化工进展 ›› 2023, Vol. 42 ›› Issue (4): 1907-1916.DOI: 10.16085/j.issn.1000-6613.2022-1056
收稿日期:
2022-06-06
修回日期:
2022-07-18
出版日期:
2023-04-25
发布日期:
2023-05-08
通讯作者:
林琳
作者简介:
刘静(1999—),女,硕士研究生,研究方向为生物质材料与工程。E-mail:liujing_232021@163.com。
基金资助:
LIU Jing1(), LIN Lin1(), ZHANG Jian2, ZHAO Feng1
Received:
2022-06-06
Revised:
2022-07-18
Online:
2023-04-25
Published:
2023-05-08
Contact:
LIN Lin
摘要:
生物质基炭材料具有来源广泛、表面官能团丰富和微观结构多样的优点,但具有孔径分布不合理的问题,从而限制了其在电化学储能领域的应用。本文简述了微孔、介孔和大孔结构对电化学性能的影响机制,详细阐述了孔径调控方法:微孔为碱活化法、发泡活化法、CO2/蒸汽活化法和冷冻处理法,介孔为酸活化法、模板法、熔融盐炭化法、催化活化法和纤维素酶解法,大孔为SiO2-胶体模板法和软模板法。并将以上调控方法的影响因素和优缺点进行了分析,总结了各种方法在电极材料中的应用效果。分析表明,发泡活化法对微孔调控高效且环保,酸活化法和熔融盐炭化法对介孔率提高显著。此外,本文将调控方法按照生物质材料来源(组分)的不同进行了分类,得出碱活化法和自模板法适用于动物基炭材料微孔和介孔调控,而纤维素酶解法为植物基炭材料的介孔调控提供了绿色环保的新思路。最后,本文就生物质基炭材料孔径调控和绿色制备在电化学储能领域的应用提出了建议。
中图分类号:
刘静, 林琳, 张健, 赵峰. 生物质基炭材料孔径调控及电化学性能研究进展[J]. 化工进展, 2023, 42(4): 1907-1916.
LIU Jing, LIN Lin, ZHANG Jian, ZHAO Feng. Research progress in pore size regulation and electrochemical performance of biomass-based carbon materials[J]. Chemical Industry and Engineering Progress, 2023, 42(4): 1907-1916.
类别 | 原料 | 方法 | 比表面积/m2·g-1 | 主要孔类型 | 电解液 | 电流密度/A·g-1 | 比电容/F·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
动物基炭材料 | 蟹壳 | 自模板法 | 634 | 介孔 | 6mol/L KOH | 0.2 | 220 | [ |
虾壳 | CO2活化法 | 431.6 | 微孔 | 6mol/L KOH | 1 | 144.2 | [ | |
鱼鳞 | 碱活化法 | 594 | 微孔 | 1mol/L NaClO4 | 0.07 | 282 | [ | |
蝉蜕 | 碱活化法 | 1676 | 微孔 | 6mol/L KOH | 1 | 335 | [ | |
壳聚糖 | SiO2-PTFE胶体模板法 | 1011 | 大孔 | 6mol/L KOH | 0.5 | 250.5 | [ | |
壳聚糖盐 | 软模板法 | 927 | 大孔 | 1mol/L Na2SO4 | 0.5 | 302 | [ | |
粪便 | 自模板法 | 1000 | 介孔 | 6mol/L KOH | 1 | 486 | [ | |
骨头 | 自模板法 | 785 | 介孔 | 6mol/L KOH | 0.5 | 230.68 | [ | |
植物基炭材料 | 椰子髓 | 碱活化法 | 2056 | 微孔 | 1mol/L H2SO4 | 0.1 | 232.3 | [ |
洋葱 | 碱活化法 | 1914.9 | 微孔 | 6mol/L KOH | 0.5 | 179.5 | [ | |
亚麻籽渣 | 碱活化法 | 3326 | 微孔 | 1mol/L H2SO4 | 0.5 | 398 | [ | |
微藻 | 发泡活化法 | 856 | 微孔 | 6mol/L KOH | 1 | 234 | [ | |
稻草 | 发泡活化法 | 2786.5 | 微孔 | 6mol/L KOH | 1 | 317 | [ | |
竹笋 | 发泡活化法 | 1376.5 | 微孔 | 6mol/L KOH | 0.5 | 178 | [ | |
松子壳 | CO2活化法 | 956 | 微孔 | 6mol/L KOH | 0.5 | 128 | [ | |
芹菜 | 冷冻处理法 | 507.73 | 微孔 | 1mol/L H2SO4 | 1 | 350 | [ | |
椰壳 | 冷冻处理法 | 482 | 微孔 | — | — | — | [ | |
漆木 | H3PO4活化法 | 1609.09 | 介孔 | 1mol/L H2SO4 | 0.5 | 354 | [ | |
杨柳絮 | H3PO4活化法 | 2011 | 介孔 | 6mol/L KOH | 0.5 | 316.5 | [ | |
果实绒毛 | H3PO4活化法 | 1758.5 | 介孔 | 6mol/L KOH | 1 | 247.5 | [ | |
梧桐树皮 | 硬模板法 | 1587.62 | 介孔 | 6mol/L KOH | 0.5 | 115.6 | [ | |
胡萝卜 | 硬模板法 | 1265 | 介孔 | — | 1 | 268 | [ | |
生物油 | 硬模板法 | 1409.89 | 介孔 | 6mol/L KOH | 0.5 | 344 | [ | |
稻壳 | 熔融盐炭化法 | 977 | 介孔 | 1mol/L H2SO4 | 0.5 | 288 | [ | |
废茶叶 | 熔融盐炭化法 | 1308 | 介孔 | 6mol/L KOH | 0.1 | 140 | [ | |
柳叶 | 熔融盐炭化法 | 1065 | 介孔 | 6mol/L KOH | 0.1 | 216 | [ | |
蔗糖 | 催化活化法 | 217 | 介孔 | — | — | — | [ | |
紫菜 | 催化活化法 | 848.4 | 介孔 | — | — | — | [ | |
玉米淀粉 | 催化活化法 | 1775 | 介孔 | 1mol/L C2H5 | 0.1 | 144.8 | [ | |
杨木 | 纤维素酶解法 | 1418 | 介孔 | 6mol/L KOH | 1 | 384 | [ | |
稻草 | SiO2-PTFE胶体模板法 | 1011 | 大孔 | 6mol/L KOH | 0.5 | 250.5 | [ |
表1 不同种类生物质基炭材料孔径调控方法
类别 | 原料 | 方法 | 比表面积/m2·g-1 | 主要孔类型 | 电解液 | 电流密度/A·g-1 | 比电容/F·g-1 | 参考文献 |
---|---|---|---|---|---|---|---|---|
动物基炭材料 | 蟹壳 | 自模板法 | 634 | 介孔 | 6mol/L KOH | 0.2 | 220 | [ |
虾壳 | CO2活化法 | 431.6 | 微孔 | 6mol/L KOH | 1 | 144.2 | [ | |
鱼鳞 | 碱活化法 | 594 | 微孔 | 1mol/L NaClO4 | 0.07 | 282 | [ | |
蝉蜕 | 碱活化法 | 1676 | 微孔 | 6mol/L KOH | 1 | 335 | [ | |
壳聚糖 | SiO2-PTFE胶体模板法 | 1011 | 大孔 | 6mol/L KOH | 0.5 | 250.5 | [ | |
壳聚糖盐 | 软模板法 | 927 | 大孔 | 1mol/L Na2SO4 | 0.5 | 302 | [ | |
粪便 | 自模板法 | 1000 | 介孔 | 6mol/L KOH | 1 | 486 | [ | |
骨头 | 自模板法 | 785 | 介孔 | 6mol/L KOH | 0.5 | 230.68 | [ | |
植物基炭材料 | 椰子髓 | 碱活化法 | 2056 | 微孔 | 1mol/L H2SO4 | 0.1 | 232.3 | [ |
洋葱 | 碱活化法 | 1914.9 | 微孔 | 6mol/L KOH | 0.5 | 179.5 | [ | |
亚麻籽渣 | 碱活化法 | 3326 | 微孔 | 1mol/L H2SO4 | 0.5 | 398 | [ | |
微藻 | 发泡活化法 | 856 | 微孔 | 6mol/L KOH | 1 | 234 | [ | |
稻草 | 发泡活化法 | 2786.5 | 微孔 | 6mol/L KOH | 1 | 317 | [ | |
竹笋 | 发泡活化法 | 1376.5 | 微孔 | 6mol/L KOH | 0.5 | 178 | [ | |
松子壳 | CO2活化法 | 956 | 微孔 | 6mol/L KOH | 0.5 | 128 | [ | |
芹菜 | 冷冻处理法 | 507.73 | 微孔 | 1mol/L H2SO4 | 1 | 350 | [ | |
椰壳 | 冷冻处理法 | 482 | 微孔 | — | — | — | [ | |
漆木 | H3PO4活化法 | 1609.09 | 介孔 | 1mol/L H2SO4 | 0.5 | 354 | [ | |
杨柳絮 | H3PO4活化法 | 2011 | 介孔 | 6mol/L KOH | 0.5 | 316.5 | [ | |
果实绒毛 | H3PO4活化法 | 1758.5 | 介孔 | 6mol/L KOH | 1 | 247.5 | [ | |
梧桐树皮 | 硬模板法 | 1587.62 | 介孔 | 6mol/L KOH | 0.5 | 115.6 | [ | |
胡萝卜 | 硬模板法 | 1265 | 介孔 | — | 1 | 268 | [ | |
生物油 | 硬模板法 | 1409.89 | 介孔 | 6mol/L KOH | 0.5 | 344 | [ | |
稻壳 | 熔融盐炭化法 | 977 | 介孔 | 1mol/L H2SO4 | 0.5 | 288 | [ | |
废茶叶 | 熔融盐炭化法 | 1308 | 介孔 | 6mol/L KOH | 0.1 | 140 | [ | |
柳叶 | 熔融盐炭化法 | 1065 | 介孔 | 6mol/L KOH | 0.1 | 216 | [ | |
蔗糖 | 催化活化法 | 217 | 介孔 | — | — | — | [ | |
紫菜 | 催化活化法 | 848.4 | 介孔 | — | — | — | [ | |
玉米淀粉 | 催化活化法 | 1775 | 介孔 | 1mol/L C2H5 | 0.1 | 144.8 | [ | |
杨木 | 纤维素酶解法 | 1418 | 介孔 | 6mol/L KOH | 1 | 384 | [ | |
稻草 | SiO2-PTFE胶体模板法 | 1011 | 大孔 | 6mol/L KOH | 0.5 | 250.5 | [ |
1 | YANG Lvye, QIU Jianhao, WANG Yaquan, et al. Molten salt synthesis of hierarchical porous carbon from wood sawdust for supercapacitors[J]. Journal of Electroanalytical Chemistry, 2020, 856: 113673. |
2 | JIANG Guancong, LIU Li, XIONG Jingjing, et al. Advanced material-oriented biomass precise reconstruction: A review on porous carbon with inherited natural structure and created artificial structure by post-treatment[J]. Macromolecular Bioscience, 2022, 22(6): e2100479. |
3 | ADELEKE Akanni Adekunle, IKUBANNI Peter P, ORHADAHWE Thomas Aghogho, et al. Sustainability of multifaceted usage of biomass: A review[J]. Heliyon, 2021, 7(9): e08025. |
4 | SONG Hongyan, LI Pei, SHEN Wenzhong. Preparation and applications of biomass porous carbon[J]. Science of Advanced Materials, 2015, 7(11): 2257-2271. |
5 | 毛俏婷, 胡俊豪, 姚丁丁, 等. 生物炭催化生物质热化学转化利用的研究进展[J]. 化工进展, 2020, 39(4): 1302-1307. |
MAO Qiaoting, HU Junhao, YAO Dingding, et al. Biochar for thermo-chemical conversion of biomass: A review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1302-1307. | |
6 | MAŠEK O. Biochar in thermal and thermochemical biorefineries— Production of biochar as a coproduct[M]//Handbook of Biofuels Production. Amsterdam: Elsevier, 2016: 655-671. |
7 | SINGH Arshdeep, NANDA Sonil, GUAYAQUIL SOSA Jesus Fabricio, et al. Pyrolysis of miscanthus and characterization of value-added bio-oil and biochar products[J]. The Canadian Journal of Chemical Engineering, 2021, 99(S1): S55-S68. |
8 | ZHAO Wei, YUAN Pei, SHE Xilin, et al. Sustainable seaweed-based one-dimensional (1D) nanofibers as high-performance electrocatalysts for fuel cells[J]. Journal of Materials Chemistry A, 2015, 3(27): 14188-14194. |
9 | SU Xiaoli, JIANG Shuai, ZHENG Xiucheng, et al. Hierarchical porous carbon materials from bio waste-mango stone for high-performance supercapacitor electrodes[J]. Materials Letters, 2018, 230: 123-127. |
10 | POONAM, SHARMA Kriti, ARORA Anmol, et al. Review of supercapacitors: Materials and devices[J]. Journal of Energy Storage, 2019, 21: 801-825. |
11 | WANG Yifan, ZHANG Lin, HOU Haoqing, et al. Recent progress in carbon-based materials for supercapacitor electrodes: A review[J]. Journal of Materials Science, 2021, 56(1): 173-200. |
12 | LIU Wujun, JIANG Hong, YU Hanqing. Emerging applications of biochar-based materials for energy storage and conversion[J]. Energy & Environmental Science, 2019, 12(6): 1751-1779. |
13 | VIVEKCHAND S R C, ROUT Chandra Sekhar, SUBRAHMANYAM K S, et al. Graphene-based electrochemical supercapacitors[J]. Journal of Chemical Sciences, 2008, 120(1): 9-13. |
14 | 郭楠楠, 张苏, 王鲁香, 等. 植物基多孔炭材料在超级电容器中的应用[J]. 物理化学学报, 2020, 36(2): 87-107. |
GUO Nannan, ZHANG Su, WANG Luxiang, et al. Application of plant-based porous carbon for supercapacitors[J]. Acta Physico-Chimica Sinica, 2020, 36(2): 87-107. | |
15 | WU Huali, LIN Jiafu, MOU Jirong, et al. A sustainable hierarchical carbon derived from cultivated fibroid fungus for high performance lithium-sulfur batteries[J]. RSC Advances, 2017, 7(75): 47407-47415. |
16 | LIU Mengyue, NIU Jin, ZHANG Zhengping, et al. Porous carbons with tailored heteroatom doping and well-defined porosity as high-performance electrodes for robust Na-ion capacitors[J]. Journal of Power Sources, 2019, 414: 68-75. |
17 | ZHANG Wenli, XU Jinhui, HOU Dianxun, et al. Hierarchical porous carbon prepared from biomass through a facile method for supercapacitor applications[J]. Journal of Colloid and Interface Science, 2018, 530: 338-344. |
18 | MENDOZA Ricardo, OLIVA Jorge, Vicente RODRÍGUEZ-GONZÁLEZ. Effect of the micro-, meso- and macropores on the electrochemical performance of supercapacitors: a review[J]. International Journal of Energy Research, 2022, 46: 6989-7020. |
19 | ZHANG Yingxi, YU Shuai, LOU Gaobo, et al. Review of macroporous materials as electrochemical supercapacitor electrodes[J]. Journal of Materials Science, 2017, 52(19): 11201-11228. |
20 | LIU Tianyu, ZHANG Feng, SONG Yu, et al. Revitalizing carbon supercapacitor electrodes with hierarchical porous structures[J]. Journal of Materials Chemistry A, 2017, 5(34): 17705-17733. |
21 | LENG Lijian, XIONG Qin, YANG Lihong, et al. An overview on engineering the surface area and porosity of biochar[J]. The Science of the Total Environment, 2021, 763: 144204. |
22 | WANG Jiacheng, KASKEL Stefan. KOH activation of carbon-based materials for energy storage[J]. Journal of Materials Chemistry, 2012, 22(45): 23710-23725. |
23 | JIA Haiyang, SUN Jiawei, XIE Xiao, et al. Cicada slough-derived heteroatom incorporated porous carbon for supercapacitor: Ultra-high gravimetric capacitance[J]. Carbon, 2019, 143: 309-317. |
24 | Justin RAJ C, RAJESH Murugesan, MANIKANDAN Ramu, et al. High electrochemical capacitor performance of oxygen and nitrogen enriched activated carbon derived from the pyrolysis and activation of squid gladius chitin[J]. Journal of Power Sources, 2018, 386: 66-76. |
25 | SESUK Thanathon, TAMMAWAT Phontip, JIVAGANONT Pranuda, et al. Activated carbon derived from coconut coir pith as high performance supercapacitor electrode material[J]. Journal of Energy Storage, 2019, 25: 100910. |
26 | LI Yubing, ZHANG Deyi, ZHANG Yameng, et al. Biomass-derived microporous carbon with large micropore size for high-performance supercapacitors[J]. Journal of Power Sources, 2020, 448: 227396. |
27 | LIU Yingying, DAI Gongxin, ZHU Lingjun, et al. Green conversion of microalgae into high-performance sponge-like nitrogen-enriched carbon[J]. ChemElectroChem, 2019, 6(3): 646-652. |
28 | XU Zenghua, ZHANG Ximing, LIANG Yue, et al. Green synthesis of nitrogen-doped porous carbon derived from rice straw for high-performance supercapacitor application[J]. Energy & Fuels, 2020, 34(7): 8966-8976. |
29 | GAO Qi, XIANG Hongzhong, NI Liangmeng, et al. Nitrogen self-doped activated carbons with narrow pore size distribution from bamboo shoot shells[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 629: 127408. |
30 | LI Zhi, ZHANG Li, AMIRKHIZ Babak Shalchi, et al. Carbonized chicken eggshell membranes with 3D architectures as high-performance electrode materials for supercapacitors[J]. Advanced Energy Materials, 2012, 2(4): 431-437. |
31 | DING Yan, HUANG Shuqiong, SUN Yangkai, et al. Preparation of nitrogen and sulfur co-doped and interconnected hierarchical porous biochar by pyrolysis of mantis shrimp in CO2 atmosphere for symmetric supercapacitors[J]. ChemElectroChem, 2021, 8(19): 3745-3754. |
32 | QIN Liyuan, HOU Zhiwei, LU Shuang, et al. Porous carbon derived from pine nut shell prepared by steam activation for supercapacitor electrode material[J]. International Journal of Electrochemical Science, 2019, 14(9): 8907-8918. |
33 | SUN Kang, LENG Changyu, JIANG Jianchun, et al. Microporous activated carbons from coconut shells produced by self-activation using the pyrolysis gases produced from them, that have an excellent electric double layer performance[J]. New Carbon Materials, 2017, 32(5): 451-459. |
34 | MA Yingying, TIAN Jinyong, LI Liang, et al. Interconnected hierarchical porous carbon synthesized from freeze-dried celery for supercapacitor with high performance[J]. International Journal of Energy Research, 2021, 45(6): 9058-9068. |
35 | DENG Meigen, WANG Junlong, ZHANG Qi. Effect of freezing pretreatment on the performance of activated carbon from coconut shell for supercapacitor application[J]. Materials Letters, 2022, 306: 130934. |
36 | FANG Yanyan, ZHANG Qianyu, CUI Lifeng. Recent progress of mesoporous materials for high performance supercapacitors[J]. Microporous and Mesoporous Materials, 2021, 314: 110870. |
37 | YANG Jie, LIU Kexin, LIU Qiaoyun, et al. Biomass waste-derived mesopore-dominant porous carbon for high-efficiency capacitive energy storage[J]. Journal of Alloys and Compounds, 2021, 885: 161218. |
38 | ZHAO Ya, YANG Jie, WANG Xiaoying, et al. Chinar fruit fluff-derived mesopore-dominant hierarchical porous carbon for high-performance supercapacitors[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(3): 3498-3511. |
39 | HU Shengchun, CHENG Jie, WANG Wuping, et al. Structural changes and electrochemical properties of lacquer wood activated carbon prepared by phosphoric acid-chemical activation for supercapacitor applications[J]. Renewable Energy, 2021, 177: 82-94. |
40 | ZHANG Wei, CHENG Rongrong, BI Honghui, et al. A review of porous carbons produced by template methods for supercapacitor applications[J]. New Carbon Materials, 2021, 36(1): 69-81. |
41 | YU Fang, YE Zihan, CHEN Wanru, et al. Plane tree bark-derived mesopore-dominant hierarchical carbon for high-voltage supercapacitors[J]. Applied Surface Science, 2020, 507: 145190. |
42 | DU Juan, ZHANG Yue, Haijun LYU, et al. Silicate-assisted activation of biomass towards N-doped porous carbon sheets for supercapacitors[J]. Journal of Alloys and Compounds, 2021, 853: 157091. |
43 | LI Jiangtong, XIAO Rui, LI Ming, et al. Template-synthesized hierarchical porous carbons from bio-oil with high performance for supercapacitor electrodes[J]. Fuel Processing Technology, 2019, 192: 239-249. |
44 | GAO Yuan, ZHANG Yulin, LI Aimin, et al. Facile synthesis of high-surface area mesoporous biochar for energy storage via in situ template strategy[J]. Materials Letters, 2018, 230: 183-186. |
45 | YAO Yong, FENG Qiaoxia, HUO Baoyu, et al. Facile self-templating synthesis of heteroatom-doped 3D porous carbon materials from waste biomass for supercapacitors[J]. Chemical Communications (Cambridge, England), 2020, 56(78): 11689-11692. |
46 | ZHANG Caiyun, ZHU Xiaohong, CAO Min, et al. Hierarchical porous carbon materials derived from sheep manure for high-capacity supercapacitors[J]. ChemSusChem, 2016, 9(9): 932-937. |
47 | PANG Zhongya, LI Guangshi, XIONG Xiaolu, et al. Molten salt synthesis of porous carbon and its application in supercapacitors: A review[J]. Journal of Energy Chemistry, 2021, 61: 622-640. |
48 | REZAEI Asma, KAMALI Ali Reza. Green production of carbon nanomaterials in molten salts, mechanisms and applications[J]. Diamond and Related Materials, 2018, 83: 146-161. |
49 | LIU Xiaofeng, ANTONIETTI Markus. Molten salt activation for synthesis of porous carbon nanostructures and carbon sheets[J]. Carbon, 2014, 69: 460-466. |
50 | XUE Beichen, WANG Zichen, ZHU Yanchao, et al. Sustainable and recyclable synthesis of porous carbon sheets from rice husks for energy storage: A strategy of comprehensive utilization[J]. Industrial Crops and Products, 2021, 170: 113724. |
51 | Noel DÍEZ, FUERTES Antonio B, SEVILLA Marta. Molten salt strategies towards carbon materials for energy storage and conversion[J]. Energy Storage Materials, 2021, 38: 50-69. |
52 | GURTEN INAL I Isil, AKTAS Zeki. Enhancing the performance of activated carbon based scalable supercapacitors by heat treatment[J]. Applied Surface Science, 2020, 514: 145895. |
53 | LIU Yang, WANG Yanzhong, ZHANG Guoxiang, et al. Preparation of activated carbon from willow leaves and evaluation in electric double-layer capacitors[J]. Materials Letters, 2016, 176: 60-63. |
54 | GAI Lili, LI Jianbin, WANG Qi, et al. Evolution of biomass to porous graphite carbon by catalytic graphitization[J]. Journal of Environmental Chemical Engineering, 2021, 9(6): 106678. |
55 | YANG Jianxiao, ZUO Songlin. Facile synthesis of graphitic mesoporous carbon materials from sucrose[J]. Diamond and Related Materials, 2019, 95: 1-4. |
56 | OUYANG Haibo, MA Yuanyue, GONG Qinqin, et al. Tailoring porous structure and graphitic degree of seaweed-derived carbons for high-rate performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2020, 823: 153862. |
57 | ZHANG Xiaohui, QIU Zhian, LI Qingyu, et al. Nickel acetate-assisted graphitization of porous activated carbon at low temperature for supercapacitors with high performances[J]. Frontiers in Chemistry, 2022, 10: 828381. |
58 | LUAN Pengcheng, ZHAO Xianhui, COPENHAVER Katie, et al. Turning natural herbaceous fibers into advanced materials for sustainability[J]. Advanced Fiber Materials, 2022: 1-22. |
59 | WANG Feng, CHEONG Jun Young, LEE Jiyoung, et al. Pyrolysis of enzymolysis-treated wood: Hierarchically assembled porous carbon electrode for advanced energy storage devices[J]. Advanced Functional Materials, 2021, 31(31): 2101077. |
60 | 蒋通宝, 张文文, 吴开丽, 等. 自水解辅助纤维素酶解法制备杨木基多孔碳及其电化学性能的研究[J]. 中国造纸, 2022, 41(2): 9-15. |
JIANG Tongbao, ZHANG Wenwen, WU Kaili, et al. Study on the preparation of poplar wood-based porous carbon via dual mild activation method and its electrochemical performance[J]. China Pulp & Paper, 2022, 41(2): 9-15. | |
61 | WU Xiaoliang, WANG Yahui, ZHONG Renqi, et al. Nitrogen and sulfur dual-doped hierarchical porous carbon derived from bacterial cellulose for high performance supercapacitor[J]. Diamond and Related Materials, 2021, 116: 108447. |
62 | LIU Xiaowei, LIU Xuehua, SUN Baofen, et al. Carbon materials with hierarchical porosity: Effect of template removal strategy and study on their electrochemical properties[J]. Carbon, 2018, 130: 680-691. |
63 | LIANG Jiyuan, ZHAO Jinxing, LI Yuxiao, et al. In situ SiO2 etching strategy to prepare rice husk-derived porous carbons for supercapacitor application[J]. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81: 383-390. |
64 | SUN Li, ZHOU Yanmei, LI Li, et al. Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors[J]. Applied Surface Science, 2019, 467/468: 382-390. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 胡喜, 王明珊, 李恩智, 黄思鸣, 陈俊臣, 郭秉淑, 于博, 马志远, 李星. 二硫化钨复合材料制备与储钠性能研究进展[J]. 化工进展, 2023, 42(S1): 344-355. |
[3] | 张杰, 白忠波, 冯宝鑫, 彭肖林, 任伟伟, 张菁丽, 刘二勇. PEG及其复合添加剂对电解铜箔后处理的影响[J]. 化工进展, 2023, 42(S1): 374-381. |
[4] | 雷伟, 姜维佳, 王玉高, 和明豪, 申峻. N、S共掺杂煤基碳量子点的电化学氧化法制备及用于Fe3+检测[J]. 化工进展, 2023, 42(9): 4799-4807. |
[5] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[6] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[7] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[8] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[9] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
[10] | 王帅晴, 杨思文, 李娜, 孙占英, 安浩然. 元素掺杂生物质炭材料在电化学储能中的研究进展[J]. 化工进展, 2023, 42(8): 4296-4306. |
[11] | 吴亚, 赵丹, 方荣苗, 李婧瑶, 常娜娜, 杜春保, 王文珍, 史俊. 用于复杂原油乳液的高效破乳剂开发及应用研究进展[J]. 化工进展, 2023, 42(8): 4398-4413. |
[12] | 郑梦启, 王成业, 汪炎, 王伟, 袁守军, 胡真虎, 何春华, 王杰, 梅红. 菌藻共生技术在工业废水零排放中的应用与展望[J]. 化工进展, 2023, 42(8): 4424-4431. |
[13] | 郭立行, 庞蔚莹, 马克遥, 杨镓涵, 孙泽辉, 张盼, 付东, 赵昆. 层序空间多孔结构TiO2实现高效光催化CO2还原[J]. 化工进展, 2023, 42(7): 3643-3651. |
[14] | 李海东, 杨远坤, 郭姝姝, 汪本金, 岳婷婷, 傅开彬, 王哲, 何守琴, 姚俊, 谌书. 炭化与焙烧温度对植物基铁碳微电解材料去除As(Ⅲ)性能的影响[J]. 化工进展, 2023, 42(7): 3652-3663. |
[15] | 关红玲, 杨辉, 井红权, 刘玉琼, 谷守玉, 王好斌, 侯翠红. 木质素基控释材料及其在药物输送和肥料控释中的应用[J]. 化工进展, 2023, 42(7): 3695-3707. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |