化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3834-3846.DOI: 10.16085/j.issn.1000-6613.2022-1582
白亚迪1,2(), 邓帅1,2(), 赵睿恺1,2, 赵力1, 杨英霞3
收稿日期:
2022-08-26
修回日期:
2022-11-15
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
邓帅
作者简介:
白亚迪(1998—),男,硕士研究生,研究方向为二氧化碳吸附。E-mail:1571071872@qq.com。
基金资助:
BAI Yadi1,2(), DENG Shuai1,2(), ZHAO Ruikai1,2, ZHAO Li1, YANG Yingxia3
Received:
2022-08-26
Revised:
2022-11-15
Online:
2023-07-15
Published:
2023-08-14
Contact:
DENG Shuai
摘要:
变温吸附(TSA)碳捕集技术是控制碳排放进而实现“双碳”目标的有效保障手段之一。然而,由于目前缺乏相对完善的计量体系和可执行的标准化测试方案,导致机组性能的测试结果差别较大,缺乏规律性所造成的趋势和性能迭代困难不利于TSA产业化发展。本文初步提出了包含测试工况、性能评价指标、数据的测量与采集三个方面的标准化测试方案,并对样机规模的实物机组进行了性能测试。结果表明,该套方案的可执行度高,可为相关机组的性能评价工作提供借鉴。此外,机组的性能测试结果显示,该机组的运行状态容易控制,纯度和回收率最高均能达到90%以上,但是能源效率在3.5%~6.5%之间,提升潜力大。对标分析发现机组内的管道等部件损失的能耗占比30%~40%,所以需要通过优化管道线路布置、提高吸附腔内换热效率、优化解吸温度和真空压力等运行参数等方式来进一步降耗提效。
中图分类号:
白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846.
BAI Yadi, DENG Shuai, ZHAO Ruikai, ZHAO Li, YANG Yingxia. Exploration on standardized test scheme and experimental performance of temperature swing adsorption carbon capture unit[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3834-3846.
参考文献 | 技术类型 | 研究方法 | 单位能耗/MJ·kg-1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 |
---|---|---|---|---|---|---|---|---|---|---|---|
Liu等[ | TSA | 实验 | 8.41 | √ | √ | √ | √ | √ | |||
Ntiamoah等[ | TSA | 实验 | 3.4 | √ | √ | ||||||
Chen等[ | TSA | 模拟 | 5.36 | √ | √ | √ | √ | ||||
Marx等[ | TSA | 模拟 | 2.85 | √ | √ | √ | |||||
TSA | 模拟 | 12.6 | √ | √ | √ | √ | |||||
Jiang等[ | TSA | 模拟 | 6.76 | √ | √ | √ | |||||
TVSA | 模拟 | 3.22 | √ | √ | √ | √ | |||||
Ben-Mansour等[ | TSA | 模拟 | 2.39 | √ | √ | √ | √ |
表1 单位能耗的计算范围
参考文献 | 技术类型 | 研究方法 | 单位能耗/MJ·kg-1 | e1 | e2 | e3 | e4 | e5 | e6 | e7 | e8 |
---|---|---|---|---|---|---|---|---|---|---|---|
Liu等[ | TSA | 实验 | 8.41 | √ | √ | √ | √ | √ | |||
Ntiamoah等[ | TSA | 实验 | 3.4 | √ | √ | ||||||
Chen等[ | TSA | 模拟 | 5.36 | √ | √ | √ | √ | ||||
Marx等[ | TSA | 模拟 | 2.85 | √ | √ | √ | |||||
TSA | 模拟 | 12.6 | √ | √ | √ | √ | |||||
Jiang等[ | TSA | 模拟 | 6.76 | √ | √ | √ | |||||
TVSA | 模拟 | 3.22 | √ | √ | √ | √ | |||||
Ben-Mansour等[ | TSA | 模拟 | 2.39 | √ | √ | √ | √ |
进气体积分数 | 进气温度 | 热源温度 | 冷源温度 | 环境温度 | 气体流速 |
---|---|---|---|---|---|
15% CO2 85% N2 | 25℃ | 160℃ | 25℃ | 25℃ | 根据吸附剂的材质、结构和性能确定:采用颗粒状活性炭时,为0.20~0.60m/s;采用活性炭纤维毡时,为0.10~0.15m/s;采用蜂窝状吸附剂时,为0.70~1.20m/s |
表2 测试工况
进气体积分数 | 进气温度 | 热源温度 | 冷源温度 | 环境温度 | 气体流速 |
---|---|---|---|---|---|
15% CO2 85% N2 | 25℃ | 160℃ | 25℃ | 25℃ | 根据吸附剂的材质、结构和性能确定:采用颗粒状活性炭时,为0.20~0.60m/s;采用活性炭纤维毡时,为0.10~0.15m/s;采用蜂窝状吸附剂时,为0.70~1.20m/s |
能耗项 | 计算公式 | 含义 | 备注 |
---|---|---|---|
E1 | 加热过程中吸附剂升温所消耗的能量 | ms为吸附剂质量;cp,s为吸附剂的比热容;Tads和Tdes分别为吸附和解吸温度 | |
E2 | CO2和N2从吸附剂中脱附时消耗的能量 | ||
E3 | 解吸出的CO2和N2被加热所消耗的能量 | ||
E4+E5 | 吸附腔金属壁面升温及其向环境的散热所消耗的能量 | t1为加热时间;qoil为导热介质流量;cp,oil为导热介质比热;ΔT1为吸附腔两端的温差 | |
E6+E7 | 导热介质输送管道升温及其向环境散热所消耗的能量 | ΔT2为热源两端的温差 | |
E8 | 真空泵等运行所消耗的能量 | t2为泵工作时间;P为泵功率 |
表3 各部分能耗计算方法
能耗项 | 计算公式 | 含义 | 备注 |
---|---|---|---|
E1 | 加热过程中吸附剂升温所消耗的能量 | ms为吸附剂质量;cp,s为吸附剂的比热容;Tads和Tdes分别为吸附和解吸温度 | |
E2 | CO2和N2从吸附剂中脱附时消耗的能量 | ||
E3 | 解吸出的CO2和N2被加热所消耗的能量 | ||
E4+E5 | 吸附腔金属壁面升温及其向环境的散热所消耗的能量 | t1为加热时间;qoil为导热介质流量;cp,oil为导热介质比热;ΔT1为吸附腔两端的温差 | |
E6+E7 | 导热介质输送管道升温及其向环境散热所消耗的能量 | ΔT2为热源两端的温差 | |
E8 | 真空泵等运行所消耗的能量 | t2为泵工作时间;P为泵功率 |
性能指标所需测量参数 | 纯度 | 回收率 | 比能耗 | 能源效率 |
---|---|---|---|---|
解吸阶段出口处实时气体流量 | √ | √ | √ | √ |
吸附阶段进口处的气体流量 | √ | √ | ||
气体中实时CO2含量 | √ | √ | √ | √ |
进出机组及吸附腔的导热介质温度 | √ | √ | ||
环境温度 | √ | √ | ||
吸附剂温度 | √ | √ | ||
导热介质流量 | √ | √ | ||
泵实时功率 | √ | √ | ||
气体吸附热 | Δ | Δ | ||
相应温度下气体的焓 | ○ | ○ | ||
分离前后CO2相应的熵变和焓变 | ○ |
表4 性能评价所需参数及获取方法
性能指标所需测量参数 | 纯度 | 回收率 | 比能耗 | 能源效率 |
---|---|---|---|---|
解吸阶段出口处实时气体流量 | √ | √ | √ | √ |
吸附阶段进口处的气体流量 | √ | √ | ||
气体中实时CO2含量 | √ | √ | √ | √ |
进出机组及吸附腔的导热介质温度 | √ | √ | ||
环境温度 | √ | √ | ||
吸附剂温度 | √ | √ | ||
导热介质流量 | √ | √ | ||
泵实时功率 | √ | √ | ||
气体吸附热 | Δ | Δ | ||
相应温度下气体的焓 | ○ | ○ | ||
分离前后CO2相应的熵变和焓变 | ○ |
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
吸附腔高度/mm | 1100 | 翅片间距/mm | 5 |
吸附腔外径/mm | 100 | 翅片厚度/mm | 1 |
吸附腔壁厚/mm | 5 | 管路外径/mm | 12 |
换热管外径/mm | 12 | 管路壁厚/mm | 1 |
换热管壁厚/mm | 1 | 每腔吸附剂填充量/kg | 5 |
翅片高度/mm | 7 |
表5 机组的设计参数
参数 | 数值 | 参数 | 数值 |
---|---|---|---|
吸附腔高度/mm | 1100 | 翅片间距/mm | 5 |
吸附腔外径/mm | 100 | 翅片厚度/mm | 1 |
吸附腔壁厚/mm | 5 | 管路外径/mm | 12 |
换热管外径/mm | 12 | 管路壁厚/mm | 1 |
换热管壁厚/mm | 1 | 每腔吸附剂填充量/kg | 5 |
翅片高度/mm | 7 |
测量位置 | 测试参数 | 测试设备 | 准确度 |
---|---|---|---|
T1~T10 | 温度/℃ | K型热电偶 | ±0.75%RDG |
T11~T18 | Pt100 | ±0.25%RDG | |
P1、P2 | 压力/MPa | 压力传感器 | ±1%RDG |
HC1、HC2 | 冷/热量/MJ | 热量积算仪 | ±0.2%RDG |
PM | 功率/W | 功率表 | ±0.4%RDG +±0.1%F.S. |
MF1、MF2 | 气体流量/L·min-1 | 热式质量流量计 | ±0.5%RDG +±0.3%F.S. |
RM1、RM2、RM3 | 带流量调节功能的流量计 | ||
D1、D2、D3 | CO2体积分数/% | CO2检测仪 | ≤±1%F.S. |
表6 测试仪器的详细信息
测量位置 | 测试参数 | 测试设备 | 准确度 |
---|---|---|---|
T1~T10 | 温度/℃ | K型热电偶 | ±0.75%RDG |
T11~T18 | Pt100 | ±0.25%RDG | |
P1、P2 | 压力/MPa | 压力传感器 | ±1%RDG |
HC1、HC2 | 冷/热量/MJ | 热量积算仪 | ±0.2%RDG |
PM | 功率/W | 功率表 | ±0.4%RDG +±0.1%F.S. |
MF1、MF2 | 气体流量/L·min-1 | 热式质量流量计 | ±0.5%RDG +±0.3%F.S. |
RM1、RM2、RM3 | 带流量调节功能的流量计 | ||
D1、D2、D3 | CO2体积分数/% | CO2检测仪 | ≤±1%F.S. |
1 | 新华社. 中共中央 国务院印发《国家标准化发展纲要》[EB/OL]. (2021-10-10). . |
2 | 国家市场监管总局. 加快推进“双碳”标准化工作国家碳达峰碳中和标准化总体组成立[EB/OL]. (2022-03-04). . |
3 | 国家市场监管总局. 关于印发贯彻实施《国家标准化发展纲要》行动计划的通知[EB/OL]. (2022-07-08). . |
4 | 国家能源局. 关于印发《能源碳达峰碳中和标准化提升行动计划》的通知[EB/OL]. (2022-09-20). . |
5 | International Energy Agency. CCUS in Clean Energy Transitions[R]. Paris: IEA, 2020. https://www.iea.org/reports/ccus-in-clean-energy-transitions. |
6 | 中华人民共和国住房和城乡建设部, 国家市场监督管理总局. 烟气二氧化碳捕集纯化工程设计标准: [S]. 北京: 中国计划出版社, 2018. |
Ministry of Housing and Urban-Rural Development of the People’s Republic of China, State Administration for Market Regulation. Standard for design of carbon dioxide capture and purification engineering for flue gas: [S]. Beijing: China Planning Press, 2018. | |
7 | 中华人民共和国工业和信息化部. 燃煤烟气二氧化碳捕集装备: [S]. 北京: 机械工业出版社, 2016. |
Ministry of Industry and Information of the People’s Republic of China. Carbon dioxide capture equipment of coal-fired flue gas: [S]. Beijing: China Machine Press, 2016. | |
8 | 中华人民共和国工业和信息化部. 燃煤烟气碳捕集装置调试规范: [S]. 北京: 机械工业出版社, 2016. |
Ministry of Industry and Information of the People’s Republic of China. Commissioning specification for coal-fired flue gas carbon dioxide capture equipment: [S]. Beijing: China Machine Press, 2016. | |
9 | 中华人民共和国工业和信息化部. 燃煤烟气碳捕集装置运行规范: [S]. 北京: 机械工业出版社, 2016. |
Ministry of Industry and Information of the People’s Republic of China. Operation specification for coal-fired flue gas carbon dioxide capture equipment: [S]. Beijing: China Machine Press, 2016. | |
10 | 中国环境科学学会. 二氧化碳捕集利用与封存术语: T/CSES 41—2021 [S]. |
Chinese Society For Environmental Sciences. Terms of carbon dioxide capture, utilization and storage (CCUS): T/CSES 41—2021 [S]. | |
11 | 中国华能集团有限公司.我国首个碳捕集领域国际标准正式立项[EB/OL]. (2022-05-18). . |
China Huaneng Group Co., Ltd. China’s first international standard in the field of carbon capture was officially established[EB/OL]. (2022-05-18). . | |
12 | 冯雷, 陆成宽. 国家能源集团在碳捕集领域牵头制定的国家标准通过立项[EB/OL]. (2022-08-17). . |
FENG Lei, LU Chengkuan. National standards developed by National Energy Group in the field of carbon capture have been approved[EB/OL]. (2022-08-17). . | |
13 | 朱炫灿, 葛天舒, 吴俊晔, 等. 吸附法碳捕集技术的规模化应用和挑战[J]. 科学通报, 2021, 66(22): 2861-2877. |
ZHU Xuancan, GE Tianshu, WU Junye, et al. Large-scale applications and challenges of adsorption-based carbon capture technologies[J]. Chinese Science Bulletin, 2021, 66(22): 2861-2877. | |
14 | LIU Rushuai, SHI Xiaodong, WANG Chengtong, et al. Advances in post-combustion CO2 capture by physical adsorption: From materials innovation to separation practice[J]. ChemSusChem, 2021, 14(6): 1428-1471. |
15 | LIU Bowen, LIAN Yahui, LI Shuangjun, et al. Experimental investigation on separation and energy-efficiency performance of temperature swing adsorption system for CO2 capture[J]. Separation and Purification Technology, 2019, 227: 115670. |
16 | MÉREL J, CLAUSSE M, MEUNIER F. Carbon dioxide capture by indirect thermal swing adsorption using 13X zeolite[J]. Environmental Progress, 2006, 25(4): 327-333. |
17 | MEREL J, CLAUSSE M, MEUNIER F. Experimental investigation on CO2 post-combustion capture by indirect thermal swing adsorption using 13X and 5A zeolites[J]. Industrial & Engineering Chemistry Research, 2008, 47(1): 209-215. |
18 | NTIAMOAH A, LING Jianghua, XIAO P, et al. CO2 capture by temperature swing adsorption: Use of hot CO2-rich gas for regeneration[J]. Industrial & Engineering Chemistry Research, 2016, 55(3): 703-713. |
19 | SU Fengsheng, LU Chungsying. CO2 capture from gas stream by zeolite 13X using a dual-column temperature/vacuum swing adsorption[J]. Energy & Environmental Science, 2012, 5(10): 9021-9027. |
20 | FUJIKI J, CHOWDHURY F A, YAMADA H, et al. Highly efficient post-combustion CO2 capture by low-temperature steam-aided vacuum swing adsorption using a novel polyamine-based solid sorbent[J]. Chemical Engineering Journal, 2017, 307: 273-282. |
21 | GOMES V G, YEE K W K. Pressure swing adsorption for carbon dioxide sequestration from exhaust gases[J]. Separation and Purification Technology, 2002, 28(2): 161-171. |
22 | WANG Lu, YANG Ying, SHEN Wenlong, et al. Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant[J]. Chemical Engineering Science, 2013, 101: 615-619. |
23 | LIU Zhen, WANG Lu, KONG Xiangming, et al. Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant[J]. Industrial & Engineering Chemistry Research, 2012, 51(21): 7355-7363. |
24 | CHEN Lijin, DENG Shuai, ZHAO Ruikai, et al. Temperature swing adsorption for CO2 capture: Thermal design and management on adsorption bed with single-tube/three-tube internal heat exchanger[J]. Applied Thermal Engineering, 2021, 199: 117538. |
25 | MARX D, JOSS L, HEFTI M, et al. Temperature swing adsorption for postcombustion CO2 capture: Single- and multicolumn experiments and simulations[J]. Industrial & Engineering Chemistry Research, 2016, 55(5): 1401-1412. |
26 | JIANG Nan, SHEN Yuanhui, LIU Bing, et al. CO2 capture from dry flue gas by means of VPSA, TSA and TVSA[J]. Journal of CO2 Utilization, 2020, 35: 153-168. |
27 | CLAUSSE M, MEREL J, MEUNIER F. Numerical parametric study on CO2 capture by indirect thermal swing adsorption[J]. International Journal of Greenhouse Gas Control, 2011, 5(5): 1206-1213. |
28 | BEN-MANSOUR R, QASEM N A A. An efficient temperature swing adsorption (TSA) process for separating CO2 from CO2/N2 mixture using Mg-MOF-74[J]. Energy Conversion and Management, 2018, 156: 10-24. |
29 | JOSS L, HEFTI M, BJELOBRK Z, et al. On the potential of phase-change adsorbents for CO2 capture by temperature swing adsorption[J]. Energy Procedia, 2017, 114: 2271-2278. |
30 | ZHANG Wenbin, LIU Hao, SUN Chenggong, et al. Capturing CO2 from ambient air using a polyethyleneimine-silica adsorbent in fluidized beds[J]. Chemical Engineering Science, 2014, 116: 306-316. |
31 | MENDES P A P, RIBEIRO A M, GLEICHMANN K, et al. Separation of CO2/N2 on binderless 5A zeolite[J]. Journal of CO2 Utilization, 2017, 20: 224-233. |
32 | SONG Chunfeng, KANSHA Y, FU Qian, et al. Reducing energy consumption of advanced PTSA CO2 capture process― Experimental and numerical study[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 64: 69-78. |
33 | CHENG Chuyun, Chia Chen KUO, YANG Mingwei, et al. CO2 capture from flue gas of a coal-fired power plant using three-bed PSA process[J]. Energies, 2021, 14(12): 3582. |
34 | PAI K N, BABOOLAL J D, SHARP D A, et al. Evaluation of diamine-appended metal-organic frameworks for post-combustion CO2 capture by vacuum swing adsorption[J]. Separation and Purification Technology, 2019, 211: 540-550. |
35 | LIU Zhen, GRANDE C A, LI Ping, et al. Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas[J]. Separation and Purification Technology, 2011, 81(3): 307-317. |
36 | SHEN Chunzhi, LIU Zhen, LI Ping, et al. Two-stage VPSA process for CO2 capture from flue gas using activated carbon beads[J]. Industrial & Engineering Chemistry Research, 2012, 51(13): 5011-5021. |
37 | WANG Lu, LIU Zhen, LI Ping, et al. Experimental and modeling investigation on post-combustion carbon dioxide capture using zeolite 13X-APG by hybrid VTSA process[J]. Chemical Engineering Journal, 2012, 197: 151-161. |
38 | JUNG Wonho, PARK Sunghyun, LEE Kwang Soon, et al. Rapid thermal swing adsorption process in multi-beds scale with sensible heat recovery for continuous energy-efficient CO2 capture[J]. Chemical Engineering Journal, 2020, 392: 123656. |
39 | ZHAO Ruikai, ZHAO Li, WANG Shengping, et al. Solar-assisted pressure-temperature swing adsorption for CO2 capture: Effect of adsorbent materials[J]. Solar Energy Materials and Solar Cells, 2018, 185: 494-504. |
40 | JIANG L, ROSKILLY A P, WANG R Z. Performance exploration of temperature swing adsorption technology for carbon dioxide capture[J]. Energy Conversion and Management, 2018, 165: 396-404. |
41 | MULGUNDMATH V, TEZEL F H. Optimisation of carbon dioxide recovery from flue gas in a TPSA system[J]. Adsorption, 2010, 16(6): 587-598. |
42 | Mai BUI, ADJIMAN C S, BARDOW A, et al. Carbon capture and storage (CCS): The way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
43 | YOUNG J, GARCÍA-DÍEZ E, GARCIA S, et al. The impact of binary water-CO2 isotherm models on the optimal performance of sorbent-based direct air capture processes[J]. Energy & Environmental Science. 2021, 14(10): 5377-5394. |
44 | CHEN Lijin, DENG Shuai, ZHAO Ruaikai, et al. The thermodynamics-based benchmarking analysis on energy-efficiency performance of CO2 capture technology: Temperature swing adsorption as case study[J]. Energy Technology, 2021, 9(1): 2000756. |
45 | 石文星, 杨子旭, 王宝龙. 对我国空气源热泵室外名义工况分区的思考[J]. 制冷学报, 2019, 40(5): 1-12. |
SHI Wenxing, YANG Zixu, WANG Baolong. Division of outdoor nominal condition of air source heat pumps in China[J]. Journal of Refrigeration, 2019, 40(5): 1-12. | |
46 | 辛月. 燃煤电厂烟气余热梯级利用降低碳捕集成本[D]. 大连: 大连理工大学, 2017. |
XIN Yue. Cascade utilization of flue gas waste heat in coal-fired power plant to reduce the cost of carbon capture[D]. Dalian: Dalian University of Technology, 2017. | |
47 | 国家市场监督管理总局, 国家标准化管理委员会. 低环境温度空气源热泵(冷水)机组 第1部分:工业或商业用及类似用途的热泵(冷水)机组: [S]. 北京: 中国标准出版社, 2020. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Low ambient temperature air source heat pump(water chilling)packages—Part 1: Heat pump (water chilling)packages for industrial & commercial and similar application: [S]. Beijing: Standards Press of China, 2020. | |
48 | ZHANG Yingying, JI Xiaoyan, LU Xiaohua. Energy consumption analysis for CO2 separation from gas mixtures[J]. Applied Energy, 2014, 130: 237-243. |
49 | ZHAO Ruikai, DENG Shuai, LIU Yinan, et al. Carbon pump: Fundamental theory and applications[J]. Energy, 2017, 119: 1131-1143. |
50 | JIANG L, GONZALEZ-DIAZ A, LING-CHIN J, et al. Post-combustion CO2 capture from a natural gas combined cycle power plant using activated carbon adsorption[J]. Applied Energy, 2019, 245: 1-15. |
51 | SIEGELMAN R L, KIM E J, LONG J R. Porous materials for carbon dioxide separations[J]. Nature Materials, 2021, 20 (8): 1060-1072. |
52 | 中华人民共和国环境保护部. 大气污染治理工程技术导则: [S]. 北京: 中国环境科学出版社, 2011. |
Ministry of Environmental Protection of the People’s Republic of China. Technical guidelines for air pollution control projects: [S]. Beijing: China Environment Science Press, 2011. | |
53 | 国家市场监督管理总局, 国家标准化管理委员会. 能量系统㶲分析技术导则: [S]. 北京: 中国标准出版社, 2021. |
State Administration for Market Regulation, Standardization Administration of the People’s Republic of China. Technical guidelines for exergy analysis in energy systems: [S]. Beijing: Standards Press of China, 2021. | |
54 | COLEMAN H W, STEELE W G JR. Experimentation, validation, and uncertainty analysis for engineers[M]. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2009. |
55 | Sung Ho JO, PARK Young Cheol, MOON Jong Ho, et al. Heat integration of KIERDRY process with a power plant using gPROMS[J]. Energy Procedia, 2017, 114: 6660-6665. |
56 | WU Kailong, DENG Shuai, LI Shuangjun, et al. Preliminary experimental study on the performance of CO2 capture prototype based on temperature swing adsorption (TSA)[J]. Carbon Capture Science & Technology, 2022, 2: 100035. |
[1] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[2] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[3] | 李蓝宇, 黄新烨, 王笑楠, 邱彤. 化工科研范式智能化转型的思考与展望[J]. 化工进展, 2023, 42(7): 3325-3330. |
[4] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[5] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[6] | 符乐, 杨阳, 徐文青, 耿錾卜, 朱廷钰, 郝润龙. 新型相变有机胺吸收捕集CO2技术研究进展[J]. 化工进展, 2023, 42(4): 2068-2080. |
[7] | 尚玉, 肖满, 崔秋芳, 涂特, 晏水平. CO2捕集工艺中热再生气余热的PVDF/BN-OH平板复合膜回收特性[J]. 化工进展, 2023, 42(3): 1618-1628. |
[8] | 杜涛, 马进伟, 陈茜茜, 方浩, 陈秉章, 陈厚仁. PV/T模块复合冷却模式性能对比测试与数值模拟分析[J]. 化工进展, 2023, 42(2): 722-730. |
[9] | 陈佳昆, 汤健, 夏恒, 乔俊飞. 城市固废炉排炉焚烧过程二𫫇英排放浓度数值仿真[J]. 化工进展, 2023, 42(2): 1061-1072. |
[10] | 沈天绪, 沈来宏. 基于3kW塔式串行流化床差异燃料的化学链燃烧解析[J]. 化工进展, 2023, 42(1): 138-147. |
[11] | 王璐, 张磊, 都健. 机器学习高效筛选用于CO2/N2选择性吸附分离的沸石材料[J]. 化工进展, 2023, 42(1): 148-158. |
[12] | 李雅侠, 韩泽民, 王凯, 张平, 张丽, 张静. 不同位置射流强化螺旋通道传热性能分析[J]. 化工进展, 2023, 42(1): 128-137. |
[13] | 王一茹, 宋小三, 水博阳, 王三反. 胺功能化介孔二氧化硅捕集CO2的研究进展[J]. 化工进展, 2022, 41(S1): 536-544. |
[14] | 郑瑾, 韩瑞瑞, 李丹丹, 王馨妤, 高春阳, 杜显元, 张晓飞, 邹德勋. 过氧化尿素与微生物联合修复石油污染土壤[J]. 化工进展, 2022, 41(9): 5085-5093. |
[15] | 张卫风, 周武, 王秋华. 相变吸收捕集烟气中CO2技术的发展现状[J]. 化工进展, 2022, 41(4): 2090-2101. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |