化工进展 ›› 2023, Vol. 42 ›› Issue (5): 2655-2665.DOI: 10.16085/j.issn.1000-6613.2022-1316
王志伟1,2(), 郭帅华1,2, 吴梦鸽1,2, 陈颜1,2, 赵俊廷1,2, 李辉3, 雷廷宙4
收稿日期:
2022-07-13
修回日期:
2022-08-18
出版日期:
2023-05-10
发布日期:
2023-06-02
通讯作者:
王志伟
作者简介:
王志伟(1980—),男,博士,研究员,研究方向为生物质热化学转化技术、有机固体废弃物高效处理技术。E-mail:bioenergy@163.com。
基金资助:
WANG Zhiwei1,2(), GUO Shuaihua1,2, WU Mengge1,2, CHEN Yan1,2, ZHAO Junting1,2, LI Hui3, LEI Tingzhou4
Received:
2022-07-13
Revised:
2022-08-18
Online:
2023-05-10
Published:
2023-06-02
Contact:
WANG Zhiwei
摘要:
生物质是唯一一种可再生碳源,其高效利用是解决能源与环境问题的纽带。近年来,基于化石能源的塑料制品使用和废弃量快速增加,其难于自然降解,对环境造成严重威胁。生物质与塑料的催化共热解技术能够得到选择性更高的产品,进而提升高附加值产物的产率和品质,是生物质与塑料规模化利用的重要方向。本文从生物质与塑料高效转化的角度出发,梳理了生物质与塑料催化共热解技术研究进展,对生物质与塑料共热解机理、ZSM-5基催化剂共热解、过渡金属基催化剂共热解、碱/碱土金属催化剂共热解、多催化剂共热解等不同种类的催化共热解研究前沿进行了综述,并对比了原位催化和非原位催化的共热解方式,展望了生物质与塑料催化共热解的主要技术和发展方向,以期为生物质与塑料的高效协同转化提供方法参考和研究思路。
中图分类号:
王志伟, 郭帅华, 吴梦鸽, 陈颜, 赵俊廷, 李辉, 雷廷宙. 生物质与塑料催化共热解技术研究进展[J]. 化工进展, 2023, 42(5): 2655-2665.
WANG Zhiwei, GUO Shuaihua, WU Mengge, CHEN Yan, ZHAO Junting, LI Hui, LEI Tingzhou. Recent advances on catalytic co-pyrolysis of biomass and plastic[J]. Chemical Industry and Engineering Progress, 2023, 42(5): 2655-2665.
原料 | 生物质与塑料 比例 | 催化剂 | 原料与催化剂 比例 | 热解温度 /℃ | 主要产物 | 催化效果 | 参考文献 |
---|---|---|---|---|---|---|---|
烘焙木材/PS | 1∶4 | HZSM-5 | 9∶1 | 500~650 | 酚类化合物、芳香烃和其他化合物 | 芳烃产率提高接近70% | [ |
纤维素/LDPE | 1∶1 | HZSM-5 | 1∶1 | 600 | 芳香烃 | 反应活性有效提高,反应活化能显著降低 | [ |
烘焙黄杨/HDPE | 1∶1 | HZSM-5 | 1∶10 | 600 | 芳香化合物 | 芳香烃产率高于总值 | [ |
小麦秸秆/PS | 1∶1 | HZSM-5 | 2∶1 | 500 | 有机液体产品 | 与非催化结果相比,HZSM-5在CCP中的应用显著降低了总液体产率,增加了气态产物 | [ |
纤维素/PE | 1∶1 | HZSM-5 | 1∶2 | 650 | 热解油 | HZSM-5促进了共热解的Diels-Alder反应,导致醇和糖化合物的还原 | [ |
玉米芯/PE | 1∶1 | HZSM-5 | 1∶20 | 600 | 芳香烃和固体残渣 | 增加芳香烃和烯烃,而降低固体残渣和碳氧化物的产量 | [ |
柳枝/HDPE | 1∶1 | HZSM-5 | 1∶15 | 650 | 芳族烃 | 在催化剂的作用下,共热解的芳香烃产率都高于柳枝或单独的HDPE热解 | [ |
表1 基于HZSM-5催化剂的生物质与塑料共热解催化效果
原料 | 生物质与塑料 比例 | 催化剂 | 原料与催化剂 比例 | 热解温度 /℃ | 主要产物 | 催化效果 | 参考文献 |
---|---|---|---|---|---|---|---|
烘焙木材/PS | 1∶4 | HZSM-5 | 9∶1 | 500~650 | 酚类化合物、芳香烃和其他化合物 | 芳烃产率提高接近70% | [ |
纤维素/LDPE | 1∶1 | HZSM-5 | 1∶1 | 600 | 芳香烃 | 反应活性有效提高,反应活化能显著降低 | [ |
烘焙黄杨/HDPE | 1∶1 | HZSM-5 | 1∶10 | 600 | 芳香化合物 | 芳香烃产率高于总值 | [ |
小麦秸秆/PS | 1∶1 | HZSM-5 | 2∶1 | 500 | 有机液体产品 | 与非催化结果相比,HZSM-5在CCP中的应用显著降低了总液体产率,增加了气态产物 | [ |
纤维素/PE | 1∶1 | HZSM-5 | 1∶2 | 650 | 热解油 | HZSM-5促进了共热解的Diels-Alder反应,导致醇和糖化合物的还原 | [ |
玉米芯/PE | 1∶1 | HZSM-5 | 1∶20 | 600 | 芳香烃和固体残渣 | 增加芳香烃和烯烃,而降低固体残渣和碳氧化物的产量 | [ |
柳枝/HDPE | 1∶1 | HZSM-5 | 1∶15 | 650 | 芳族烃 | 在催化剂的作用下,共热解的芳香烃产率都高于柳枝或单独的HDPE热解 | [ |
原料 | 温度/℃ | 转换范围/% | 活化能/kJ·mol-1 | 指前因子/min-1 | 参考文献 |
---|---|---|---|---|---|
纤维素/PE-Ni-1 | 223~319 | 5.08~30.31 | 41.63 | 3.04×102 | [ |
纤维素/PE-Co-1 | 409~509 | 40.14~94.16 | 71.52 | 2.40×104 | |
211~253 | 5.05~20.16 | 67.20 | 3.81×105 | ||
纤维素/PE-Fe-1 | 416~484 | 38.92~79.64 | 72.52 | 2.45×104 | |
178~271 | 5.78~25.55 | 29.88 | 2.99×101 | ||
纤维素/PE-Mn-1 | 406~499 | 39.89~90.15 | 67.39 | 1.09×104 | |
216~267 | 7.86~26.93 | 52.14 | 8.88×103 | ||
纤维素/PE-Ni-0.5 | 393~501 | 75.22 | 101.43 | 3.75×106 | [ |
185~402 | 28.89 | 14.08 | 1.93×10-1 | ||
纤维素/PE-Co-0.5 | 402~500 | 61.95 | 91.65 | 9.20×105 | |
207~392 | 24.11 | 8.99 | 4.96×102 | ||
纤维素/PE-Fe-0.5 | 392~537 | 55.02 | 51.32 | 5.62×102 | |
212~390 | 15.65 | 7.79 | 2.38×102 | ||
纤维素/PE-Mn-0.5 | 390~498 | 72.42 | 93.76 | 1.03×106 | |
231~396 | 21.08 | 23.50 | 1.23×100 |
表2 基于过渡金属催化剂的纤维素与塑料PE共热解动力学参数
原料 | 温度/℃ | 转换范围/% | 活化能/kJ·mol-1 | 指前因子/min-1 | 参考文献 |
---|---|---|---|---|---|
纤维素/PE-Ni-1 | 223~319 | 5.08~30.31 | 41.63 | 3.04×102 | [ |
纤维素/PE-Co-1 | 409~509 | 40.14~94.16 | 71.52 | 2.40×104 | |
211~253 | 5.05~20.16 | 67.20 | 3.81×105 | ||
纤维素/PE-Fe-1 | 416~484 | 38.92~79.64 | 72.52 | 2.45×104 | |
178~271 | 5.78~25.55 | 29.88 | 2.99×101 | ||
纤维素/PE-Mn-1 | 406~499 | 39.89~90.15 | 67.39 | 1.09×104 | |
216~267 | 7.86~26.93 | 52.14 | 8.88×103 | ||
纤维素/PE-Ni-0.5 | 393~501 | 75.22 | 101.43 | 3.75×106 | [ |
185~402 | 28.89 | 14.08 | 1.93×10-1 | ||
纤维素/PE-Co-0.5 | 402~500 | 61.95 | 91.65 | 9.20×105 | |
207~392 | 24.11 | 8.99 | 4.96×102 | ||
纤维素/PE-Fe-0.5 | 392~537 | 55.02 | 51.32 | 5.62×102 | |
212~390 | 15.65 | 7.79 | 2.38×102 | ||
纤维素/PE-Mn-0.5 | 390~498 | 72.42 | 93.76 | 1.03×106 | |
231~396 | 21.08 | 23.50 | 1.23×100 |
原料 | 生物质与塑料比例 | 催化剂 | 原料与催化剂比例 | 热解温度/℃ | 主要产物 | 催化效果 | 参考文献 |
---|---|---|---|---|---|---|---|
稻秆/LDPE | 4∶1 | ZSM-5/Co | 4∶1 | 550 | — | Co/ZSM-5催化剂可降低纤维素和LDPE共热解过程中的活化能 | [ |
小麦秸杆/PS | 1∶1 | HZSM-5/MZSM-5s | 2∶1 | 500 | 有机液体 产品 | HZSM-5和MZSM-5在CCP中显著降低了总液体产率,增加了气态产物 | [ |
木质素/LDPE | 1∶0、2∶1、1∶1,1∶2、1∶3、0∶1 | HZSM-5/MgO | 1∶0、1∶2、1∶1、2∶1 | 450、500、550、600 | 气体、焦油、热解油 | HZSM-5提高了芳烃的产量,而MgO促进了生产酚类的烷基化 | [ |
玉米秸秆/LDPE | 1∶5、1∶2、1∶1、2∶1、5∶1 | HZSM-5/CeO2 | 1∶1、2∶1、3∶1、4∶1、6∶1、8∶1 | 550 | MAHs | 在串联催化床中烃类的产率最高,单环芳烃的选择性最高 | [ |
甘蔗渣/PS | 1∶1 | HZSM-5和CaO/MgO | 1∶1 | 550 | 热解油 | 促进芳香烃的形成,抑制聚芳香烃和液体产率中的含氧物 | [ |
竹屑/LDPE | 1∶4、1∶3、1∶1、3∶2、3∶1 | HZSM-5和 CeO2/γ-Al2O3 | — | 600 | 芳族烃 | 与单独的HZSM-5相比,芳香烃的产率增加了34% | [ |
甘蔗渣/PET | 1∶1 | HZSM-5和 Na2CO3/γ-Al2O3 | 1∶5 | 700 | 总芳烃 | 该组合催化剂提高了芳香烃和烯烃化合物的产率,减少了焦炭的形成 | [ |
表3 基于多催化剂的生物质与塑料共热解催化效果
原料 | 生物质与塑料比例 | 催化剂 | 原料与催化剂比例 | 热解温度/℃ | 主要产物 | 催化效果 | 参考文献 |
---|---|---|---|---|---|---|---|
稻秆/LDPE | 4∶1 | ZSM-5/Co | 4∶1 | 550 | — | Co/ZSM-5催化剂可降低纤维素和LDPE共热解过程中的活化能 | [ |
小麦秸杆/PS | 1∶1 | HZSM-5/MZSM-5s | 2∶1 | 500 | 有机液体 产品 | HZSM-5和MZSM-5在CCP中显著降低了总液体产率,增加了气态产物 | [ |
木质素/LDPE | 1∶0、2∶1、1∶1,1∶2、1∶3、0∶1 | HZSM-5/MgO | 1∶0、1∶2、1∶1、2∶1 | 450、500、550、600 | 气体、焦油、热解油 | HZSM-5提高了芳烃的产量,而MgO促进了生产酚类的烷基化 | [ |
玉米秸秆/LDPE | 1∶5、1∶2、1∶1、2∶1、5∶1 | HZSM-5/CeO2 | 1∶1、2∶1、3∶1、4∶1、6∶1、8∶1 | 550 | MAHs | 在串联催化床中烃类的产率最高,单环芳烃的选择性最高 | [ |
甘蔗渣/PS | 1∶1 | HZSM-5和CaO/MgO | 1∶1 | 550 | 热解油 | 促进芳香烃的形成,抑制聚芳香烃和液体产率中的含氧物 | [ |
竹屑/LDPE | 1∶4、1∶3、1∶1、3∶2、3∶1 | HZSM-5和 CeO2/γ-Al2O3 | — | 600 | 芳族烃 | 与单独的HZSM-5相比,芳香烃的产率增加了34% | [ |
甘蔗渣/PET | 1∶1 | HZSM-5和 Na2CO3/γ-Al2O3 | 1∶5 | 700 | 总芳烃 | 该组合催化剂提高了芳香烃和烯烃化合物的产率,减少了焦炭的形成 | [ |
名称 | 缩写 |
---|---|
索康美孚沸石-5,zeolite socony mobil-5 | ZSM-5 |
高密度聚乙烯,high-density polyethylene | HDPE |
低密度聚乙烯,low-density polyethylene | LDPE |
非催化共热解,non catalytic co-pyrolysis | NCCP |
催化共热解,catalytic co-pyrolysis | CCP |
热重分析,thermogravimetric analysis | TGA |
分析热裂解-气相色谱/质谱,pyrolyzer coupled with gas chromatography and mass spectrometry | Py-GC/MS |
Flynn-Wall-Ozawa | FWO |
单芳烃,monoaromatic hydrocarbons | MAHs |
多芳烃,polycyclic hydrocarbons | PAHs |
聚乙烯,polyethylene | PE |
聚丙烯,polypropylene | PP |
聚苯乙烯,polystyrene | PS |
氢交换索康美孚沸石-5,hydrogen exchanged zeolite socony mobil-5 | HZSM-5 |
碱/碱土金属,alkali/alkaline earth metals | AAEMs |
有机相,organic products | OP |
水相,aqueous products | AP |
萘及其衍生物,naphthalene and its derivatives | NIDs |
聚对苯二甲酸乙二醇酯,polyethylene terephthalate | PET |
苯系物,benzene, toluene, ethylbenzene and xylene | BTEXs |
名称缩写表
名称 | 缩写 |
---|---|
索康美孚沸石-5,zeolite socony mobil-5 | ZSM-5 |
高密度聚乙烯,high-density polyethylene | HDPE |
低密度聚乙烯,low-density polyethylene | LDPE |
非催化共热解,non catalytic co-pyrolysis | NCCP |
催化共热解,catalytic co-pyrolysis | CCP |
热重分析,thermogravimetric analysis | TGA |
分析热裂解-气相色谱/质谱,pyrolyzer coupled with gas chromatography and mass spectrometry | Py-GC/MS |
Flynn-Wall-Ozawa | FWO |
单芳烃,monoaromatic hydrocarbons | MAHs |
多芳烃,polycyclic hydrocarbons | PAHs |
聚乙烯,polyethylene | PE |
聚丙烯,polypropylene | PP |
聚苯乙烯,polystyrene | PS |
氢交换索康美孚沸石-5,hydrogen exchanged zeolite socony mobil-5 | HZSM-5 |
碱/碱土金属,alkali/alkaline earth metals | AAEMs |
有机相,organic products | OP |
水相,aqueous products | AP |
萘及其衍生物,naphthalene and its derivatives | NIDs |
聚对苯二甲酸乙二醇酯,polyethylene terephthalate | PET |
苯系物,benzene, toluene, ethylbenzene and xylene | BTEXs |
7 | BREBU Mihai, SPIRIDON Iuliana. Co-pyrolysis of LignoBoost® lignin with synthetic polymers[J]. Polymer Degradation and Stability, 2012, 97(11): 2104-2109. |
8 | WESTERHOF Roel J M, KUIPERS Norbert J M, KERSTEN Sascha R A, et al. Controlling the water content of biomass fast pyrolysis oil[J]. Industrial & Engineering Chemistry Research, 2007, 46(26): 9238-9247. |
9 | BRIDGWATER A V. Renewable fuels and chemicals by thermal processing of biomass[J]. Chemical Engineering Journal, 2003, 91(2/3): 87-102. |
10 | JIN Xuanjun, LEE Jae Hoon, CHOI Joon Weon. Catalytic co-pyrolysis of woody biomass with waste plastics: Effects of HZSM-5 and pyrolysis temperature on producing high-value pyrolytic products and reducing wax formation[J]. Energy, 2022, 239: 121739. |
11 | SHELDON Roger A. Green and sustainable manufacture of chemicals from biomass: State of the art[J]. Green Chemistry, 2014, 16(3): 950-963. |
12 | DIAZ-SILVARREY Laura S, MCMAHON Andrew, PHAN Anh N. Benzoic acid recovery via waste poly(ethylene terephthalate) (PET) catalytic pyrolysis using sulphated zirconia catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 621-631. |
13 | WAN MAHARI Wan Adibah, CHONG Cheng Tung, CHENG Chin Kui, et al. Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste[J]. Energy, 2018, 162: 309-317. |
14 | Eylem ÖNAL, UZUN Başak Burcu, PÜTÜN Ayşe Eren. Bio-oil production via co-pyrolysis of almond shell as biomass and high density polyethylene[J]. Energy Conversion and Management, 2014, 78: 704-710. |
15 | Hae Won RYU, KIM Do Heui, Jungho JAE, et al. Recent advances in catalytic co-pyrolysis of biomass and plastic waste for the production of petroleum-like hydrocarbons[J]. Bioresource Technology, 2020, 310: 123473. |
16 | DYER Andrew C, NAHIL Mohamad A, WILLIAMS Paul T. Catalytic co-pyrolysis of biomass and waste plastics as a route to upgraded bio-oil[J]. Journal of the Energy Institute, 2021, 97: 27-36. |
17 | HASSAN H, HAMEED B H, LIM J K. Co-pyrolysis of sugarcane bagasse and waste high-density polyethylene: Synergistic effect and product distributions[J]. Energy, 2020, 191: 116545. |
18 | LI Xiangyu, ZHANG Haifeng, LI Jian, et al. Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene[J]. Applied Catalysis A: General, 2013, 455: 114-121. |
19 | 赵钰莹. 纤维素与聚乙烯催化共热解的研究[D]. 北京: 北京林业大学, 2020. |
ZHAO Yuying. Catalytic co-pyrolysis of cellulose and polyethylene[D]. Beijing: Beijing Forestry University, 2020. | |
20 | 李亚想. 基于Py-GC/MS的生物质和废塑料共催化热解研究[D]. 郑州: 郑州大学, 2016. |
LI Yaxiang. Study on catalytic fast co-pyrolysis of biomass and waste plastic: On py-GC/MS[D]. Zhengzhou: Zhengzhou University, 2016. | |
21 | TAO Liangliang, MA Xianming, YE Lihui, et al. Interactions of lignin and LDPE during catalytic co-pyrolysis: Thermal behavior and kinetics study by TG-FTIR[J]. Journal of Analytical and Applied Pyrolysis, 2021, 158: 105267. |
22 | SEBESTYÉN Z, BARTA-RAJNAI E, BOZI J, et al. Thermo-catalytic pyrolysis of biomass and plastic mixtures using HZSM-5[J]. Applied Energy, 2017, 207: 114-122. |
23 | DUAN Dengle, WANG Yunpu, DAI Leilei, et al. Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating[J]. Bioresource Technology, 2017, 241: 207-213. |
24 | ZHANG Xuesong, LEI Hanwu, CHEN Shulin, et al. Catalytic co-pyrolysis of lignocellulosic biomass with polymers: A critical review[J]. Green Chemistry, 2016, 18(15): 4145-4169. |
25 | CHIN Bridgid Lai Fui, YUSUP Suzana, SHOAIBI Ahmed AL, et al. Comparative studies on catalytic and non-catalytic co-gasification of rubber seed shell and high density polyethylene mixtures[J]. Journal of Cleaner Production, 2014, 70: 303-314. |
26 | XUE Yuan, JOHNSTON Patrick, BAI Xianglan. Effect of catalyst contact mode and gas atmosphere during catalytic pyrolysis of waste plastics[J]. Energy Conversion and Management, 2017, 142: 441-451. |
27 | 刘小娟, 于凤文, 罗瑶, 等. 不同种类分子筛催化热解纤维素[J]. 化工进展, 2010, 29(S1): 133-136. |
LIU Xiaojuan, YU Fengwen, LUO Yao, et al. Catalytic pyrolysis of cellulose by different kinds of molecular sieves[J]. Chemical Industry and Engineering Progress, 2010, 29(S1): 133-136. | |
28 | 王坚, 汪颖军, 所艳华, 等. 分子筛催化剂的研究进展[J]. 当代化工, 2017, 46(1): 160-164. |
WANG Jian, WANG Yingjun, SUO Yanhua, et al. Research progress of molecular sieve catalysts[J]. Contemporary Chemical Industry, 2017, 46(1): 160-164. | |
29 | 李昆, 程宏飞. 沸石分子筛的合成及应用研究进展[J]. 中国非金属矿工业导刊, 2019(3): 1-6, 19. |
LI Kun, CHENG Hongfei. Progress in synthesis and application of zeolite molecular sieves[J]. China Non-Metallic Minerals Industry, 2019(3): 1-6, 19. | |
30 | GANDIDI Indra Mamad, Dyan SUSILA M, MUSTOFA Ali, et al. Thermal-catalytic cracking of real MSW into bio-crude oil[J]. Journal of the Energy Institute, 2018, 91(2): 304-310. |
31 | Hae Won RYU, TSANG Yiu Fai, LEE Hyung Won, et al. Catalytic co-pyrolysis of cellulose and linear low-density polyethylene over MgO-impregnated catalysts with different acid-base properties[J]. Chemical Engineering Journal, 2019, 373: 375-381. |
32 | CORMA A. Inorganic solid acids and their use in acid-catalyzed hydrocarbon reactions[J]. Chemical Reviews, 1995, 95(3): 559-614. |
33 | BHOI P R, OUEDRAOGO A S, SOLOIU V, et al. Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis[J]. Renewable and Sustainable Energy Reviews, 2020, 121: 109676. |
34 | 李攀, 王彪, 徐骏浩, 等. 生物质热解催化剂积炭问题的研究进展[J]. 化工进展, 2023, 42(1): 236-246. |
LI Pan, WANG Biao, XU Junhao, et al. Research progress on carbon deposition of catalysts for biomass pyrolysis[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 236-246. | |
35 | HOFF Thomas C, THILAKARATNE Rajeeva, GARDNER David W, et al. Thermal stability of aluminum-rich ZSM-5 zeolites and consequences on aromatization reactions[J]. The Journal of Physical Chemistry C, 2016, 120(36): 20103-20113. |
36 | ZHENG Yunwu, TAO Lei, YANG Xiaoqing, et al. Study of the thermal behavior, kinetics, and product characterization of biomass and low-density polyethylene co-pyrolysis by thermogravimetric analysis and pyrolysis-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 185-197. |
37 | ZHANG Xuesong, LEI Hanwu, ZHU Lei, et al. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics[J]. Bioresource Technology, 2016, 220: 233-238. |
38 | ZHANG Bo, ZHONG Zhaoping, ZHANG Jing, et al. Catalytic fast co-pyrolysis of biomass and fusel alcohol to enhance aromatic hydrocarbon production over ZSM-5 catalyst in a fluidized bed reactor[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 147-153. |
39 | BU Quan, CAO Mengjie, WANG Mei, et al. The effect of torrefaction and ZSM-5 catalyst for hydrocarbon rich bio-oil production from co-pyrolysis of cellulose and low density polyethylene via microwave-assisted heating[J]. Science of the Total Environment, 2021, 754: 142174. |
40 | BU Quan, LIU Yuanyuan, LIANG Jianghui, et al. Microwave-assisted co-pyrolysis of microwave torrefied biomass with waste plastics using ZSM-5 as a catalyst for high quality bio-oil[J]. Journal of Analytical and Applied Pyrolysis, 2018, 134: 536-543. |
41 | LI Xiangyu, LI Jian, ZHOU Guoqiang, et al. Enhancing the production of renewable petrochemicals by co-feeding of biomass with plastics in catalytic fast pyrolysis with ZSM-5 zeolites[J]. Applied Catalysis A: General, 2014, 481: 173-182. |
42 | MUNEER Bushra, ZEESHAN Muhammad, QAISAR Sara, et al. Influence of in situ and ex-situ HZSM-5 catalyst on co-pyrolysis of corn stalk and polystyrene with a focus on liquid yield and quality[J]. Journal of Cleaner Production, 2019, 237: 117762. |
43 | 樊灏, 沈振兴, 逯佳琪, 等. 常温除甲醛催化剂Mn1Ce x /HZSM-5的活性位点与性能分析[J]. 环境工程, 2021, 39(6): 99-105. |
FAN Hao, SHEN Zhenxing, LU Jiaqi, et al. The active sites and performance of Mn1Ce x /HZSM-5 catalyst for formaldehyde removal at room temperature[J]. Environmental Engineering, 2021, 39(6): 99-105. | |
44 | XUE Yuan, KELKAR Atul, BAI Xianglan. Catalytic co-pyrolysis of biomass and polyethylene in a tandem micropyrolyzer[J]. Fuel, 2016, 166: 227-236. |
45 | CHEN Lin, WANG Shuzhong, MENG Haiyu, et al. Synergistic effect on thermal behavior and char morphology analysis during co-pyrolysis of paulownia wood blended with different plastics waste[J]. Applied Thermal Engineering, 2017, 111: 834-846. |
46 | KIM Young-Min, Jungho JAE, KIM Beom-Sik, et al. Catalytic co-pyrolysis of torrefied yellow poplar and high-density polyethylene using microporous HZSM-5 and mesoporous Al-MCM-41 catalysts[J]. Energy Conversion and Management, 2017, 149: 966-973. |
47 | RAZZAQ Madiha, ZEESHAN Muhammad, QAISAR Sara, et al. Investigating use of metal-modified HZSM-5 catalyst to upgrade liquid yield in co-pyrolysis of wheat straw and polystyrene[J]. Fuel, 2019, 257: 116119. |
1 | ABNISA Faisal, WAN DAUD Wan Mohd Ashri. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil[J]. Energy Conversion and Management, 2014, 87: 71-85. |
2 | Mujahid RAFIQUE M, REHMAN S. National energy scenario of Pakistan-Current status, future alternatives, and institutional infrastructure: An overview[J]. Renewable and Sustainable Energy Reviews, 2017, 69: 156-167. |
3 | LONG Huiling, LI Xiaobing, WANG Hong, et al. Biomass resources and their bioenergy potential estimation: A review[J]. Renewable and Sustainable Energy Reviews, 2013, 26: 344-352. |
4 | MOHAN Dinesh, PITTMAN Charles U, STEELE Philip H. Pyrolysis of wood/biomass for bio-oil: A critical review[J]. Energy & Fuels, 2006, 20(3): 848-889. |
5 | KARIMI Elham, TEIXEIRA Ivo Freitas, GOMEZ Ariel, et al. Synergistic co-processing of an acidic hardwood derived pyrolysis bio-oil with alkaline Red Mud bauxite mining waste as a sacrificial upgrading catalyst[J]. Applied Catalysis B: Environmental, 2014, 145: 187-196. |
6 | METTLER Matthew S, VLACHOS Dionisios G, DAUENHAUER Paul J. Top ten fundamental challenges of biomass pyrolysis for biofuels[J]. Energy & Environmental Science, 2012, 5(7): 7797-7809. |
48 | ZHAO Yuying, YANG Xiaoxiao, FU Zewu, et al. Synergistic effect of catalytic co-pyrolysis of cellulose and polyethylene over HZSM-5[J]. Journal of Thermal Analysis and Calorimetry, 2020, 140(1): 363-371. |
49 | XUE Yuan, BAI Xianglan. Synergistic enhancement of product quality through fast co-pyrolysis of acid pretreated biomass and waste plastic[J]. Energy Conversion and Management, 2018, 164: 629-638. |
50 | MULLEN Charles A, DORADO Christina, BOATENG Akwasi A. Catalytic co-pyrolysis of switchgrass and polyethylene over HZSM-5: Catalyst deactivation and coke formation[J]. Journal of Analytical and Applied Pyrolysis, 2018, 129: 195-203. |
51 | ILIOPOULOU E F, STEFANIDIS S D, KALOGIANNIS K G, et al. Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite[J]. Applied Catalysis B: Environmental, 2012, 127: 281-290. |
52 | JIANG Haifeng, SONG Lihua, CHENG Zhiqiang, et al. Influence of pyrolysis condition and transition metal salt on the product yield and characterization via Huadian oil shale pyrolysis[J]. Journal of Analytical and Applied Pyrolysis, 2015, 112: 230-236. |
53 | LIU Jie, LI Xinyong, ZHAO Qidong, et al. Mechanistic investigation of the enhanced NH3-SCR on cobalt-decorated Ce-Ti mixed oxide: in situ FTIR analysis for structure-activity correlation[J]. Applied Catalysis B: Environmental, 2017, 200: 297-308. |
54 | WANG Zhanghong, LIU Guofu, SHEN Dekui, et al. Co-pyrolysis of lignin and polyethylene with the addition of transition metals—Part I: Thermal behavior and kinetics analysis[J]. Journal of the Energy Institute, 2020, 93(1): 281-291. |
55 | WANG Zhanghong, SHEN Dekui, WU Chunfei, et al. Thermal behavior and kinetics of co-pyrolysis of cellulose and polyethylene with the addition of transition metals[J]. Energy Conversion and Management, 2018, 172: 32-38. |
56 | MORGAN Hervan Marion, LIANG Jianghui, CHEN Kun, et al. Bio-oil production via catalytic microwave co-pyrolysis of lignin and low density polyethylene using zinc modified lignin-based char as a catalyst[J]. Journal of Analytical and Applied Pyrolysis, 2018, 133: 107-116. |
57 | KALOGIANNIS K G, STEFANIDIS S D, KARAKOULIA S A, et al. First pilot scale study of basic vs. acidic catalysts in biomass pyrolysis: Deoxygenation mechanisms and catalyst deactivation[J]. Applied Catalysis B: Environmental, 2018, 238: 346-357. |
58 | 李洋, 李凯, 张镇西, 等. 碱土金属氧化物基催化剂催化热解生物质研究进展[J]. 生物质化学工程, 2021, 55(6): 39-48. |
LI Yang, LI Kai, ZHANG Zhenxi, et al. Research progress on catalytic pyrolysis of biomass with alkaline earth metal oxide-based catalysts[J]. Biomass Chemical Engineering, 2021, 55(6): 39-48. | |
59 | LIN Xiaona, KONG Lingshuai, CAI Hongzhen, et al. Effects of alkali and alkaline earth metals on the co-pyrolysis of cellulose and high density polyethylene using TGA and Py-GC/MS[J]. Fuel Processing Technology, 2019, 191: 71-78. |
60 | STEFANIDIS S D, KARAKOULIA S A, KALOGIANNIS K G, et al. Natural magnesium oxide (MgO) catalysts: A cost-effective sustainable alternative to acid zeolites for the in situ upgrading of biomass fast pyrolysis oil[J]. Applied Catalysis B: Environmental, 2016, 196: 155-173. |
61 | Hae Won RYU, LEE Hyung Won, Jungho JAE, et al. Catalytic pyrolysis of lignin for the production of aromatic hydrocarbons: Effect of magnesium oxide catalyst[J]. Energy, 2019, 179: 669-675. |
62 | YUAN Rui, SHEN Yafei. Catalytic pyrolysis of biomass-plastic wastes in the presence of MgO and MgCO3 for hydrocarbon-rich oils production[J]. Bioresource Technology, 2019, 293: 122076. |
63 | MORTENSEN P M, J-D GRUNWALDT, JENSEN P A, et al. A review of catalytic upgrading of bio-oil to engine fuels[J]. Applied Catalysis A: General, 2011, 407(1/2): 1-19. |
64 | GHORBANNEZHAD Payam, PARK Sunkyu, ONWUDILI Jude A. Co-pyrolysis of biomass and plastic waste over zeolite- and sodium-based catalysts for enhanced yields of hydrocarbon products[J]. Waste Management, 2020, 102: 909-918. |
65 | JIN Qiming, WANG Xuebin, LI Shuaishuai, et al. Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study[J]. Journal of the Energy Institute, 2019, 92(1): 108-117. |
66 | DORADO Christina, MULLEN Charles A, BOATENG Akwasi A. H-ZSM5 catalyzed co-pyrolysis of biomass and plastics[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(2): 301-311. |
67 | XIANG Zhongping, LIANG Jianghui, MORGAN Hervan Marion, et al. Thermal behavior and kinetic study for co-pyrolysis of lignocellulosic biomass with polyethylene over cobalt modified ZSM-5 catalyst by thermogravimetric analysis[J]. Bioresource Technology, 2018, 247: 804-811. |
68 | 郑云武, 王继大, 刘灿, 等. 改性HZSM-5催化生物质与塑料热解制备芳烃和生物炭[J]. 农业工程学报, 2020, 36(17): 190-201. |
ZHENG Yunwu, WANG Jida, LIU Can, et al. Preparation of aromatic and bio-char by pyrolysis of biomass and plastics catalyzed by modified HZSM-5[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(17): 190-201. | |
69 | FAN Liangliang, CHEN Paul, ZHANG Yaning, et al. Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality[J]. Bioresource Technology, 2017, 225: 199-205. |
70 | DING Kuan, HE Aoxi, ZHONG Daoxu, et al. Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis[J]. Bioresource Technology, 2018, 268: 1-8. |
71 | DING Kuan, ZHONG Zhaoping, WANG Jia, et al. Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5[J]. Bioresource Technology, 2018, 261: 86-92. |
72 | IFTIKHAR Hera, ZEESHAN Muhammad, IQBAL Saeed, et al. Co-pyrolysis of sugarcane bagasse and polystyrene with ex-situ catalytic bed of metal oxides/HZSM-5 with focus on liquid yield[J]. Bioresource Technology, 2019, 289: 121647. |
73 | WANG Jia, XU Chao, ZHONG Zhaoping, et al. Catalytic conversion of bamboo sawdust over ZrO2-CeO2/γ-Al2O3 to produce ketonic hydrocarbon precursors and furans[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 13797-13806. |
74 | WANG Jia, JIANG Jianchun, ZHONG Zhaoping, et al. Catalytic fast co-pyrolysis of bamboo sawdust and waste plastics for enhanced aromatic hydrocarbons production using synthesized CeO2/γ-Al2O3 and HZSM-5[J]. Energy Conversion and Management, 2019, 196: 759-767. |
75 | 张雷, 王海英, 韩洪晶, 等. 木质素催化热解用催化剂的研究进展[J]. 化工进展, 2022, 41(5): 2429-2440. |
ZHANG Lei, WANG Haiying, HAN Hongjing, et al. Development of catalysts for catalytic pyrolysis of lignin[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2429-2440. | |
76 | RUDDY Daniel A, SCHAIDLE Joshua A, FERRELL III Jack R, et al. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: Catalyst development through the study of model compounds[J]. Green Chemistry, 2014, 16(2): 454-490. |
77 | SHAFAGHAT Hoda, LEE Hyung Won, TSANG Yiu Fai, et al. In-situ and ex-situ catalytic pyrolysis/co-pyrolysis of empty fruit bunches using mesostructured aluminosilicate catalysts[J]. Chemical Engineering Journal, 2019, 366: 330-338. |
78 | SYAMSIRO Mochamad, SAPTOADI Harwin, NORSUJIANTO Tinton, et al. Fuel oil production from municipal plastic wastes in sequential pyrolysis and catalytic reforming reactors[J]. Energy Procedia, 2014, 47: 180-188. |
79 | LUO Guanqun, RESENDE Fernando L P. In-situ and ex-situ upgrading of pyrolysis vapors from beetle-killed trees[J]. Fuel, 2016, 166: 367-375. |
80 | PARK Young-Kwon, JUNG Jung Sul, Jungho JAE, et al. Catalytic fast pyrolysis of wood plastic composite over microporous zeolites[J]. Chemical Engineering Journal, 2019, 377: 119742. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[8] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[9] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[10] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[11] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[12] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[13] | 吴海波, 王希仑, 方岩雄, 纪红兵. 3D打印催化材料开发与应用进展[J]. 化工进展, 2023, 42(8): 3956-3964. |
[14] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[15] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |