化工进展 ›› 2023, Vol. 42 ›› Issue (7): 3600-3610.DOI: 10.16085/j.issn.1000-6613.2022-1640
收稿日期:
2022-09-06
修回日期:
2022-10-29
出版日期:
2023-07-15
发布日期:
2023-08-14
通讯作者:
陈香李
作者简介:
陈香李(1986—),女,副教授,硕士生导师,研究方向为应用表面与胶体化学、油水分离材料的制备。E-mail:chenxiangli@sust.edu.cn。
基金资助:
CHEN Xiangli(), LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang
Received:
2022-09-06
Revised:
2022-10-29
Online:
2023-07-15
Published:
2023-08-14
Contact:
CHEN Xiangli
摘要:
随着工业的发展以及海洋石油泄漏事故的频发,产生的含油污水对人类健康和生态环境均有严重威胁,迫切需要发展油水处理材料。膜分离法作为一种高效低能耗的方法被广泛应用于该领域,但在实际应用中容易受到外界机械力损坏或自然环境的影响导致膜分离性能下降甚至丧失。因此,自愈合油水分离膜为此提供了一种新途径,显著提升了膜的附加值。本文介绍了自愈合油水分离膜的制备方法、修复机理和国内外研究现状,针对材料表面微纳粗糙结构及低表面能物质损伤的愈合方式展开论述。指出了自愈合油水分离膜目前存在制备时间长、经济成本高、疏水表面修饰的功能单体单一以及机械强度偏低等问题。提出该领域未来可从降低材料制备成本、发展多功能修饰单体以及实现低表面能物质和表面粗糙结构同步愈合等方向发展,以期为油水分离材料的开发和应用提供参考。
中图分类号:
陈香李, 李倩倩, 张甜, 李彪, 李康康. 自愈合油水分离膜的研究进展[J]. 化工进展, 2023, 42(7): 3600-3610.
CHEN Xiangli, LI Qianqian, ZHANG Tian, LI Biao, LI Kangkang. Research progress on self-healing oil/water separation membranes[J]. Chemical Industry and Engineering Progress, 2023, 42(7): 3600-3610.
制备方法 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
模板法 | |||
天然模板法 | 成本较低、效率高 | 模板结构单一且有限 | [ |
人工模板法 | |||
刻蚀法 | 选择性好、效率高 | 产生的废液污染环境 | [ |
沉积法 | |||
液相沉积法 | 操作简单 | 对工艺制备条件要求高 | [ |
气相沉积法 | |||
物理沉积法 | |||
化学沉积法 | |||
喷涂法 | 工艺简单、适用性强 | 不易控制、基底与涂层黏附性小 | [ |
相分离法 | |||
热致相分离法 | 制备周期短、利于规模化生产 | 分离通量低、能耗高 | [ |
非溶剂诱导相分离法 | |||
静电纺丝法 | 可制备微/纳米纤维膜 | 成本高、效率低 | [ |
真空抽滤法 | 操作简单、易于调控 | 对原材料要求高 | [ |
电化学技术 | |||
电化学聚合 | 高效、成本低廉 | 表面的微结构形貌难以控制 | [ |
电化学沉积法 | |||
溶胶-凝胶法 | 低温加工、产品均匀一致 | 材料与基体之间的结合力较弱 | [ |
逐层组装法 | 过程简单、厚度可控 | 涂层稳定性较差、耗时长 | [ |
多孔材料改性法 | 易于改性 | 材料改性具有局限性 | [ |
等离子体处理法 | |||
等离子体刻蚀法 | 操作简单、重复性高 | 成本高、刻蚀速度慢、很难实现量产 | [ |
等离子体聚合法 | |||
有机-无机杂化表面法 | 易于获得所需性能 | 效率低、不适于大规模生产 | [ |
表面自由基聚合和气相聚合法 | 适用范围广 | 操作条件严格 | [ |
表1 油水分离膜的制备方法及优缺点
制备方法 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
模板法 | |||
天然模板法 | 成本较低、效率高 | 模板结构单一且有限 | [ |
人工模板法 | |||
刻蚀法 | 选择性好、效率高 | 产生的废液污染环境 | [ |
沉积法 | |||
液相沉积法 | 操作简单 | 对工艺制备条件要求高 | [ |
气相沉积法 | |||
物理沉积法 | |||
化学沉积法 | |||
喷涂法 | 工艺简单、适用性强 | 不易控制、基底与涂层黏附性小 | [ |
相分离法 | |||
热致相分离法 | 制备周期短、利于规模化生产 | 分离通量低、能耗高 | [ |
非溶剂诱导相分离法 | |||
静电纺丝法 | 可制备微/纳米纤维膜 | 成本高、效率低 | [ |
真空抽滤法 | 操作简单、易于调控 | 对原材料要求高 | [ |
电化学技术 | |||
电化学聚合 | 高效、成本低廉 | 表面的微结构形貌难以控制 | [ |
电化学沉积法 | |||
溶胶-凝胶法 | 低温加工、产品均匀一致 | 材料与基体之间的结合力较弱 | [ |
逐层组装法 | 过程简单、厚度可控 | 涂层稳定性较差、耗时长 | [ |
多孔材料改性法 | 易于改性 | 材料改性具有局限性 | [ |
等离子体处理法 | |||
等离子体刻蚀法 | 操作简单、重复性高 | 成本高、刻蚀速度慢、很难实现量产 | [ |
等离子体聚合法 | |||
有机-无机杂化表面法 | 易于获得所需性能 | 效率低、不适于大规模生产 | [ |
表面自由基聚合和气相聚合法 | 适用范围广 | 操作条件严格 | [ |
1 | TANIS-KANBUR Melike Begum, Sadiye VELIOĞLU, TANUDJAJA Henry J, et al. Understanding membrane fouling by oil-in-water emulsion via experiments and molecular dynamics simulations[J]. Journal of Membrane Science, 2018, 566: 140-150. |
2 | JIANG Guojun, GE Junyan, JIA Yuxin, et al. Coaxial electrospun nanofibrous aerogels for effective removal of oils and separation of water-in-oil emulsions[J]. Separation and Purification Technology, 2021, 270: 118740. |
3 | ZISMAN W A. Relation of the equilibrium contact angle to liquid and solid constitution[M]//Advances in Chemistry. Washington D C: American Chemical Society, 1964: 1-51. |
4 | VRANCKEN R J, KUSUMAATMAJA H, HERMANS K, et al. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces[EB/OL]. 2009: arXiv: 0911.0016. . |
5 | CHANG Jian, ZHANG Lianbin, WANG Peng. Intelligent environmental nanomaterials[J]. Environmental Science: Nano, 2018, 5(4): 811-836. |
6 | YE Xiaoji, ZHANG Jilong, ZHU Yong, et al. Ultrafast self-healing of polymer toward strength restoration[J]. ACS Applied Materials & Interfaces, 2014, 6(5): 3661-3670. |
7 | WANG Ben, LIANG Weixin, GUO Zhiguang, et al. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: A new strategy beyond nature[J]. Chemical Society Reviews, 2015, 44(1): 336-361. |
8 | XU Jianhua, DING Chendi, CHEN Peng, et al. Intrinsic self-healing polymers for advanced lithium-based batteries: Advances and strategies[J]. Applied Physics Reviews, 2020, 7(3): 031304. |
9 | ZHANG Ning, YANG Xianwen, WANG Yalun, et al. A review on oil/water emulsion separation membrane material[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107257. |
10 | SPORI Doris M, DROBEK Tanja, Stefan ZÜRCHER, et al. Cassie-state wetting investigated by means of a hole-to-pillar density gradient[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2010, 26(12): 9465-9473. |
11 | LI Zhenlong, YU Rui, GUO Baolin. Shape-memory and self-healing polymers based on dynamic covalent bonds and dynamic noncovalent interactions: Synthesis, mechanism, and application[J]. ACS Applied Bio Materials, 2021, 4(8): 5926-5943. |
12 | ZHANG Pengjuan, SHEN Bin, PU Hongting. Robust, dimensional stable, and self-healable anion exchange membranes via quadruple hydrogen bonds[J]. Polymer, 2022, 245: 124698. |
13 | LI Yang, LI Long, SUN Junqi. Bioinspired self-healing superhydrophobic coatings[J]. Angewandte Chemie International Edition, 2010, 49(35): 6129-6133. |
14 | DONG Xiuli, GAO Shouwei, HUANG Jianying, et al. A self-roughened and biodegradable superhydrophobic coating with UV shielding, solar-induced self-healing and versatile oil-water separation ability[J]. Journal of Materials Chemistry A, 2019, 7(5): 2122-2128. |
15 | ZHANG Tao, ZHANG Lizhi. A self-healing PVDF-ZnO/MXene membrane with universal fouling resistance for real seawater desalination[J]. Water Research, 2022, 216: 118349. |
16 | ZHONG Qi, SHI Guogui, SUN Qing, et al. Robust PVA-GO-TiO2 composite membrane for efficient separation oil-in-water emulsions with stable high flux[J]. Journal of Membrane Science, 2021, 640: 119836. |
17 | MA Wenjing, LI Yuansheng, GAO Shuting, et al. Self-healing and superwettable nanofibrous membranes with excellent stability toward multifunctional applications in water purification[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23644-23654. |
18 | MA Wenjing, DING Yichun, LI Yuansheng, et al. Durable, self-healing superhydrophobic nanofibrous membrane with self-cleaning ability for highly-efficient oily wastewater purification[J]. Journal of Membrane Science, 2021, 634: 119402. |
19 | YOUNAS Hassan, BAI Hongwei, SHAO Jiahui, et al. Super-hydrophilic and fouling resistant PVDF ultrafiltration membranes based on a facile prefabricated surface[J]. Journal of Membrane Science, 2017, 541: 529-540. |
20 | Ebenezer Kobina SAM, GE Yang, LIU Jun, et al. Robust, self-healing, superhydrophobic fabric for efficient oil/water emulsion separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625: 126860. |
21 | 董哲勤, 王宝娟, 许振良, 等. 油水分离功能膜制备技术研究进展[J]. 化工进展, 2017, 36(1): 1-9. |
DONG Zheqin, WANG Baojuan, XU Zhenliang, et al. Recent progress on fabrication technology of functional membranes for oil/water separation[J]. Chemical Industry and Engineering Progress, 2017, 36(1): 1-9. | |
22 | WENZEL Robert N. Resistance of solid surfaces to wetting by water[J]. Industrial & Engineering Chemistry, 1936, 28(8): 988-994. |
23 | SHCHUKIN Dmitry G. Container-based multifunctional self-healing polymer coatings[J]. Polymer Chemistry, 2013, 4(18): 4871-4877. |
24 | LU Qingchen, LI Nana. Preparation of hydrophilic polyvinylidene fluoride/polyvinyl alcohol ultrafiltration membrane via polymer/non-solvent co-induced phase separation method towards enhance anti-fouling performance[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106431. |
25 | XIAO Liji, DENG Min, ZENG Weiguo, et al. Novel robust superhydrophobic coating with self-cleaning properties in air and oil based on rare earth metal oxide[J]. Industrial & Engineering Chemistry Research, 2017, 56(43): 12354-12361. |
26 | XU Qianfeng, MONDAL Bikash, LYONS Alan M. Fabricating superhydrophobic polymer surfaces with excellent abrasion resistance by a simple lamination templating method[J]. ACS Applied Materials & Interfaces, 2011, 3(9): 3508-3514. |
27 | KIM Jae Hun, MIRZAEI Ali, KIM Hyoun Woo, et al. Facile fabrication of superhydrophobic surfaces from austenitic stainless steel (AISI 304) by chemical etching[J]. Applied Surface Science, 2018, 439: 598-604. |
28 | TAN Ruixuan, XIE Hongyan, SHE Jueqin, et al. A new approach to fabricate superhydrophobic and antibacterial low density isotropic pyrocarbon by using catalyst free chemical vapor deposition[J]. Carbon, 2019, 145: 359-366. |
29 | LI Jian, WU Runni, JING Zhijiao, et al. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance[J]. Langmuir, 2015, 31(39): 10702-10707. |
30 | XIE Q, XU J, FENG L, et al. Facile creation of a super-amphiphobic coating surface with bionic microstructure[J]. Advanced Materials, 2004, 16(4): 302-305. |
31 | ZHANG Jichao, ZHANG Feng, SONG Jun, et al. Electrospun flexible nanofibrous membranes for oil/water separation[J]. Journal of Materials Chemistry A, 2019, 7(35): 20075-20102. |
32 | YU Li, RUAN Shuangchen, XU Xintong, et al. One-dimensional nanomaterial-assembled macroscopic membranes for water treatment[J]. Nano Today, 2017, 17: 79-95. |
33 | WEI Zhibo, JIANG Deyi, CHEN Jie, et al. Combination of chemical etching and electrophoretic deposition for the fabrication of multi-scale superhydrophobic Al films[J]. Materials Letters, 2017, 196: 115-118. |
34 | ARUN KUMAR K V, JOHN Jini, SOORAJ T R, et al. Surface plasmon response of silver nanoparticles doped silica synthesised via Sol-gel route[J]. Applied Surface Science, 2019, 472: 40-45. |
35 | LI Yang, LIU Feng, SUN Junqi. A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings[J]. Chemical Communications (Cambridge, England), 2009(19): 2730-2732. |
36 | SU Ying, FAN Tingting, CUI Wenying, et al. Advanced electrospun nanofibrous materials for efficient oil/water separation[J]. Advanced Fiber Materials, 2022, 4(5): 938-958. |
37 | QIN Yi, SHEN Hui, HAN Lu, et al. Mechanically robust Janus poly(lactic acid) hybrid fibrous membranes toward highly efficient switchable separation of surfactant-stabilized oil/water emulsions[J]. ACS Applied Materials & Interfaces, 2020, 12(45): 50879-50888. |
38 | WU Mingming, XIANG Bin, MU Peng, et al. Janus nanofibrous membrane with special micro-nanostructure for highly efficient separation of oil-water emulsion[J]. Separation and Purification Technology, 2022, 297: 121532. |
39 | CHEN Jiahui, LIU Zihan, WEN Xiufang, et al. Two-step approach for fabrication of durable superamphiphobic fabrics for self-cleaning, antifouling, and on-demand oil/water separation[J]. Industrial & Engineering Chemistry Research, 2019, 58(14): 5490-5500. |
40 | FENG Qingying, ZHAN Yingqing, YANG Wei, et al. Layer-by-layer construction of super-hydrophilic and self-healing polyvinylidene fluoride composite membrane for efficient oil/water emulsion separation[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127462. |
41 | ZHANG Wenbin, SHI Zhun, ZHANG Feng, et al. Superhydrophobic and superoleophilic PVDF membranes for effective separation of water-in-oil emulsions with high flux[J]. Advanced Materials, 2013, 25(14): 2071-2076. |
42 | ZHENG Weiwei, HUANG Jiangying, LI Shuhui, et al. Advanced materials with special wettability toward intelligent oily wastewater remediation[J]. ACS Applied Materials & Interfaces, 2021, 13(1): 67-87. |
43 | ZHANG Lianbin, ZHANG Zhonghai, WANG Peng. Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: Toward controllable oil/water separation[J]. NPG Asia Materials, 2012, 4(2): e8. |
44 | ZHAO Dongli, DU Zhukang, LIU Shanshan, et al. UV light curable self-healing superamphiphobic coatings by photopromoted disulfide exchange reaction[J]. ACS Applied Polymer Materials, 2019, 1(11): 2951-2960. |
45 | YI Bo, LIU Peng, HOU Changshun, et al. Dual-cross-linked supramolecular polysiloxanes for mechanically tunable, damage-healable and oil-repellent polymeric coatings[J]. ACS Applied Materials & Interfaces, 2019, 11(50): 47382-47389. |
46 | LIU Hongyu, YANG Lin, DOU Baojie, et al. Zwitterionic hydrogel-coated cotton fabrics with underwater superoleophobic, self-healing and anti-fouling performances for oil-water separation[J]. Separation and Purification Technology, 2021, 279: 119789. |
47 | LI Jian, NIU Hongyao, YU Yingfeng, et al. Supramolecular polydimethylsiloxane elastomer with enhanced mechanical properties and self-healing ability engineered by synergetic dynamic bonds[J]. ACS Applied Polymer Materials, 2021, 3(7): 3373-3382. |
48 | YE Hanchen, CHEN Dongyun, LI Najun, et al. Durable and robust self-healing superhydrophobic Co-PDMS@ZIF-8-coated MWCNT films for extremely efficient emulsion separation[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38313-38320. |
49 | PURETSKIY Nikolay, STOYCHEV Georgi, SYNYTSKA Alla, et al. Surfaces with self-repairable ultrahydrophobicity based on self-organizing freely floating colloidal particles[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2012, 28(8): 3679-3682. |
50 | Tong LYU, CHENG Zhongjun, ZHANG Enshuang, et al. Self-Restoration of super hydrophobicity on shape memory polymer arrays with both crushed microstructure and damaged surface chemistry[J]. Small, 2017, 13(4): 1503402. |
51 | WANG Yingke, LIU Yiping, LI Juan, et al. Fast self-healing superhydrophobic surfaces enabled by biomimetic wax regeneration[J]. Chemical Engineering Journal, 2020, 390: 124311. |
52 | CHEN Kunlin, ZHOU Shuxue, WU Limin. Facile fabrication of self-repairing superhydrophobic coatings[J]. Chemical Communications, 2014, 50(80): 11891-11894. |
53 | PAN Shengyang, CHEN Min, WU Limin. Smart superhydrophobic surface with restorable microstructure and self-healable surface chemistry[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 5157-5165. |
54 | SUN Yan, LIU Wenqi, XU Dongyan, et al. Self-healing of super hydrophobic and hierarchical surfaces for gas diffusion layer[J]. International Journal of Hydrogen Energy, 2020, 45(54): 29774-29781. |
[1] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[2] | 崔守成, 徐洪波, 彭楠. 两种MOFs材料用于O2/He吸附分离的模拟分析[J]. 化工进展, 2023, 42(S1): 382-390. |
[3] | 李世霖, 胡景泽, 王毅霖, 王庆吉, 邵磊. 电渗析分离提取高值组分的研究进展[J]. 化工进展, 2023, 42(S1): 420-429. |
[4] | 郭强, 赵文凯, 肖永厚. 增强流体扰动强化变压吸附甲硫醚/氮气分离的数值模拟[J]. 化工进展, 2023, 42(S1): 64-72. |
[5] | 贺美晋. 分子管理在炼油领域分离技术中的应用和发展趋势[J]. 化工进展, 2023, 42(S1): 260-266. |
[6] | 廖志新, 罗涛, 王红, 孔佳骏, 申海平, 管翠诗, 王翠红, 佘玉成. 溶剂脱沥青技术应用与进展[J]. 化工进展, 2023, 42(9): 4573-4586. |
[7] | 王少凡, 周颖, 郝康安, 黄安荣, 张如菊, 吴翀, 左晓玲. 具有pH响应性的自愈合蓝光水凝胶[J]. 化工进展, 2023, 42(9): 4837-4846. |
[8] | 李雪佳, 李鹏, 李志霞, 晋墩尚, 郭强, 宋旭锋, 宋芃, 彭跃莲. 亲水和疏水改性膜的抗结垢和润湿能力的对比[J]. 化工进展, 2023, 42(8): 4458-4464. |
[9] | 徐杰, 夏隆博, 罗平, 邹栋, 仲兆祥. 面向膜蒸馏过程的全疏膜制备及其应用进展[J]. 化工进展, 2023, 42(8): 3943-3955. |
[10] | 王报英, 王皝莹, 闫军营, 汪耀明, 徐铜文. 聚合物包覆膜在金属分离回收中的研究进展[J]. 化工进展, 2023, 42(8): 3990-4004. |
[11] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[12] | 潘宜昌, 周荣飞, 邢卫红. 高效分离同碳数烃的先进微孔膜:现状与挑战[J]. 化工进展, 2023, 42(8): 3926-3942. |
[13] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[14] | 周龙大, 赵立新, 徐保蕊, 张爽, 刘琳. 电场-旋流耦合强化多相介质分离研究进展[J]. 化工进展, 2023, 42(7): 3443-3456. |
[15] | 陆诗建, 刘苗苗, 杨菲, 张俊杰, 陈思铭, 刘玲, 康国俊, 李清方. 改良型CO2湿壁塔内气液两相流动规律及传质特性[J]. 化工进展, 2023, 42(7): 3457-3467. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |