化工进展 ›› 2023, Vol. 42 ›› Issue (6): 3029-3048.DOI: 10.16085/j.issn.1000-6613.2022-1434
朱雅静1(), 徐岩1(), 简美鹏1,2,3(), 李海燕1,2,3(), 王崇臣1,4
收稿日期:
2022-08-01
修回日期:
2022-09-20
出版日期:
2023-06-25
发布日期:
2023-06-29
通讯作者:
简美鹏,李海燕
作者简介:
朱雅静(1998—),女,硕士研究生,研究方向为MOFs的合成与海水提铀应用。E-mail:zhuyajing0608@163.com基金资助:
ZHU Yajing1(), XU Yan1(), JIAN Meipeng1,2,3(), LI Haiyan1,2,3(), WANG Chongchen1,4
Received:
2022-08-01
Revised:
2022-09-20
Online:
2023-06-25
Published:
2023-06-29
Contact:
JIAN Meipeng, LI Haiyan
摘要:
随着核能需求的增加,从海水中提取铀作为传统铀资源的补充或替代具有重要意义。金属有机框架材料(MOFs)具有高的比表面积和可调控的孔结构,作为一种新兴的除铀吸附剂,在学术界已引起了广泛关注。针对MOFs在海水中吸附铀时存在的水稳定差、选择吸附性差和分离困难等关键问题,研究发现可以通过定向官能化改性和与异相材料复合来提高海水提铀性能。本文简要介绍了MOFs材料在水中提取铀的结构优势,分析了水稳定性的影响因素,列举了具有代表性的三类高水稳定性MOFs材料特性,重点总结了该三类MOFs应用于海水中提取铀的性能以及机制研究,同时比较了原始MOFs、表面官能化MOFs和MOFs复合材料的提铀性能。基于MOFs的结构特征与对铀酰离子的吸附作用机制,得出除铀MOFs吸附剂的未来发展方向是提高水体稳定性、进行MOFs表面功能化以及拓展多种材料复合方式。
中图分类号:
朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣. 金属有机框架材料用于海水提铀的研究进展[J]. 化工进展, 2023, 42(6): 3029-3048.
ZHU Yajing, XU Yan, JIAN Meipeng, LI Haiyan, WANG Chongchen. Progress of metal-organic frameworks for uranium extraction from seawater[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3029-3048.
1 | PIECHOWICZ M, ABNEY C, ZHOU X, et al. Design, synthesis, and characterization of a bifunctional chelator with ultrahigh capacity for uranium uptake from seawater simulant[J]. Industrial & Engineering Chemistry Research, 2016, 55(15):4170-4178. |
2 | YIN Xiaojie, BAI Jing, FAN Fangli, et al. Amidoximed silica for uranium(Ⅵ) sorption from aqueous solution[J]. Journal of Radioanalytical and Nuclear Chemistry, 2015, 303(3): 2135-2142. |
3 | KIM Jungseung, TSOURIS Costas, MAYES Richard T, et al. Recovery of uranium from seawater: A review of current status and future research needs[J]. Separation Science and Technology, 2013, 48(3): 367-387. |
4 | LI Hui, ZHAI Fuwan, GUI Daxiang, et al. Powerful uranium extraction strategy with combined ligand complexation and photocatalytic reduction by postsynthetically modified photoactive metal-organic frameworks[J]. Applied Catalysis B: Environmental, 2019, 254: 47-54. |
5 | MANOS Manolis J, KANATZIDIS Mercouri G. Layered metal sulfides capture uranium from seawater[J]. Journal of the American Chemical Society, 2012, 134(39): 16441-16446. |
6 | KANNO Masayoshi. Present status of study on extraction of uranium from sea water[J]. Journal of Nuclear Science and Technology, 1984, 21(1): 1-9. |
7 | 熊洁, 文君, 胡胜, 等. 中国海水提铀研究进展[J]. 核化学与放射化学, 2015, 37(5): 257-265. |
XIONG Jie, WEN Jun, HU Sheng, et al. Progress in extracting uranium from seawater of China[J]. Journal of Nuclear and Radiochemistry, 2015, 37(5): 257-265. | |
8 | 陈戏三, 何琳, 戴波. 海水提铀的先进材料与试验装置的研究进展[J]. 科技创新导报, 2017, 14(8): 83-84. |
CHEN Xisan, HE Lin, DAI Bo. Research progress of extraction uranium by using advanced materials and adsorption experimental systems from sea-water[J]. Science and Technology Innovation Herald, 2017, 14(8): 83-84. | |
9 | ABNEY Carter W, MAYES Richard T, SAITO Tomonori, et al. Materials for the recovery of uranium from seawater[J]. Chemical Reviews, 2017, 117(23): 13935-14013. |
10 | TAMADA Masao. Current status of technology for collection of uranium from seawater[C]//International Seminar on Nuclear War and Planetary Emergencies — 42nd Session. Erice, Italy. World Scientific, 2010: 243-252. |
11 | GUO Han, MEI Peng, XIAO Jingting, et al. Carbon materials for extraction of uranium from seawater[J]. Chemosphere, 2021, 278: 130411. |
12 | HORIKE Satoshi, UMEYAMA Daiki, KITAGAWA Susumu. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks[J]. Accounts of Chemical Research, 2013, 46(11): 2376-2384. |
13 | ZHOU Hongcai, LONG Jeffrey R, YAGHI Omar M. Introduction to metal-organic frameworks[J]. Chemical Reviews, 2012, 112(2): 673-674. |
14 | 彭莹, 张晓文, 李密, 等. 金属有机框架材料吸附分离水中铀的应用[J]. 化工进展, 2019, 38(7): 3227-3242. |
PENG Ying, ZHANG Xiaowen, LI Mi, et al. Application of metal-organic frameworks in adsorption and separation of uranium from water[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3227-3242. | |
15 | YAGHI O M, LI H L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels[J]. Journal of the American Chemical Society, 1995, 117(41): 10401-10402. |
16 | CHEN Mengwei, LIU Tao, ZHANG Xiaobin, et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel[J]. Advanced Functional Materials, 2021, 31(22): 2100106. |
17 | DEMESSENCE Aude, D’ALESSANDRO Deanna M, Maw Lin FOO, et al. Strong CO2 binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine[J]. Journal of the American Chemical Society, 2009, 131(25): 8784-8786. |
18 | GORDILLO Monica A, BENAVIDES Paola A, PANDA Dillip K, et al. The advent of electrically conducting double-helical metal-organic frameworks featuring butterfly-shaped electron-rich π-extended tetrathiafulvalene ligands[J]. ACS Applied Materials & Interfaces, 2020, 12(11): 12955-12961. |
19 | HOSKINS Bernard F, ROBSON Richard. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. Journal of the American Chemical Society, 1989, 111(15): 5962-5964. |
20 | JIANG Lu, ZHANG Wei, LUO Congguang, et al. Adsorption toward trivalent rare earth element from aqueous solution by zeolitic imidazolate frameworks[J]. Industrial & Engineering Chemistry Research, 2016, 55(22): 6365-6372. |
21 | LI Linnan, MA Wen, SHEN Sensen, et al. A combined experimental and theoretical study on the extraction of uranium by amino-derived metal-organic frameworks through post-synthetic strategy[J]. ACS Applied Materials & Interfaces, 2016, 8(45): 31032-31041. |
22 | XUE Wenjuan, ZHANG Zhengqing, HUANG Hongliang, et al. Theoretical insights into the initial hydrolytic breakdown of HKUST-1[J]. The Journal of Physical Chemistry C, 2020, 124(3): 1991-2001. |
23 | Ka Kit YEE, REIMER Nele, LIU Jie, et al. Effective mercury sorption by thiol-laced metal-organic frameworks: In strong acid and the vapor phase[J]. Journal of the American Chemical Society, 2013, 135(21): 7795-7798. |
24 | LIU Xinlei, WANG Xuerui, KAPTEIJN Freek. Water and metal-organic frameworks: From interaction toward utilization[J]. Chemical Reviews, 2020, 120(16): 8303-8377. |
25 | BAI Yan, DOU Yibo, XIE Linhua, et al. Zr-based metal-organic frameworks: Design, synthesis, structure, and applications[J]. Chemical Society Reviews, 2016, 45(8): 2327-2367. |
26 | BURTCH Nicholas C, JASUJA Himanshu, WALTON Krista S. Water stability and adsorption in metal-organic frameworks[J]. Chemical Reviews, 2014, 114(20): 10575-10612. |
27 | QIAN Xukun, YADIAN Boluo, WU Renbing, et al. Structure stability of metal-organic framework MIL-53(Al) in aqueous solutions[J]. International Journal of Hydrogen Energy, 2013, 38(36): 16710-16715. |
28 | HILAL S H, KARICKHOFF S, CARREIRA L A. A rigorous test for SPARC’s chemical reactivity models: Estimation of more than 4300 ionization pKas[J]. Quantitative Structure-Activity Relationships, 1995, 14(4): 348-355. |
29 | ZHANG Jinwei, LI Ping, ZHANG Xinning, et al. Water adsorption properties and applications of stable metal-organic frameworks[J]. Acta Chimica Sinica, 2020, 78(7): 597-612. |
30 | KANG In Joong, KHAN Nazmul Abedin, HAQUE Enamul, et al. Chemical and thermal stability of isotypic metal-organic frameworks: Effect of metal ions[J]. Chemistry-A European Journal, 2011, 17(23): 6437-6442. |
31 | 祖梅, 许海涛, 谢炜, 等. 金属有机框架材料的水稳定性及吸水应用进展[J]. 化工进展, 2022, 41(8): 4254-4267. |
ZU Mei, XU Haitao, XIE Wei, et al. Progress in water stable and water absorption applications of metal-organic frameworks[J]. Chemical Industry and Engineering Progress, 2022, 41(8): 4254-4267. | |
32 | BIRSA ČELIČ Tadeja, MAZAJ Matjaž, GUILLOU Nathalie, et al. Study of hydrothermal stability and water sorption characteristics of 3-dimensional Zn-based trimesate[J]. The Journal of Physical Chemistry C, 2013, 117(28): 14608-14617. |
33 | CHEN Tenghao, POPOV Ilya, ZENASNI Oussama, et al. Superhydrophobic perfluorinated metal-organic frameworks[J]. Chemical Communications, 2013, 49(61): 6846-6848. |
34 | NGUYEN Joseph G, COHEN Seth M. Moisture-resistant and superhydrophobic metal-organic frameworks obtained via postsynthetic modification[J]. Journal of the American Chemical Society, 2010, 132(13): 4560-4561. |
35 | WU Tianjiao, SHEN Lingjuan, LUEBBERS Matthew, et al. Enhancing the stability of metal-organic frameworks in humid air by incorporating water repellent functional groups[J]. Chemical Communications, 2010, 46(33): 6120-6122. |
36 | John J LOW, BENIN Annabelle I, JAKUBCZAK Paulina, et al. Virtual high throughput screening confirmed experimentally: porous coordination polymer hydration[J]. Journal of the American Chemical Society, 2009, 131(43): 15834-15842. |
37 | DECOSTE Jared B, PETERSON Gregory W, SCHINDLER Bryan J, et al. The effect of water adsorption on the structure of the carboxylate containing metal-organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66[J]. Journal of Materials Chemistry A, 2013, 1(38): 11922-11932. |
38 | JEREMIAS Felix, LOZAN Vasile, HENNINGER Stefan K, et al. Programming MOFs for water sorption: Amino-functionalized MIL-125 and UiO-66 for heat transformation and heat storage applications[J]. Dalton Transactions, 2013, 42(45): 15967-15973. |
39 | ZHANG Huifeng, ZHAO Man, LIN Y S. Stability of ZIF-8 in water under ambient conditions[J]. Microporous and Mesoporous Materials, 2019, 279: 201-210. |
40 | HOWARTH Ashlee J, LIU Yangyang, LI Peng, et al. Chemical, thermal and mechanical stabilities of metal-organic frameworks[J]. Nature Reviews Materials, 2016, 1: 15018. |
41 | Pia KÜSGENS, ROSE Marcus, SENKOVSKA Irena, et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and Mesoporous Materials, 2009, 120(3): 325-330. |
42 | PARK K S, NI ZHENG, CÔTÉ A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences, 2006, 103(27): 10186-10191. |
43 | CYCHOSZ Katie A, MATZGER Adam J. Water stability of microporous coordination polymers and the adsorption of pharmaceuticals from water[J]. Langmuir, 2010, 26(22): 17198-17202. |
44 | SERRE Christian, MILLANGE Franck, THOUVENOT Christelle, et al. Very large breathing effect in the first nanoporous chromium(Ⅲ)-based solids: MIL-53 or CrⅢ(OH)·{O2C-C6H4-CO2}·{HO2C-C6H4-CO2H} x ·H2O y [J]. Journal of the American Chemical Society, 2002, 124(45): 13519-13526. |
45 | LOISEAU T, SERRE C, HUGUENARD C, et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL‐53) upon hydration[J]. Chemistry-A European Journal, 2004, 10(6): 1373-1382. |
46 | SINDORO Melinda, Ah Young JEE, GRANICK Steve. Shape-selected colloidal MOF crystals for aqueous use[J]. Chemical Communications, 2013, 49(83): 9576-9578. |
47 | JEREMIAS Felix, KHUTIA Anupam, HENNINGER Stefan K, et al. MIL-100(Al, Fe) as water adsorbents for heat transformation purposes—a promising application[J]. Journal of Materials Chemistry, 2012, 22(20): 10148-10151. |
48 | HORCAJADA Patricia, Suzy SURBLÉ, SERRE Christian, et al. Synthesis and catalytic properties of MIL-100(Fe), an iron(Ⅲ) carboxylate with large pores[J]. Chemical Communications, 2007(27): 2820-2822. |
49 | ČELIČ T B, MAZAJ M, MALI G, et al. Hydrothermal stability as an important characteristics of metal-organic framework materials[C]//Proceedings of the 5th Serbian-Croatian-Slovenian Symposium on Zeolites, 2013: 72-75. |
50 | SEO Y K, YOON J, LEE J S, et al. Porous materials: Energy-efficient dehumidification over hierachically porous metal-organic frameworks as advanced water adsorbents [J]. Advanced Materials, 2012, 24(6): 806-810. |
51 | CUNHA Denise, YAHIA Mouna BEN, HALL Shaun, et al. Rationale of drug encapsulation and release from biocompatible porous metal-organic frameworks[J]. Chemistry of Materials, 2013, 25(14): 2767-2776. |
52 | KHAN Nazmul Abedin, LEE Ji sun, JEON Jaewoo, et al. Phase-selective synthesis and phase-conversion of porous aluminum-benzenetricarboxylates with microwave irradiation[J]. Microporous and Mesoporous Materials, 2012, 152: 235-239. |
53 | FÉREY G, MELLOT-DRAZNIEKS C, SERRE C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area[J]. Science, 2005, 309(5743): 2040-2042. |
54 | HONG Do Young, HWANG Young Kyu, SERRE Christian, et al. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis[J]. Advanced Functional Materials, 2009, 19(10): 1537-1552. |
55 | HU Yuling, SONG Chaoyong, LIAO Jia, et al. Water stable metal-organic framework packed microcolumn for online sorptive extraction and direct analysis of naproxen and its metabolite from urine sample[J]. Journal of Chromatography A, 2013, 1294: 17-24. |
56 | AKIYAMA George, MATSUDA Ryotaro, SATO Hiroshi, et al. Cellulose hydrolysis by a new porous coordination polymer decorated with sulfonic acid functional groups[J]. Advanced Materials, 2011, 23(29): 3294-3297. |
57 | KHUTIA Anupam, RAMMELBERG Holger Urs, SCHMIDT Thomas, et al. Water sorption cycle measurements on functionalized MIL-101Cr for heat transformation application[J]. Chemistry of Materials, 2013, 25(5): 790-798. |
58 | LI Ke, YANG Jian, GU Jinlou. Salting-in species induced self-assembly of stable MOFs[J]. Chemical Science, 2019, 10(22): 5743-5748. |
59 | KIM Se Na, KIM Jun, KIM Hee Young, et al. Adsorption/catalytic properties of MIL-125 and NH2-MIL-125[J]. Catalysis Today, 2013, 204: 85-93. |
60 | Meenakshi DAN-HARDI, SERRE Christian, FROT Théo, et al. A new photoactive crystalline highly porous titanium(Ⅳ) dicarboxylate[J]. Journal of the American Chemical Society, 2009, 131(31): 10857-10859. |
61 | SCHOENECKER Paul M, CARSON Cantwell G, JASUJA Himanshu, et al. Effect of water adsorption on retention of structure and surface area of metal-organic frameworks[J]. Industrial & Engineering Chemistry Research, 2012, 51(18): 6513-6519. |
62 | GUILLERM V, RAGON F, DAN-HARDI M, et al. A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks[J]. Angewandte Chemie International Edition, 2012, 51(37): 9267-9271. |
63 | CAVKA Jasmina Hafizovic, Søren JAKOBSEN, OLSBYE Unni, et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability[J]. Journal of the American Chemical Society, 2008, 130(42): 13850-13851. |
64 | YANG Qingyuan, GUILLERM Vincent, RAGON Florence, et al. CH4 storage and CO2 capture in highly porous zirconium oxide based metal-organic frameworks[J]. Chemical Communications, 2012, 48(79): 9831-9833. |
65 | DECOSTE Jared B, PETERSON Gregory W, JASUJA Himanshu, et al. Stability and degradation mechanisms of metal-organic frameworks containing the Zr6O4(OH)4 secondary building unit[J]. Journal of Materials Chemistry A, 2013, 1(18): 5642-5650. |
66 | BARTHELET Karin, MARROT Jérôme, RIOU Didier, et al. A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics[J]. Angewandte Chemie International Edition, 2002, 41(2): 281-284. |
67 | Marta MON, BRUNO Rosaria, Jesus FERRANDO-SORIA, et al. Metal-organic framework technologies for water remediation: Towards a sustainable ecosystem[J]. Journal of Materials Chemistry A, 2018, 6(12): 4912-4947. |
68 | XUE Dongxu, CAIRNS Amy J, BELMABKHOUT Youssef, et al. Tunable rare-earth fcu-MOFs: A platform for systematic enhancement of CO2 adsorption energetics and uptake[J]. Journal of the American Chemical Society, 2013, 135(20): 7660-7667. |
69 | XUE D, BELMABKHOUT Y, SHEKHAH O, et al. Tunable rare earth fcu-MOF platform: Access to adsorption kinetics driven gas/vapor separations via pore size contraction[J]. Journal of the American Chemical Society, 2015, 137(15): 5034-5040. |
70 | ZHANG He, LI Guoliang, ZHANG Kegang, et al. Advances of metal-organic frameworks in adsorption and separation applications[J]. Acta Chimica Sinica, 2017, 75(9): 841-859. |
71 | KANDIAH Mathivathani, NILSEN Merete Hellner, USSEGLIO Sandro, et al. Synthesis and stability of tagged UiO-66 Zr-MOFs[J]. Chemistry of Materials, 2010, 22(24): 6632-6640. |
72 | LIU Xinlei, LI Yanshuo, ZHU Guangqi, et al. An organophilic pervaporation membrane derived from metal-organic framework nanoparticles for efficient recovery of bio-alcohols[J]. Angewandte Chemie, 2011, 50(45): 10636-10639. |
73 | QIAN Junfeng, SUN Fuan, QIN Lizhen. Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals[J]. Materials Letters, 2012, 82: 220-223. |
74 | HUANG Hongliang, ZHANG Wenjuan, LIU Dahuan, et al. Effect of temperature on gas adsorption and separation in ZIF-8: A combined experimental and molecular simulation study[J]. Chemical Engineering Science, 2011, 66(23): 6297-6305. |
75 | HUANG Xiaochun, LIN Yanyong, ZHANG Jiepeng, et al. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(Ⅱ) imidazolates with unusual zeolitic topologies[J]. Angewandte Chemie International Edition, 2006, 45(10): 1557-1559. |
76 | LIU Yangyang, BURU Cassandra T, HOWARTH Ashlee J, et al. Efficient and selective oxidation of sulfur mustard using singlet oxygen generated by a pyrene-based metal-organic framework[J]. Journal of Materials Chemistry A, 2016, 4(36): 13809-13813. |
77 | YUAN Shuai, FENG Liang, WANG Kecheng, et al. Stable metal-organic frameworks: design, synthesis, and applications[J]. Advanced Materials, 2018, 30(37): e1704303. |
78 | BAI Zhiqiang, YUAN Liyong, ZHU Lin, et al. Introduction of amino groups into acid-resistant MOFs for enhanced U(Ⅵ) sorption[J]. Journal of Materials Chemistry A, 2015, 3(2): 525-534. |
79 | SCHIERZ A, ZÄNKER H. Aqueous suspensions of carbon nanotubes: Surface oxidation, colloidal stability and uranium sorption[J]. Environmental Pollution, 2009, 157(4): 1088-1094. |
80 | LUO Baicheng, YUAN Liyong, CHAI Zhifang, et al. U(Ⅵ) capture from aqueous solution by highly porous and stable MOFs: UiO-66 and its amine derivative[J]. Journal of Radioanalytical and Nuclear Chemistry, 2016, 307(1): 269-276. |
81 | TAN Chunxia, HAN Xing, LI Zijian, et al. Controlled exchange of achiral linkers with chiral linkers in Zr-based UiO-68 metal-organic framework[J]. Journal of the American Chemical Society, 2018, 140(47): 16229-16236. |
82 | AWADALLAH F A, HILLMAN F, MUHTASEB S A AL, et al. Adsorption equilibrium and kinetics of nitrogen, methane and carbon dioxide gases onto ZIF-8, Cu10%/ZIF-8, and Cu30%/ZIF-8[J]. Industrial & Engineering Chemistry Research, 2019, 58(16): 6653-6661. |
83 | SU Shouzheng, CHE Rong, LIU Qi, et al. Zeolitic Imidazolate Framework-67: A promising candidate for recovery of uranium (Ⅵ) from seawater[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 547: 73-80. |
84 | FENG Yafei, JIANG Heng, LI Songnan, et al. Metal-organic frameworks HKUST-1 for liquid-phase adsorption of uranium[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 431: 87-92. |
85 | FALAISE Clément, VOLKRINGER Christophe, GIOVINE Raynald, et al. Capture of actinides (Th4+, [UO2]2+) and surrogating lanthanide (Nd3+) in porous metal-organic framework MIL-100(Al) from water: Selectivity and imaging of embedded nanoparticles[J]. Dalton Transactions, 2017, 46(36): 12010-12014. |
86 | LI Jianqiang, GONG Lele, FENG Xuefeng, et al. Direct extraction of U(Ⅵ) from alkaline solution and seawater via anion exchange by metal-organic framework[J]. Chemical Engineering Journal, 2017, 316: 154-159. |
87 | WANG Lingling, LUO Feng, DANG Lilong, et al. Ultrafast high-performance extraction of uranium from seawater without pretreatment using an acylamide- and carboxyl-functionalized metal-organic framework[J]. Journal of Materials Chemistry A, 2015, 3(26): 13724-13730. |
88 | WU Yihan, PANG Hongwei, YAO Wen, et al. Synthesis of rod-like metal-organic framework (MOF-5) nanomaterial for efficient removal of U(Ⅵ): Batch experiments and spectroscopy study[J]. Science Bulletin, 2018, 63(13): 831-839. |
89 | LIU Rui, WANG Zhiqin, LIU Qingyan, et al. A zinc MOF with carboxylate oxygen-functionalized pore channels for uranium(Ⅵ) sorption[J]. European Journal of Inorganic Chemistry, 2019, 2019(5): 735-739. |
90 | ZHENG Tao, YANG Zaixing, GUI Daxiang, et al. Overcoming the crystallization and designability issues in the ultrastable zirconium phosphonate framework system[J]. Nature Communications, 2017, 8: 15369. |
91 | CHEN Long, BAI Zhuanling, ZHU Lin, et al. Ultrafast and efficient extraction of uranium from seawater using an amidoxime appended metal-organic framework[J]. ACS Applied Materials & Interfaces, 2017, 9(38): 32446-32451. |
92 | WANG Chunyao, LEE Yu Jen, HSU Jhy Ping, et al. Phosphate or arsenate modified UiO-66-NO2: Amorphous mesoporous matrix[J]. Journal of the Taiwan Institute of Chemical Engineers, 2020, 108: 129-133. |
93 | CARBONI Michaël, ABNEY Carter W, LIU Shubin, et al. Highly porous and stable metal-organic frameworks for uranium extraction[J]. Chemical Science, 2013, 4(6): 2396-2402. |
94 | DE DECKER Jeroen, ROCHETTE Julie, DE CLERCQ Jeriffa, et al. Carbamoylmethylphosphine oxide-functionalized MIL-101(Cr) as highly selective uranium adsorbent[J]. Analytical Chemistry, 2017, 89(11): 5678-5682. |
95 | LIU Fengtai, SONG Shanshan, CHENG Ge, et al. MIL-101(Cr) metal-organic framework functionalized with tetraethylenepentamine for potential removal of Uranium (Ⅵ) from waste water[J]. Adsorption Science & Technology, 2018, 36(7-8): 1550-1567. |
96 | ZHANG Jianyong, ZHANG Na, ZHANG Linjuan, et al. Adsorption of uranyl ions on amine-functionalization of MIL-101(Cr) nanoparticles by a facile coordination-based post-synthetic strategy and X-ray absorption spectroscopy studies[J]. Scientific Reports, 2015, 5(1): 13514. |
97 | ZHANG Le, WANG Linlin, GONG Lele, et al. Coumarin-modified microporous-mesoporous Zn-MOF-74 showing ultra-high uptake capacity and photo-switched storage/release of U(Ⅵ) ions[J]. Journal of Hazardous Materials, 2016, 311: 30-36. |
98 | WU Haoyan, CHI Fangting, ZHANG Shuo, et al. Control of pore chemistry in metal-organic frameworks for selective uranium extraction from seawater[J]. Microporous and Mesoporous Materials, 2019, 288: 109567. |
99 | LIU Lijia, FANG Yueguang, MENG Yujiang, et al. Efficient adsorbent for recovering uranium from seawater prepared by grafting amidoxime groups on chloromethylated MIL-101(Cr) via diaminomaleonitrile intermediate[J]. Desalination, 2020, 478: 114300. |
100 | YU Qiuhan, YUAN Yihui, WEN Jun, et al. A universally applicable strategy for construction of anti-biofouling adsorbents for enhanced uranium recovery from seawater[J]. Advanced Science, 2019, 6(13): 1900002. |
101 | MIN Xue, YANG Weiting, HUI Yuanfeng, et al. Fe3O4@ZIF-8: a magnetic nanocomposite for highly efficient UO2 2+ adsorption and selective UO2 2+/Ln3+ separation[J]. Chemical Communications, 2017, 53(30): 4199-4202. |
102 | ALQADAMI Ayoub Abdullah, NAUSHAD Mu, ALOTHMAN Zeid Abdullah, et al. Novel metal-organic framework (MOF) based composite material for the sequestration of U(Ⅵ) and Th(Ⅳ) metal ions from aqueous environment[J]. ACS Applied Materials & Interfaces, 2017, 9(41): 36026-36037. |
103 | XU Lin, ZHANG Duo, MA Fuyin, et al. Nano-MOF+ technique for efficient uranyl remediation[J]. ACS Applied Materials & Interfaces, 2019, 11(24): 21619-21626. |
104 | AMINI Asma, KHAJEH Mostafa, OVEISI Ali Reza, et al. A porous multifunctional and magnetic layered graphene oxide/3D mesoporous MOF nanocomposite for rapid adsorption of uranium(Ⅵ) from aqueous solutions[J]. Journal of Industrial and Engineering Chemistry, 2021, 93: 322-332. |
105 | YU Boxuan, YE Gang, CHEN Jing, et al. Membrane-supported 1D MOF hollow superstructure array prepared by polydopamine-regulated contra-diffusion synthesis for uranium entrapment[J]. Environmental Pollution, 2019, 253: 39-48. |
106 | LIU Tao, ZHANG Xiaobin, GU Anping, et al. In-situ grown bilayer MOF from robust wood aerogel with aligned microchannel arrays toward selective extraction of uranium from seawater[J]. Chemical Engineering Journal, 2022, 433: 134346. |
107 | ZHOU Qian, JIN Bo, ZHAO Ping, et al. rGO/CNQDs/ZIF-67 composite aerogel for efficient extraction of uranium in wastewater[J]. Chemical Engineering Journal, 2021, 419: 129622. |
108 | BAI Zhenyuan, LIU Qi, ZHANG Hongsen, et al. Anti-biofouling and water-Stable balanced charged metal organic framework-based polyelectrolyte hydrogels for extracting uranium from seawater[J]. ACS Applied Materials & Interfaces, 2020, 12(15): 18012-18022. |
109 | HE Ningning, LI Hao, CHENG Chong, et al. Enhanced marine applicability of adsorbent for uranium via synergy of hyperbranched poly(amido amine) and amidoxime groups[J]. Chemical Engineering Journal, 2020, 395: 125162. |
110 | Éric ANSOBORLO, AMEKRAZ Badia, MOULIN Christophe, et al. Review of actinide decorporation with chelating agents[J]. Comptes Rendus Chimie, 2007, 10(10/11): 1010-1019. |
111 | ZHAO Zhiwei, CHENG Gong, ZHANG Yizhe, et al. Metal-organic-framework based functional materials for uranium recovery: Performance optimization and structure/functionality-activity relationships[J]. Chempluschem, 2021, 86(8): 1177-1192. |
112 | 唐朝春, 王顺藤, 黄从新, 等. 介孔金属有机框架材料吸附水中重金属离子研究进展[J]. 化工进展, 2022, 41(6): 3263-3278. |
TANG Chaochun, WANG Shunteng, HUANG Congxin, et al. Research progress on adsorption of heavy metal ions in water by mesoporous metal organic framework materials[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3263-3278. | |
113 | LI Jian hong, YANG Li xiao, LI Jian qiang, et al. Anchoring nZVI on metal-organic framework for removal of uranium(Ⅵ) from aqueous solution[J]. Journal of Solid State Chemistry, 2019, 269: 16-23. |
114 | FOTOVAT Haniyeh, KHAJEH Mostafa, OVEISI Ali Reza, et al. A hybrid material composed of an amino-functionalized zirconium-based metal-organic framework and a urea-based porous organic polymer as an efficient sorbent for extraction of uranium(Ⅵ)[J]. Microchimica Acta, 2018, 185(10): 469. |
115 | LI Fengbo, LI Xiaoyu, CUI Pu, et al. Retracted article: Plasma-grafted amidoxime/metal-organic framework composites for the selective sequestration of U(Ⅵ)[J]. Environmental Science: Nano, 2018, 5(8): 2000-2008. |
116 | LIU Haibo, LI Mengxue, CHEN Tianhu, et al. New synthesis of nZVI/C composites as an efficient adsorbent for the uptake of U(Ⅵ) from aqueous solutions[J]. Environmental Science & Technology, 2017, 51(16): 9227-9234. |
117 | LU Guang, LI Shaozhou, GUO Zhen, et al. Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation[J]. Nature Chemistry, 2012, 4(4): 310-316. |
118 | LIU Tianqi, LI Zhan, ZHANG Xin, et al. Metal-organic framework-intercalated graphene oxide membranes for selective separation of uranium[J]. Analytical Chemistry, 2021, 93(48): 16175-16183. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 林晓鹏, 肖友华, 管奕琛, 鲁晓东, 宗文杰, 傅深渊. 离子聚合物-金属复合材料(IPMC)柔性电极的研究进展[J]. 化工进展, 2023, 42(9): 4770-4782. |
[4] | 单雪影, 张濛, 张家傅, 李玲玉, 宋艳, 李锦春. 阻燃型环氧树脂的燃烧数值模拟[J]. 化工进展, 2023, 42(7): 3413-3419. |
[5] | 于志庆, 黄文斌, 王晓晗, 邓开鑫, 魏强, 周亚松, 姜鹏. B掺杂Al2O3@C负载CoMo型加氢脱硫催化剂性能[J]. 化工进展, 2023, 42(7): 3550-3560. |
[6] | 李吉焱, 景艳菊, 邢郭宇, 刘美辰, 龙永, 朱照琪. 耐盐型太阳能驱动界面光热材料及蒸发器的研究进展[J]. 化工进展, 2023, 42(7): 3611-3622. |
[7] | 杨竞莹, 施万胜, 黄振兴, 谢利娟, 赵明星, 阮文权. 改性纳米零价铁材料制备的研究进展[J]. 化工进展, 2023, 42(6): 2975-2986. |
[8] | 许春树, 姚庆达, 梁永贤, 周华龙. 氧化石墨烯/碳纳米管对几种典型高分子材料的性能影响[J]. 化工进展, 2023, 42(6): 3012-3028. |
[9] | 张宁, 吴海滨, 李钰, 李剑锋, 程芳琴. 漂浮型光催化材料的制备及其在水处理领域的应用研究进展[J]. 化工进展, 2023, 42(5): 2475-2485. |
[10] | 毛梦雷, 孟令玎, 高蕊, 孟子晖, 刘文芳. 多孔框架材料固定化酶研究进展[J]. 化工进展, 2023, 42(5): 2516-2535. |
[11] | 陈飞, 刘成宝, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基超级电容器用电极材料的研究进展[J]. 化工进展, 2023, 42(5): 2566-2576. |
[12] | 刘念, 陈葵, 武斌, 纪利俊, 吴艳阳, 韩金玲. 蛋黄-壳介孔磁性炭微球的制备及其对红霉素的高效吸附[J]. 化工进展, 2023, 42(5): 2724-2732. |
[13] | 郭帅帅, 陈锦路, 金梁程龙, 陶醉, 陈小丽, 彭国文. 基于海水提铀的多孔芳香框架材料研究进展[J]. 化工进展, 2023, 42(3): 1426-1436. |
[14] | 陈仪, 郭耀励, 叶海星, 李宇璇, 牛青山. 二维纳米材料在渗透汽化脱盐膜中的应用[J]. 化工进展, 2023, 42(3): 1437-1447. |
[15] | 薛博, 杨婷婷, 王雪峰. 聚苯胺/碳纳米管气敏材料的研究进展[J]. 化工进展, 2023, 42(3): 1448-1456. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |