化工进展 ›› 2023, Vol. 42 ›› Issue (6): 3049-3065.DOI: 10.16085/j.issn.1000-6613.2022-1418
董晓珊1(), 王建1, 林法伟1, 颜蓓蓓1(), 陈冠益1,2,3
收稿日期:
2022-07-27
修回日期:
2022-11-11
出版日期:
2023-06-25
发布日期:
2023-06-29
通讯作者:
颜蓓蓓
作者简介:
董晓珊(1996—),女,博士研究生,研究方向为生物质焦油催化转化利用。E-mail:dongxiaoshan@tju.edu.cn。
基金资助:
DONG Xiaoshan1(), WANG Jian1, LIN Fawei1, YAN Beibei1(), CHEN Guanyi1,2,3
Received:
2022-07-27
Revised:
2022-11-11
Online:
2023-06-25
Published:
2023-06-29
Contact:
YAN Beibei
摘要:
负载型金属纳米粒子已广泛应用在与能量转化及储存相关的催化过程。但是,浸渍、沉积法制备的金属纳米粒子尺寸和分布难以控制,在应用中易因烧结、积炭等问题失活。溶出策略制备的金属纳米粒子镶嵌在母体表面,尺寸均匀,具有更强的金属-载体作用,为解决上述问题提供了一条可行之路。本文从钙钛矿的溶出现象出发,综述了金属纳米粒子的溶出过程及其应用优势,并介绍了氧空位、相变和吉布斯自由能在溶出中的驱动作用。然后,从材料自身特性和还原条件阐明了溶出控制策略。最后总结了溶出型催化剂的应用进展。然而,在金属粒子溶出机制、性质调控方面,仍需结合原位技术和理论计算进行深入研究。
中图分类号:
董晓珊, 王建, 林法伟, 颜蓓蓓, 陈冠益. 基于钙钛矿氧化物的金属纳米粒子溶出策略:溶出过程、驱动力及控制策略[J]. 化工进展, 2023, 42(6): 3049-3065.
DONG Xiaoshan, WANG Jian, LIN Fawei, YAN Beibei, CHEN Guanyi. Exsolved metal nanoparticles on perovskite oxides: exsolution, driving force and control strategy[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3049-3065.
1 | 廖丰, 龙明策. 黏土负载型类Fenton催化剂的研究进展[J]. 化工进展, 2018, 37(9): 3401-3409. |
LIAO Feng, LONG Mingce. Recent progress on the clay supported Fenton-like catalyst[J]. Chemical Industry and Engineering Progress, 2018, 37(9): 3401-3409. | |
2 | KIM Seona, Areum JUN, KWON Ohhun, et al. Nanostructured double perovskite cathode with low sintering temperature for intermediate temperature solid oxide fuel cells[J]. ChemSusChem, 2015, 8(18): 3153-3158. |
3 | SCHLUPP M V, EVANS A, MARTYNCZUK J, et al. Micro-solid oxide fuel cell membranes prepared by aerosol-assisted chemical vapor deposition[J]. Advanced Energy Materials, 2014, 4(5): 1301383. |
4 | ARANDIA Aitor, REMIRO Aingeru, VALLE Beatriz, et al. Deactivation of Ni spinel derived catalyst during the oxidative steam reforming of raw bio-oil[J]. Fuel, 2020, 276: 117995. |
5 | OCHOA Aitor, ARAMBURU Borja, VALLE Beatriz, et al. Role of oxygenates and effect of operating conditions in the deactivation of a Ni supported catalyst during the steam reforming of bio-oil[J]. Green Chemistry, 2017, 19(18): 4315-4333. |
6 | 林俊明, 岑洁, 李正甲, 等. Ni基重整催化剂失活机理研究进展[J]. 化工进展, 2022, 41(1): 201-209. |
LIN Junming, CEN Jie, LI Zhengjia, et al. Development on deactivation mechanism of Ni-based reforming catalysts[J]. Chemical Industry and Engineering Progress, 2022, 41(1): 201-209. | |
7 | 刘嘉辉, 孙道安, 杜咏梅, 等. 芳烃蒸汽催化重整制氢研究进展[J]. 化工进展, 2021, 40(9): 4782-4790. |
LIU Jiahui, SUN Dao’an, DU Yongmei, et al. Progress on hydrogen production from catalytic steam reforming of aromatic hydrocarbons[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4782-4790. | |
8 | TANAKA Hirohisa, TAN Isao, UENISHI Mari, et al. Regeneration of palladium subsequent to solid solution and segregation in a perovskite catalyst: an intelligent catalyst[J]. Topics in Catalysis, 2001, 16(1/2/3/4): 63-70. |
9 | NISHIHATA Y, MIZUKI J, AKAO T, et al. Self-regeneration of a Pd-perovskite catalyst for automotive emissions control[J]. Nature, 2002, 418(6894): 164-167. |
10 | TANAKA Hirohisa, UENISHI Mari, TANIGUCHI Masashi, et al. Intelligent catalyst having the self-regenerative function of Pd, Rh and Pt for automotive emissions control[J]. Catalysis Today, 2006, 117(1/2/3): 321-328. |
11 | CUI Shaohua, LI Jianhui, ZHOU Xinwen, et al. Cobalt doped LaSrTiO3- δ as an anode catalyst: effect of Co nanoparticle precipitation on SOFCs operating on H2S-containing hydrogen[J]. Journal of Materials Chemistry A, 2013, 1(34): 9689-9696. |
12 | HUA Bin, LI Meng, SUN Yifei, et al. Enhancing perovskite electrocatalysis of solid oxide cells through controlled exsolution of nanoparticles[J]. ChemSusChem, 2017, 10(17): 3333-3341. |
13 | 王一帆, 孙毅飞, 盖鑫磊, 等. 纳/微异构型钙钛矿氧化物电极在固体氧化物燃料电池的研究进展[J]. 硅酸盐学报, 2021, 49(01): 70-82. |
WANG Yifan, SUN Yifei, GE Xinlei, et al. Recent development on nano-and micron-heteromorphism perovskite oxide nanofiber electrode for SOFC[J]. Journal of the Chinese Ceramic Society, 2021, 49(1): 70-82. | |
14 | GRABOWSKA Ewelina. Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review[J]. Applied Catalysis B: Environmental, 2016, 186: 97-126. |
15 | 陈彦广, 闫伟宁, 韩洪晶, 等. 钙钛矿氧化物的制备及其在环境保护中的应用[J]. 硅酸盐通报, 2016, 35(7): 2142-2148. |
CHEN Yanguang, YAN Weining, HAN Hongjing, et al. Preparation of perovskite oxide and its application in environmental protection[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(7): 2142-2148. | |
16 | 李翠翠, 张婷, 安静, 等. 三维有序大孔钙钛矿金属氧化物作为高效燃烧催化剂的研究进展[J]. 化工进展, 2021, 40(6): 3181-3190. |
LI Cuicui, ZHANG Ting, AN Jing, et al. Research progress of three-dimensional ordered macroporous perovskite metal oxides as highly efficient combustion catalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 3181-3190. | |
17 | 杨杰, 常辉, 隋志军, 等. 化学链催化甲烷氧化反应研究进展[J]. 化工进展, 2021, 40(4): 1928-1947. |
YANG Jie, CHANG Hui, SUI Zhijun, et al. Advances in chemical looping methane oxidation[J]. Chemical Industry and Engineering Progress, 2021, 40(4): 1928-1947. | |
18 | 程雅娣, 高建雄, 王焕磊, 等. 钙钛矿氧化物结构分析及其电催化析氢反应研究进展[J]. 分析化学, 2021, 49(6): 952-962. |
CHENG Yadi, GAO Jianxiong, WANG Huanlei, et al. Structure analysis of perovskite oxides and research progress on their electrocatalytic hydrogen evolution reaction[J]. Chinese Journal of Analytical Chemistry, 2021, 49(6): 952-962. | |
19 | 阚家伟, 李兵, 李林, 等. 含氯挥发性有机化合物催化燃烧催化剂的研究进展[J]. 化工进展, 2016, 35(2): 499-505. |
KAN Jiawei, LI Bing, LI Lin, et al. Advances in catalysts for catalytic combustion of chlorinated volatile organic compounds[J]. Chemical Industry and Engineering Progress, 2016, 35(2): 499-505. | |
20 | CAO T, KWON O, GORTE R J, et al. Metal exsolution to enhance the catalytic activity of electrodes in solid oxide fuel cells[J]. Nanomaterials, 2020, 10(12): 2445. |
21 | KATZ M B, ZHANG S, DUAN Y, et al. Reversible precipitation/dissolution of precious-metal clusters in perovskite-based catalyst materials: Bulk versus surface re-dispersion[J]. Journal of Cataltsis, 2012, 293: 145-148. |
22 | RAMAN A S, VOJVODIC A. Modeling exsolution of Pt from ATiO3 perovskites (A=Ca/Sr/Ba) using first-principles methods[J]. Chemistry of Materials, 2020, 32(22): 9642-9649. |
23 | OH T S, RAHANI E K, NEAGU D, et al. Evidence and model for strain-driven release of metal nanocatalysts from perovskites during exsolution[J]. Journal of Physical Chemistry Letters, 2015, 6(24): 5106-5110. |
24 | GAO Yang, CHEN Dengjie, SACCOCCIO Mattia, et al. From material design to mechanism study: Nanoscale Ni exsolution on a highly active A-site deficient anode material for solid oxide fuel cells[J]. Nano Energy, 2016, 27: 499-508. |
25 | NEAGU D, KYRIAKOU V, ROIBAN I L, et al. In situ observation of nanoparticle exsolution from perovskite oxides: From atomic scale mechanistic insight to nanostructure tailoring[J]. ACS Nano, 2019, 13(11): 12996-13005. |
26 | KWON Ohhun, KIM Kyeounghak, Sangwook JOO, et al. Self-assembled alloy nanoparticles in a layered double perovskite as a fuel oxidation catalyst for solid oxide fuel cells[J]. Journal of Materials Chemistry A, 2018, 6(33): 15947-15953. |
27 | NEAGU D, OH T S, MILLER D N, et al. Nano-socketed nickel particles with enhanced coking resistance grown in situ by redox exsolution[J]. Nature Communications, 2015, 6: 8120. |
28 | TANAKA Hirohisa, TANIGUCHI Masashi, UENISHI Mari, et al. Self-regenerating Rh- and Pt-based perovskite catalysts for automotive-emissions control[J]. Angewandte Chemie International Edition, 2006, 45(36): 5998-6002. |
29 | DU Zhihong, GONG Yue, ZHAO Hailei, et al. Unveiling the interface structure of the exsolved Co-Fe alloy nanoparticles from double perovskite and its application in solid oxide fuel cells[J]. ACS Applied Materials & Interfaces, 2021, 13(2): 3287-3294. |
30 | ZHANG Yuxuan, YU Zhouyang, TAO Youkun, et al. Insight into the electrochemical processes of the titanate electrode with in situ Ni exsolution for solid oxide cells[J]. ACS Applied Energy Materials, 2019, 2(6): 4033-4044. |
31 | Houfu LYU, LIU Tianfu, ZHANG Xiaomin, et al. Atomic-scale insight into exsolution of CoFe alloy nanoparticles in La0.4Sr0.6Co0.2Fe0.7Mo0.1O3- δ with efficient CO2 electrolysis[J]. Angewandte Chemie-International Edition, 2020, 59(37): 15968-15973. |
32 | SONG Yufei, WANG Wei, GE Lei, et al. Rational design of a water-storable hierarchical architecture decorated with amorphous barium oxide and nickel nanoparticles as a solid oxide fuel cell anode with excellent sulfur tolerance[J]. Advanced Science, 2017, 4(11): 1700337. |
33 | SUN Yifei, LI Jianhui, CUI Lin, et al. A-site-deficiency facilitated in situ growth of bimetallic Ni-Fe nano-alloys: A novel coking-tolerant fuel cell anode catalyst[J]. Nanoscale, 2015, 7(25): 11173-11181. |
34 | UENISHI Mari, TANIGUCHI Masashi, TANAKA Hirohisa, et al. Redox behavior of palladium at start-up in the perovskite-type LaFePdO x automotive catalysts showing a self-regenerative function[J]. Applied Catalysis B: Environmental, 2005, 57(4): 267-273. |
35 | Houfu LYU, LIN Le, ZHANG Xiaomin, et al. In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a Co-doped Sr2Fe1.5Mo0.5O6- δ cathode for CO2 electrolysis[J]. Advanced Materials, 2020, 32(6): 1906193. |
36 | LINDENTHAL Lorenz, POPOVIC Janko, RAMESHAN Raffael, et al. Novel perovskite catalysts for CO2 utilization-exsolution enhanced reverse water-gas shift activity[J]. Applied Catalysis B-Environmental, 2021, 292: 120183. |
37 | WANG Haiqian, DONG Xiaolei, ZHAO Tingting, et al. Dry reforming of methane over bimetallic Ni-Co catalyst prepared from La(Co x Ni1- x )0.5Fe0.5O3 perovskite precursor: Catalytic activity and coking resistance[J]. Applied Catalysis B: Environmental, 2019, 245: 302-313. |
38 | DEKA D J, KIM J, GUNDUZ S, et al. Investigation of hetero-phases grown via in-situ exsolution on a Ni-doped (La,Sr)FeO3 cathode and the resultant activity enhancement in CO2 reduction[J]. Applied Catalysis B: Environmental, 2021, 286: 119917. |
39 | GOTSCH T, SCHLICKER L, BEKHEET M F, et al. Structural investigations of La0.6Sr0.4FeO3- δ under reducing conditions: Kinetic and thermodynamic limitations for phase transformations and iron exsolution phenomena[J]. RSC Advances, 2018, 8(6): 3120-3131. |
40 | HAMADA Ikutaro, UOZUMI Akifumi, MORIKAWA Yoshitada, et al. A density functional theory study of self-regenerating catalysts LaFe1- x M x O3- y (M=Pd, Rh, Pt)[J]. Journal of the American Chemical Society, 2011, 133(46): 18506-18509. |
41 | TIAN Zhixue, UOZUMI Akifumi, HAMADA Ikutaro, et al. First-principles investigation on the segregation of Pd at LaFe1- x Pd x O3- y surfaces[J]. Nanoscale Research Letters, 2013, 8: 203. |
42 | KWON Ohhun, SENGODAN Sivaprakash, KIM Kyeounghak, et al. Exsolution trends and co-segregation aspects of self-grown catalyst nanoparticles in perovskites[J]. Nature Communications, 2017, 8: 15967. |
43 | YANG Chenghao, YANG Zhibin, JIN Chao, et al. Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells[J]. Advanced Materials, 2012, 24(11): 1439-1443. |
44 | DU Zhihong, ZHAO Hailei, YI Sha, et al. High-performance anode material Sr2FeMo0.65Ni0.35O6- δ with in situ exsolved nanoparticle catalyst[J]. ACS Nano, 2016, 10(9): 8660-8669. |
45 | SENGODAN Sivaprakash, CHOI Sihyuk, Areum JUN, et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells[J]. Nature Materials, 2015, 14(2): 205-209. |
46 | SUN Yifei, ZHANG Yaqian, CHEN Jian, et al. New opportunity for in situ exsolution of metallic nanoparticles on perovskite parent[J]. Nano Letters, 2016, 16(8): 5303-5309. |
47 | WEBER M L, WILHELM M, JIN L, et al. Exsolution of embedded nanoparticles in defect engineered perovskite layers[J]. ACS Nano, 2021, 15(3): 4546-4560. |
48 | SUN Xiang, CHEN Huijun, YIN Yimei, et al. Progress of exsolved metal nanoparticles on oxides as high performance (electro)catalysts for the conversion of small molecules[J]. Small, 2021, 17(10): 2005383. |
49 | ZHANG Jiawei, GAO Minrui, LUO Jingli. In situ exsolved metal nanoparticles: A smart approach for optimization of catalysts[J]. Chemistry of Materials, 2020, 32(13): 5424-5241. |
50 | GUI Liangqi, PAN Guohong, MA Xing, et al. In-situ exsolution of CoNi alloy nanoparticles on LiFe0.8Co0.1Ni0.1O2 parent: New opportunity for boosting oxygen evolution and reduction reaction[J]. Applied Surface Science, 2021, 543: 148817. |
51 | Sangwook JOO, SEONG Arim, KWON Ohhun, et al. Highly active dry methane reforming catalysts with boosted in situ grown Ni-Fe nanoparticles on perovskite via atomic layer deposition[J]. Science Advances, 2020, 6(35): eabb1573. |
52 | NEAGU D, TSEKOURAS G, MILLER D N, et al. In situ growth of nanoparticles through control of non-stoichiometry[J]. Nature Chemistry, 2013, 5(11): 916-923. |
53 | Sangwook JOO, KWON Ohhun, KIM Kyeounghak, et al. Cation-swapped homogeneous nanoparticles in perovskite oxides for high power density[J]. Nature Communications, 2019, 10: 697. |
54 | WANG J, YANG J, OPITZ A K, et al. Tuning point defects by elastic strain modulates nanoparticle exsolution on perovskite oxides[J]. Chemistry of Materials, 2021, 33(13): 5021-5034. |
55 | LEE W, HAN J W, CHEN Y, et al. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites[J]. Journal of American Chemical Society, 2013, 135(21): 7909-7925. |
56 | NEAGU D, IRVINE J T. Structure and properties of La0.4Sr0.4TiO3 ceramics for use as anode materials in solid oxide fuel cells[J]. Chemistry of Materials, 2010, 22(17): 5042-5053. |
57 | FAN Weiwei, SUN Zhu, BAI Yu, et al. In situ growth of nanoparticles in A-site deficient ferrite perovskite as an advanced electrode for symmetrical solid oxide fuel cells[J]. Journal of Power Sources, 2020, 456: 228000. |
58 | GAO Y, LU Z, YOU T L, et al. Energetics of nanoparticle exsolution from perovskite oxides[J]. Journal of Physical Chemistry Letters, 2018, 9(13): 3772-3778. |
59 | WU Yujie, WANG Shuai, GAO Yue, et al. In situ growth of copper-iron bimetallic nanoparticles in A-site deficient Sr2Fe1.5Mo0.5O6- δ as an active anode material for solid oxide fuel cells[J]. Journal of Alloys and Compounds, 2022, 926: 166852. |
60 | GUO Jia, CAI Rongsheng, CALI Eleonora, et al. Low-temperature exsolution of Ni-Ru bimetallic nanoparticles from A-site deficient double perovskites[J]. Small, 2022, 18(43): 2107020. |
61 | MANAGUTTI P B, TYMEN S, LIU X, et al. Exsolution of Ni nanoparticles from A-site-deficient layered double perovskites for dry reforming of methane and as an anode material for a solid oxide fuel cell[J]. Acs Applied Materials & Interfaces, 2021, 13(30): 35719-35728. |
62 | CONG Yingge, GENG Zhibin, SUN Yu, et al. Cation segregation of A-site deficiency perovskite La0.85FeO3- δ nanoparticles toward high-performance cathode catalysts for rechargeable LiO2 battery[J]. Acs Applied Materials & Interfaces, 2018, 10(30): 25465-25472. |
63 | TSEKOURAS G, NEAGU D, IRVINE J T. Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants[J]. Energy & Environmental Science, 2013, 6(1): 256-266. |
64 | Houfu LYU, LIN Le, ZHANG Xiaomin, et al. Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6- δ via repeated redox manipulations for CO2 electrolysis[J]. Nature Communications, 2021, 12(1): 5665. |
65 | NEAGU D, PAPAIOANNOU E I, RAMLI W K, et al. Demonstration of chemistry at a point through restructuring and catalytic activation at anchored nanoparticles[J]. Nature Communications, 2017, 8: 1855. |
66 | TANG Chenyang, KOUSI Kalliopi, NEAGU Dragos, et al. Towards efficient use of noble metals via exsolution exemplified for CO oxidation[J]. Nanoscale, 2019, 11(36): 16935-16944. |
67 | HAN H, PARK J, NAM S Y, et al. Lattice strain-enhanced exsolution of nanoparticles in thin films[J]. Nature Communitions, 2019, 10: 1471. |
68 | KIM J K, JO Y R, KIM S, et al. Exceptional tunability over size and density of spontaneously formed nanoparticles via nucleation dynamics[J]. Acs Applied Materials & Interfaces, 2020, 12(21): 24039-24047. |
69 | MYUNG J H, NEAGU D, MILLER D N, et al. Switching on electrocatalytic activity in solid oxide cells[J]. Nature, 2016, 537(7621): 528-531. |
70 | KHALID Hessan, Atta UL HAQ, ALESSI Bruno, et al. Rapid plasma exsolution from an A-site deficient perovskite oxide at room temperature[J]. Advanced Energy Materials, 2022, 12(45): 2201131. |
71 | LAI K Y, MANTHIRAM A. Evolution of exsolved nanoparticles on a perovskite oxide surface during a redox process[J]. Chem Mater, 2018, 30(8): 2838-2847. |
72 | MA Jiaojiao, GENG Zhibin, JIANG Yilan, et al. Exsolution manipulated local surface cobalt/iron alloying and dealloying conversion in La0.95Fe0.8Co0.2O3 perovskite for oxygen evolution reaction[J]. Journal of Alloys and Compounds, 2021, 854: 157154. |
73 | DIMITRAKOPOULOS G, GHONIEM A F, YILDIZ B. In situ catalyst exsolution on perovskite oxides for the production of CO and synthesis gas in ceramic membrane reactors[J]. Sustainable Energy & Fuels, 2019, 3(9): 2347-2355. |
74 | QIAO Sifan, QI Jingang, ZHANG Di, et al. Pulsed electric current boosts electrochemical performance and electro-conductivity of La x Sr1- x Cr y Ni1- y O3 perovskite via exsolution of nanoparticles[J]. Nanotechnology, 2019, 30(42): 425301. |
75 | 许爱晨, 商剑, 乔思凡, 等. 脉冲电流促进(La, Sr)(Ti, Ni)O3原位溶出金属纳米颗粒的研究[J]. 功能材料, 2020, 51(10): 10100-10104. |
XU Aichen, SHANG Jian, QIAO Sifan, et al. Study on the metal particles exsolutionin situ of (La,Sr)(Ti,Ni)O3 perovskite oxides via pulsed electric current technology[J]. Journal of Functional Materials, 2020, 51(10): 10100-10104. | |
76 | KYRIAKOU V, SHARMA R K, NEAGU D, et al. Plasma driven exsolution for nanoscale functionalization of perovskite oxides[J]. Small Methods, 2021, 5(12): 2100868. |
77 | WEI Tong, JIA Lichao, ZHENG Haoyu, et al. LaMnO3-based perovskite with in-situ exsolved Ni nanoparticles: a highly active, performance stable and coking resistant catalyst for CO2 dry reforming of CH4 [J]. Applied Catalysis A: General, 2018, 564: 199-207. |
78 | OH J, JOO S, LIM C, et al. Precise modulation of triple-phase boundaries towards a highly functional exsolved catalyst for dry reforming of methane under a dilution-free system[J]. Angewandte Chemie International Edition, 2022, 61(33): e202204990. |
79 | 杨晓幸, 苗鹤, 袁金良. 可逆固体氧化物燃料电池氧电极材料的研究进展[J]. 化工进展, 2021, 40(9): 4904-4917. |
YANG Xiaoxing, MIAO He, YUAN Jinliang. Research progress on oxygen electrode materials for reversible solid oxide fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4904-4917. | |
80 | Sebastian VECINO-MANTILLA, Paola GAUTHIER-MARADEI, HUVE Marielle, et al. Nickel exsolution-driven phase transformation from an n=2 to an n=1 Ruddlesden-Popper manganite for methane steam reforming reaction in SOFC conditions[J]. ChemCatChem, 2019, 11(18): 4631-4641. |
81 | WANG Yao, LIU Tong, LI Mei, et al. Exsolved Fe-Ni nano-particles from Sr2Fe1.3Ni0.2Mo0.5O6 perovskite oxide as a cathode for solid oxide steam electrolysis cells[J]. Journal of Materials Chemistry A, 2016, 4(37): 14163-14169. |
82 | QIN Mingxia, XIAO Yu, YANG Hongyu, et al. Ru/Nb co-doped perovskite anode: Achieving good coking resistance in hydrocarbon fuels via core-shell nanocatalysts exsolution[J]. Applied Catalysis B-Environmental, 2021, 299: 120613. |
83 | JIANG Yilan, GENG Zhibin, YUAN Long, et al. Nanoscale architecture of RuO2/La0.9Fe0.92Ru0.08- x O3- δ composite via manipulating the exsolution of low Ru-substituted A-site deficient perovskite[J]. Acs Sustainable Chemistry & Engineering, 2018, 6(9): 11999-12005. |
84 | WANG Yarong, WANG Zhangjun, JIN Chao, et al. Enhanced overall water electrolysis on a bifunctional perovskite oxide through interfacial engineering[J]. Electrochimica Acta, 2019, 318: 120-129. |
85 | SUN Yifei, ZHANG Yaqian, YANG Yanling, et al. Smart tuning of 3D ordered electrocatalysts for enhanced oxygen reduction reaction[J]. Applied Catalysis B: Environmental, 2017, 219: 640-644. |
86 | SUN Yifei, YANG Yanling, CHEN Jian, et al. Toward a rational photocatalyst design: A new formation strategy of co-catalyst/semiconductor heterostructures via in situ exsolution[J]. Chemical Communications, 2018, 54(12): 1505-1508. |
87 | XU X, LIU G, AZAD A K. Visible light photocatalysis by in situ growth of plasmonic Ag nanoparticles upon AgTaO3 [J]. International Journal of Hydrogen Energy, 2015, 40(9): 3672-3678. |
88 | OH J H, KWON B W, CHO J, et al. Importance of exsolution in transition-metal (Co, Rh, and Ir)-doped LaCrO3 perovskite catalysts for boosting dry reforming of CH4 using CO2 for hydrogen production[J]. Industrial Engineering Chemistry Research, 2019, 58(16): 6385-6393. |
89 | JOO S, KIM K, KWON O, et al. Enhancing thermocatalytic activities by upshifting the d-band center of exsolved Co-Ni-Fe ternary alloy nanoparticles for the dry reforming of methane[J]. Angewandte Chemie International Edition, 2021, 60(29): 15912-15919. |
90 | YE Lingting, ZHANG Minyi, HUANG Ping, et al. Enhancing CO2 electrolysis through synergistic control of non-stoichiometry and doping to tune cathode surface structures[J]. Nature Communications, 2017, 8: 14785. |
91 | PARK Seongmin, KIM Yoongon, HAN Hyunsu, et al. In situ exsolved Co nanoparticles on Ruddlesden-Popper material as highly active catalyst for CO2 electrolysis to CO[J]. Applied Catalysis B: Environmental, 2019, 248: 147-156. |
92 | YANG Liming, XIE Kui, XU Shanshan, et al. Redox-reversible niobium-doped strontium titanate decorated with in situ grown nickel nanocatalyst for high-temperature direct steam electrolysis[J]. Dalton Transactions, 2014, 43(37): 14147-14157. |
93 | KYRIAKOU Vasileios, NEAGU Dragos, PAPAIOANNOU Evangelos I, et al. Co-electrolysis of H2O and CO2 on exsolved Ni nanoparticles for efficient syngas generation at controllable H2/CO ratios[J]. Applied Catalysis B: Environmental, 2019, 258: 117950. |
94 | YANG C H, YANG Z B, JIN C, et al. High performance solid oxide electrolysis cells using Pr0.8Sr1.2(Co,Fe)0.8Nb0.2O4+ δ -Co-Fe alloy hydrogen electrodes[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11202-11208. |
95 | LI Qinghao, ZHOU Jun, FU Lei, et al. Fabrication of heterostructural Ru-SrTiO3 fibers through in-situ exsolution for visible-light-induced photocatalysis [J]. Journal of Alloys and Compounds, 2022, 925: 166747. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[6] | 张祚群, 高扬, 白超杰, 薛立新. 二次界面聚合同步反扩散原位生长ZIF-8纳米粒子制备聚酰胺混合基质反渗透(RO)膜[J]. 化工进展, 2023, 42(S1): 364-373. |
[7] | 王正坤, 黎四芳. 双子表面活性剂癸炔二醇的绿色合成[J]. 化工进展, 2023, 42(S1): 400-410. |
[8] | 高雨飞, 鲁金凤. 非均相催化臭氧氧化作用机理研究进展[J]. 化工进展, 2023, 42(S1): 430-438. |
[9] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[10] | 李化全, 王明华, 邱贵宝. 硫酸酸解钙钛矿相精矿的行为[J]. 化工进展, 2023, 42(S1): 536-541. |
[11] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[12] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[13] | 耿源泽, 周俊虎, 张天佑, 朱晓宇, 杨卫娟. 部分填充床燃烧器中庚烷均相/异相耦合燃烧[J]. 化工进展, 2023, 42(9): 4514-4521. |
[14] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[15] | 王晋刚, 张剑波, 唐雪娇, 刘金鹏, 鞠美庭. 机动车尾气脱硝催化剂Cu-SSZ-13的改性研究进展[J]. 化工进展, 2023, 42(9): 4636-4648. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |