene layer by liquid-phase exfoliation with low sonication power and sonication time from synthesized expanded graphite[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2016, 24(2): 123-127. |
45 | HERNANDEZ Yenny, NICOLOSI Valeria, LOTYA Mustafa, et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nature Nanotechnology, 2008, 3(9): 563-568. |
46 | PATON K R, VARRLA E, BACKES C, et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids[J]. Nature Materials, 2014, 13(6): 624-630. |
47 | COLEMAN J N. Liquid-phase exfoliation of nanotubes and graphene[J]. Advanced Functional Materials, 2009, 19(23): 3680-3695. |
48 | COLEMAN J N. Liquid exfoliation of defect-free graphene[J]. Accounts of Chemical Research, 2013, 46(1): 14-22. |
49 | NARAYAN Rekha, KIM Sang Ouk. Surfactant mediated liquid phase exfoliation of graphene[J]. Nano Convergence, 2015, 2(1): 1-19. |
50 | YI Min, SHEN Zhigang, LIANG Shuaishuai, et al. Water can stably disperse liquid-exfoliated graphene[J]. Chemical Communications, 2013, 49(94): 11059-11061. |
51 | WANG Yuzhou, CHEN Tian, LIU Haihui, et al. Direct liquid phase exfoliation of graphite to produce few-layer graphene by microfluidization[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(4): 2078-2086. |
52 | YU Pengxiang, WANG Xiao, ZHANG Kangmin, et al. Aqueous cellulose solution assisted direct exfoliation of graphite to high concentration graphene dispersion[J]. Materials Letters, 2021, 285: 129081. |
53 | DONG Lei, CHEN Zhongxin, ZHAO Xiaoxu, et al. A non-dispersion strategy for large-scale production of ultra-high concentration graphene slurries in water[J]. Nature Communications, 2018, 9: 76. |
54 | WANG Yuzhou, ZHANG Xianye, LIU Haihui, et al. SMA-assisted exfoliation of graphite by microfluidization for efficient and large-scale production of high-quality graphene[J]. Nanomaterials, 2019, 9(12): 1653. |
55 | QIU Xiaoyu, BOUCHIAT Vincent, COLOMBET Damien, et al. Liquid-phase exfoliation of graphite into graphene nanosheets in a hydrocavitating ‘lab-on-a-chip’[J]. RSC Advances, 2019, 9(6): 3232-3238. |
56 | SINAR D, KNOPF G K. Cyclic liquid-phase exfoliation of electrically conductive graphene-derivative inks[J]. IEEE Transactions on Nanotechnology, 2018, 17(5): 1020-1028. |
57 | PHIRI J, GANE P, MALONEY T C. High-concentration shear-exfoliated colloidal dispersion of surfactant-polymer-stabilized few-layer graphene sheets[J]. Journal of Materials Science, 2017, 52(13): 8321-8337. |
58 | NARAYAN Rekha, Joonwon LIM, JEON Taewoo, et al. Perylene tetracarboxylate surfactant assisted liquid phase exfoliation of graphite into graphene nanosheets with facile re-dispersibility in aqueous/organic polar solvents[J]. Carbon, 2017, 119: 555-568. |
59 | SALAVAGIONE H J, SHERWOOD J, DE BRUYN M, et al. Identification of high performance solvents for the sustainable processing of graphene[J]. Green Chemistry, 2017, 19(11): 2550-2560. |
60 | LIN Zaw, KARTHIK Paneer Selvam, HADA Masaki, et al. Simple technique of exfoliation and dispersion of multilayer graphene from natural graphite by ozone-assisted sonication[J]. Nanomaterials, 2017, 7(6): 125. |
61 | ARAO Yoshihiko, MIZUNO Yoshinori, ARAKI Kunihiro, et al. Mass production of high-aspect-ratio few-layer-graphene by high-speed laminar flow[J]. Carbon, 2016, 102: 330-338. |
62 | KHAN Umar, Arlene O’NEILL, LOTYA Mustafa, et al. High-concentration solvent exfoliation of graphene[J]. Small, 2010, 6(7): 864-871. |
63 | KHAN Umar, Arlene O’NEILL, PORWAL Harshit, et al. Size selection of dispersed, exfoliated graphene flakes by controlled centrifugation[J]. Carbon, 2012, 50(2): 470-475. |
64 | COOPER A J, WILSON N R, KINLOCH I A, et al. Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations[J]. Carbon, 2014, 66: 340-350. |
65 | LI Liangchuan, ZHOU Ming, JIN Long, et al. Research progress of the liquid-phase exfoliation and stable dispersion mechanism and method of graphene[J]. Frontiers in Materials, 2019, 6: 325. |
66 | Ömer GÜLER, Mükremin TEKELI, Mustafa TAŞKıN, et al. The production of graphene by direct liquid phase exfoliation of graphite at moderate sonication power by using low boiling liquid media: The effect of liquid media on yield and optimization[J]. Ceramics International, 2021, 47(1): 521-533. |
67 | KONIOS D, STYLIANAKIS M M, STRATAKIS E, et al. Dispersion behaviour of graphene oxide and reduced graphene oxide[J]. Journal of Colloid and Interface Science, 2014, 430: 108-112. |
68 | LIU Lei, SHEN Zhigang, ZHANG Xiaojing, et al. Low-temperature treatment for preservation and separation of graphene dispersions[J]. Journal of Materials Science, 2018, 53(19): 13875-13885. |
69 | TRAN Tuan Sang, PARK Seung Jun, YOO Sung Sic, et al. High shear-induced exfoliation of graphite into high quality graphene by Taylor-Couette flow[J]. RSC Advances, 2016, 6(15): 12003-12008. |
70 | WAN Qiang, WANG Huiyong, LI Shuangyu, et al. Efficient liquid-phase exfoliation of few-layer graphene in aqueous 1, 1, 3, 3-tetramethylurea solution[J]. Journal of Colloid and Interface Science, 2018, 526: 167-173. |
71 | O’NEILL A, KHAN U, NIRMALRAJ P N, et al. Graphene dispersion and exfoliation in low boiling point solvents[J]. The Journal of Physical Chemistry C, 2011, 115(13): 5422-5428. |
72 | DIASIO Matthew A, GREEN David L. The effect of solvent viscosity on production of few-layer graphene from liquid-phase exfoliation of graphite[J]. MRS Advances, 2019, 4(3): 241-247. |
73 | HAN Bo, SONG Jinwei, HU Te, et al. High thermal conductivity in polydimethylsiloxane composite with vertically oriented graphene nanosheets by liquid-phase exfoliation[J]. Chemical Physics Letters, 2020, 743: 137156. |
74 | ELUMALAI Satheeshkumar, BATHIR JABER Simahudeen, CHANDRASEKARAN Suryanarayanan, et al. An experimental and steered molecular dynamics simulation approach to histidine assisted liquid-phase exfoliation of graphite into few-layer graphene[J]. Physical Chemistry Chemical Physics, 2020, 22(18): 9910-9914. |
75 | ARAO Yoshihiko, KUWAHARA Riichi, OHNO Kaoru, et al. Mass production of low-boiling point solvent- and water-soluble graphene by simple salt-assisted ball milling[J]. Nanoscale Advances, 2019, 1(12): 4955-4964. |
76 | IGUCHI Hiroki, MIYAHARA Koki, HIGASHI Chisato, et al. Preparation of uncurled and planar multilayered graphene using polythiophene derivatives via liquid-phase exfoliation of graphite[J]. FlatChem, 2018, 8: 31-39. |
77 | SHAH Syed Sajid ALI, NASIR Habib. Liquid-phase exfoliation of few-layer graphene and effect of sonication time on concentration of produced few layer graphene[J]. Nano Hybrids and Composites, 2017, 14: 17-24. |
78 | CIESIELSKI Artur, Paolo SAMORÌ. Supramolecular approaches to graphene: From self-assembly to molecule-assisted liquid-phase exfoliation[J]. Advanced Materials, 2016, 28(29): 6030-6051. |
79 | NODA Kyohei, IGARASHI Yasuhiko, IMAI Hiroaki, et al. Yield-prediction models for efficient exfoliation of soft layered materials into nanosheets[J]. Chemical Communications, 2021, 57(48): 5921-5924. |
80 | ORAWIEC Marcin, BELTON Daniel, TELFORD Richard, et al. Application of semi-in situ liquid exfoliation of graphite to the scalable production of graphene-epoxy nanocomposites[J]. Polymer Composites, 2020, 41(11): 4933-4944. |
81 | LIU Yao, LI Renke, LIANG Bo, et al. Bio-adenine-bridged molecular design approach toward non-covalent functionalized graphene by liquid-phase exfoliation[J]. Journal of Materials Science, 2020, 55(1): 140-150. |
82 | ZHANG Zhiliang, JIN Hailun, WU Chenyu, et al. Efficient production of high-quality few-layer graphene using a simple hydrodynamic-assisted exfoliation method[J]. Nanoscale Research Letters, 2018, 13(1): 416. |
83 | Mori Fumiya, Kubouchi Masatoshi, Arao Yoshihiko. Effect of graphite structures on the productivity and quality of few-layer graphene in liquid-phase exfoliation[J]. Journal of Materials Science, 2018, 53(18): 12807-12815. |
84 | WANG Yuzhou, CHEN Tian, GAO Xuefeng, et al. Liquid phase exfoliation of graphite into few-layer graphene by sonication and microfluidization[J]. Materials Express, 2017, 7(6): 491-499. |
85 | Singh Randhir, Chandra Charu Tripathi. Enhancing liquid-phase exfoliation of graphene with addition of anthracene in organic solvents[J]. Arabian Journal for Science and Engineering, 2017, 42(6): 2417-2424. |
86 | ARAO Yoshihiko, MORI Fumiya, KUBOUCHI Masatoshi. Efficient solvent systems for improving production of few-layer graphene in liquid phase exfoliation[J]. Carbon, 2017, 118: 18-24. |
87 | RAVULA S, BAKER S N, KAMATH G, et al. Ionic liquid-assisted exfoliation and dispersion: Stripping graphene and its two-dimensional layered inorganic counterparts of their inhibitions[J]. Nanoscale, 2015, 7(10): 4338-4353. |
88 | Bordes Emilie, Morcos Bishoy, Bourgogne David, et al. Dispersion and stabilization of exfoliated graphene in ionic liquids[J]. Frontiers in Chemistry, 2019, 7: 223. |
89 | LIU Chengbao, QIU Shihui, DU Peng, et al. An ionic liquid-graphene oxide hybrid nanomaterial: Synthesis and anticorrosive applications[J]. Nanoscale, 2018, 10(17): 8115-8124. |
90 | SUN Zhenyu, FAN Qun, ZHANG Mingli, et al. Supercritical fluid-facilitated exfoliation and processing of 2D materials[J]. Advanced Science, 2019, 6(18): 1901084. |
91 | PADMAJAN SASIKALA Suchithra, POULIN Philippe, AYMONIER Cyril. Prospects of supercritical fluids in realizing graphene-based functional materials[J]. Advanced Materials, 2016, 28(14): 2663-2691. |
92 | HADI Alireza, Javad KARIMI-SABET, MOOSAVIAN Seyed Mohammad ALI, et al. Optimization of graphene production by exfoliation of graphite in supercritical ethanol: A response surface methodology approach[J]. The Journal of Supercritical Fluids, 2016, 107: 92-105. |
93 | GAO Hanyang, ZHU Kunxu, HU Guoxin, et al. Large-scale graphene production by ultrasound-assisted exfoliation of natural graphite in supercritical CO2/H2O medium[J]. Chemical Engineering Journal, 2017, 308: 872-879. |
94 | LUND Sara, KAUPPILA Jussi, Saara SIRKIÄ, et al. Fast high-shear exfoliation of natural flake graphite with temperature control and high yield[J]. Carbon, 2021, 174: 123-131. |
95 | WEI Ying, SUN Zhenyu. Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene[J]. Current Opinion in Colloid & Interface Science, 2015, 20(5/6): 311-321. |
96 | Khanam Zeba, LIU Jianghe, SONG Shenhua. High-concentration graphene dispersions prepared via exfoliation of graphite in PVA/H2O green solvent system using high-shear forces[J]. Journal of Nanoparticle Research, 2021, 23(8): 170. |
97 | HUSSEIN Arab H, DONG Zhizhong, Jennifer LYNCH-BRANZOI, et al. Graphene-reinforced polymer matrix composites fabricated by in situ shear exfoliation of graphite in polymer solution: Processing, rheology, microstructure, and properties[J]. Nanotechnology, 2021, 32(17): 175703. |
98 | YI Min, SHEN Zhigang. A review on mechanical exfoliation for the scalable production of graphene[J]. Journal of Materials Chemistry A, 2015, 3(22): 11700-11715. |
99 | ZHAO Shuai, XIE Shicheng, ZHAO Zheng, et al. Green and high-efficiency production of graphene by tannic acid-assisted exfoliation of graphite in water[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7652-7661. |
100 | CAI Xinzhi, JIANG Zeyi, ZHANG Xinru, et al. Effects of tip sonication parameters on liquid phase exfoliation of graphite into graphene nanoplatelets[J]. Nanoscale Research Letters, 2018, 13(1): 241. |
101 | Markus DÖBBELIN, CIESIELSKI Artur, HAAR Sébastien, et al. Light-enhanced liquid-phase exfoliation and current photoswitching in graphene-azobenzene composites[J]. Nature Communications, 2016, 7: 11090. |
102 | ARAO Yoshihiko, KUBOUCHI Masatoshi. High-rate production of few-layer graphene by high-power probe sonication[J]. Carbon, 2015, 95: 802-808. |
103 | PARVIZ Dorsa, IRIN Fahmida, SHAH Smit A, et al. Challenges in liquid-phase exfoliation, processing, and assembly of pristine graphene[J]. Advanced Materials, 2016, 28(40): 8796-8818. |
104 | CONTRERAS-PEREDA N, HAYATI P, SUÁREZ-GARCÍA S, et al. Delamination of 2D coordination polymers: The role of solvent and ultrasound[J]. Ultrasonics Sonochemistry, 2019, 55: 186-195. |
105 | 廖启江, 秦宏云, 周鸣亮, 等. 高剪切混合器研究与应用进展[J]. 化工进展, 2019, 38(3): 1160-1175. |
LIAO Qijiang, QIN Hongyun, ZHOU Mingliang, et al. Progress of researches and applications for high shear mixers[J]. Chemical Industry and Engineering Progress, 2019, 38(3): 1160-1175. | |
106 | LIU Lei, SHEN Zhigang, YI Min, et al. A green, rapid and size-controlled production of high-quality graphene sheets by hydrodynamic forces[J]. RSC Advances, 2014, 4(69): 36464-36470. |
107 | GAI Yanzhe, WANG Wucong, XIAO Ding, et al. Exfoliation of graphite into graphene by a rotor-stator in supercritical CO2: Experiment and simulation[J]. Industrial & Engineering Chemistry Research, 2018, 57(24): 8220-8229. |
108 | AMRI Amun, BERTILSYA HENDRI Yola, YIN Chunyang, et al. Very-few-layer graphene obtained from facile two-step shear exfoliation in aqueous solution[J]. Chemical Engineering Science, 2021, 245: 116848. |
109 | TIAN Jie, GUO Li, YIN Xianglu, et al. The liquid-phase preparation of graphene by shear exfoliation with graphite oxide as a dispersant[J]. Materials Chemistry and Physics, 2019, 223: 1-8. |
110 | PATON K R, ANDERSON J, POLLARD A J, et al. Production of few-layer graphene by microfluidization[J]. Materials Research Express, 2017, 4(2): 025604. |
111 | KARAGIANNIDIS P G, HODGE S A, LOMBARDI L, et al. Microfluidization of graphite and formulation of graphene-based conductive inks[J]. ACS Nano, 2017, 11(3): 2742-2755. |
112 | 赵玉潮, 陈光文. 微化工系统的并行放大研究进展[J]. 中国科学: 化学, 2015, 45(1): 16-23. |
ZHAO Yuchao, CHEN Guangwen. Progress in research on numbering-up of microchemical system[J]. Scientia Sinica Chimica, 2015, 45(1): 16-23. | |
113 | 张毅. 超重力法液相直接剥离法制备石墨烯[D]. 北京: 北京化工大学, 2016. |
ZHANG Yi. Perparation graphene by liquid direction exfoliation in a rotating packed bed[D]. Beijing: Beijing University of Chemical Technology, 2016. | |
114 | 张毅, 毋伟, 郭丽, 等. 超重力液相剥离法制备石墨烯[C]//2015年中国化工学会年会论文集, 2015: 1780-1784. |
ZHANG Yi, WU Wei, GUO Li, et al. Preparation of graphene by high gravity liquid-phase exfoliation[C]//Proceedings of the Annual Meeting of Chemical Industry Society of China in 2015, 2015: 1780-1784. | |
115 | SHEN Song, GAO Fei, ZHAO Yibo, et al. Preparation of high quality graphene using high gravity technology[J]. Chemical Engineering and Processing: Process Intensification, 2016, 106: 59-66. |
116 | CHEN Xianjue, DOBSON J F, RASTON C L. Vortex fluidic exfoliation of graphite and boron nitride[J]. Chemical Communications, 2012, 48(31): 3703-3705. |
117 | YI Min, SHEN Zhigang. Kitchen blender for producing high-quality few-layer graphene[J]. Carbon, 2014, 78: 622-626. |
118 | Eswaraiah V, PATON K R, Backes Claudia, et al. Turbulence-assisted shear exfoliation of graphene using household detergent and a kitchen blender[J]. Nanoscale, 2014, 6(20): 11810-11819. |
119 | ALHARBI T M D, HARVEY D, ALSULAMI I K, et al. Shear stress mediated scrolling of graphene oxide[J]. Carbon, 2018, 137: 419-424. |
120 | ALHARBI T M D, ALGHAMDI A R M, VIMALANATHAN K, et al. Continuous flow photolytic reduction of graphene oxide[J]. Chemical Communications, 2019, 55(76): 11438-11441. |
121 | AL-ANTAKI A H M, LUO Xuan, ALHARBI T M D, et al. Inverted vortex fluidic exfoliation and scrolling of hexagonal-boron nitride[J]. RSC Advances, 2019, 9(38): 22074-22079. |
122 | ISMAIL Z, IDRIS W F W, ABDULLAH A H. From shear exfoliation of graphite in Coca-Cola® to few-layer graphene for smart ink[J]. Ceramics International, 2021, 47(16): 23309-23317. |
123 | GHOLIZADEH Armin, BABAEI Amir, ZIARATBAN Majid, et al. Facile synthesis of nanographene by a high-yield and scalable method[J]. Ceramics International, 2020, 46(14): 22861-22868. |
124 | PATTAMMATTEL Ajith, PANDE Paritosh, KUTTAPPAN Deepa, et al. Controlling the graphene-bio interface: Dispersions in animal sera for enhanced stability and reduced toxicity[J]. Langmuir, 2017, 33(49): 14184-14194. |
125 | NACKEN T J, DAMM C, WALTER J, et al. Delamination of graphite in a high pressure homogenizer[J]. RSC Advances, 2015, 5(71): 57328-57338. |
126 | BICCAI Sonia, BARWICH Sebastian, BOLAND Daniel, et al. Exfoliation of 2D materials by high shear mixing[J]. 2D Materials, 2018, 6(1): 015008. |
[1] | 赵晨, 苗天泽, 张朝阳, 洪芳军, 汪大海. 负压状态窄缝通道乙二醇水溶液传热特性[J]. 化工进展, 2023, 42(S1): 148-157. |
[2] | 向硕, 卢鹏, 石伟年, 杨鑫, 何燕, 朱立业, 孔祥微. 二维WS2纳米片的规模化可控制备及其摩擦学性能[J]. 化工进展, 2023, 42(9): 4783-4790. |
[3] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[4] | 张耀杰, 张传祥, 孙悦, 曾会会, 贾建波, 蒋振东. 煤基石墨烯量子点在超级电容器中的应用[J]. 化工进展, 2023, 42(8): 4340-4350. |
[5] | 俞俊楠, 俞建峰, 程洋, 齐一搏, 化春键, 蒋毅. 基于深度学习的变宽度浓度梯度芯片性能预测[J]. 化工进展, 2023, 42(7): 3383-3393. |
[6] | 陈蔚阳, 宋欣, 殷亚然, 张先明, 朱春英, 付涛涛, 马友光. 矩形微通道内液相黏度对气泡界面的作用机制[J]. 化工进展, 2023, 42(7): 3468-3477. |
[7] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[8] | 陶梦琦, 刘美红, 康宇驰. 基于micro-PIV的微通道内流体绕流单微圆柱和并联双微圆柱流场特性[J]. 化工进展, 2023, 42(6): 2836-2844. |
[9] | 张浩月, 李春丽, 徐博, 李筱贺, 仝铃, 邱广明. 分段取样法研究改进Hummers法制备GO结构特性及其机理[J]. 化工进展, 2023, 42(5): 2606-2615. |
[10] | 王钰琢, 李刚. 硫、氮共掺杂三维石墨烯的全固态超级电容器[J]. 化工进展, 2023, 42(4): 1974-1982. |
[11] | 田启凯, 郑海萍, 张少斌, 张静, 余子夷. 混合增强的微流控通道进展[J]. 化工进展, 2023, 42(4): 1677-1687. |
[12] | 何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[13] | 杨状, 李闰华, 强增寿, 王雅君, 姚文清. 废弃制冷剂R134a的光催化降解[J]. 化工进展, 2023, 42(4): 2109-2114. |
[14] | 罗小平, 樊鹏, 周建阳, 王梦圆. 不同波纹壁面微细通道沸腾曲线及沸腾起始点研究[J]. 化工进展, 2023, 42(3): 1228-1239. |
[15] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |