化工进展 ›› 2023, Vol. 42 ›› Issue (3): 1270-1280.DOI: 10.16085/j.issn.1000-6613.2022-0902
收稿日期:
2022-05-16
修回日期:
2022-08-29
出版日期:
2023-03-15
发布日期:
2023-04-10
通讯作者:
何阳东
作者简介:
何阳东(1992—),男,博士后,研究方向为氢能及碳捕集。E-mail: heyd01@petrochina.com.cn。
基金资助:
HE Yangdong(), CHANG Honggang, WANG Dan, CHEN Changjie, LI Yaxin
Received:
2022-05-16
Revised:
2022-08-29
Online:
2023-03-15
Published:
2023-04-10
Contact:
HE Yangdong
摘要:
熔融金属法甲烷裂解技术作为近年来新兴的制氢技术,有效地解决了传统甲烷热裂解或催化裂解高能耗、低转化率以及催化剂失活等问题,避免了甲烷蒸汽重整制氢工艺高碳排放。在制氢的同时还能生产出具有附加值的碳产品,因而受到各方广泛关注。本文总结了熔融金属法甲烷裂解技术研究进展,并围绕工艺流程、反应机理、熔融介质的选择以及反应器设计等方面展开,给出了液相介质是否起催化作用的两类甲烷裂解反应机理,并详细阐述了熔融介质选择原则、发展趋势以及不同类型熔融介质的优缺点。再者,技术经济性以及温室气体减排量也在文中详细体现,进一步论证了该工艺的可行性和潜在效益。此外,文中还给出了未来技术发展趋势和建议,指出调控碳材料形貌,使之向高附加值碳材料转变应是未来重点发展方向之一。
中图分类号:
何阳东, 常宏岗, 王丹, 陈昌介, 李雅欣. 熔融金属法甲烷裂解制氢和碳材料研究进展[J]. 化工进展, 2023, 42(3): 1270-1280.
HE Yangdong, CHANG Honggang, WANG Dan, CHEN Changjie, LI Yaxin. Development of methane pyrolysis based on molten metal technology for coproduction of hydrogen and solid carbon products[J]. Chemical Industry and Engineering Progress, 2023, 42(3): 1270-1280.
熔融介质 | 装载高度/mm | 纯化方式① | C/% | Ni/% | Bi/% | Na/% | K/% | Br/% |
---|---|---|---|---|---|---|---|---|
NiBi | 350 | — | 17.36 | 12.98 | 69.66 | — | — | — |
NiBi | 350 | 真空加热 | 51.82 | 1.84 | 46.34 | — | — | — |
NiBi | 350 | 酸洗 | 58.81 | 4.09 | 37.10 | — | — | — |
NiBi/KBr | 110/110 | 水洗+真空加热 | 85.63 | 0.82 | 1.10 | — | 3.73 | 8.72 |
NiBi/KBr | 240/110 | 水洗 | 85.68 | 0.22 | 0.66 | — | 4.38 | 9.06 |
NiBi/KBr | 240/110 | 水洗+真空加热 | 98.22 | 0.23 | 0.32 | — | 0.36 | 0.87 |
NiBi/KBr | 110/240 | 水洗 | 74.19 | 0.06 | 0.42 | — | 8.07 | 17.26 |
NiBi/KBr | 110/240 | 水洗+真空加热 | 88.47 | 0.10 | 0.00 | — | 3.60 | 7.83 |
NiBi/KBr | 110/240 | 水洗+酸洗 | 84.63 | 0 | 0.00 | — | 4.98 | 10.39 |
NiBi/NaBr | 110/240 | 水洗 | 95.06 | 0.18 | 0.56 | 1.06 | — | 3.14 |
NiBi/NaBr | 110/240 | 水洗+真空加热 | 97.40 | 0.18 | 0.00 | 0.59 | — | 1.83 |
NiBi/NaBr | 110/240 | 水洗+酸洗 | 97.34 | 0 | 0.00 | 1.15 | — | 1.51 |
表1 金属熔融与熔融盐两相反应器中甲烷裂解碳材料组分分析结果(质量分数)[29]
熔融介质 | 装载高度/mm | 纯化方式① | C/% | Ni/% | Bi/% | Na/% | K/% | Br/% |
---|---|---|---|---|---|---|---|---|
NiBi | 350 | — | 17.36 | 12.98 | 69.66 | — | — | — |
NiBi | 350 | 真空加热 | 51.82 | 1.84 | 46.34 | — | — | — |
NiBi | 350 | 酸洗 | 58.81 | 4.09 | 37.10 | — | — | — |
NiBi/KBr | 110/110 | 水洗+真空加热 | 85.63 | 0.82 | 1.10 | — | 3.73 | 8.72 |
NiBi/KBr | 240/110 | 水洗 | 85.68 | 0.22 | 0.66 | — | 4.38 | 9.06 |
NiBi/KBr | 240/110 | 水洗+真空加热 | 98.22 | 0.23 | 0.32 | — | 0.36 | 0.87 |
NiBi/KBr | 110/240 | 水洗 | 74.19 | 0.06 | 0.42 | — | 8.07 | 17.26 |
NiBi/KBr | 110/240 | 水洗+真空加热 | 88.47 | 0.10 | 0.00 | — | 3.60 | 7.83 |
NiBi/KBr | 110/240 | 水洗+酸洗 | 84.63 | 0 | 0.00 | — | 4.98 | 10.39 |
NiBi/NaBr | 110/240 | 水洗 | 95.06 | 0.18 | 0.56 | 1.06 | — | 3.14 |
NiBi/NaBr | 110/240 | 水洗+真空加热 | 97.40 | 0.18 | 0.00 | 0.59 | — | 1.83 |
NiBi/NaBr | 110/240 | 水洗+酸洗 | 97.34 | 0 | 0.00 | 1.15 | — | 1.51 |
成本 | SMR | 质子交换膜电解水 | 熔融金属法 |
---|---|---|---|
总装置成本/106USD | 42 | 495.8 | 40.8 |
总投资成本/106USD | 252.1 | 829.1 | 349.7 |
运行成本/106USD·a-1 | 94.5 | 582.4 | 122 |
原料成本/106USD·a-1 | 63.2 | 543.8 | 92.8 |
净电输出/MWe | 12.6① | — | 5.4① |
1kg H2的碳排放/kg | 9.3 | 0 | 2.5 |
氢气售价(IRR=10%)/USD·kg-1 | 1.26 | 7.13② | 1.39③ |
与SMR工艺IRR收益为10%相等时,碳税价格/USD·t-1 | — | 585 | 18 |
表2 不同制氢工艺年产10万吨氢气投资成本
成本 | SMR | 质子交换膜电解水 | 熔融金属法 |
---|---|---|---|
总装置成本/106USD | 42 | 495.8 | 40.8 |
总投资成本/106USD | 252.1 | 829.1 | 349.7 |
运行成本/106USD·a-1 | 94.5 | 582.4 | 122 |
原料成本/106USD·a-1 | 63.2 | 543.8 | 92.8 |
净电输出/MWe | 12.6① | — | 5.4① |
1kg H2的碳排放/kg | 9.3 | 0 | 2.5 |
氢气售价(IRR=10%)/USD·kg-1 | 1.26 | 7.13② | 1.39③ |
与SMR工艺IRR收益为10%相等时,碳税价格/USD·t-1 | — | 585 | 18 |
CO2捕集条件 | SMR | 熔融金属法 (碳供能) | 熔融金属法 (氢供能) | 熔融金属法 (天然气供能) | 熔融金属法 (电供能) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
— | MDEA脱碳 | — | MEA脱碳 | — | MEA脱碳 | ||||||
反应温度/℃ | 890 | 890 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | |||
反应压力/MPa | 3.2 | 3.2 | 1 | 1 | 1 | 1 | 1 | 1 | |||
NG流率/kg·s-1 | 2.62 | 2.81 | 3.86 | 3.86 | 7.31 | 5.33 | 5.33 | 3.86 | |||
H2流率/kg·s-1 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | |||
1mol CH4的H2产率/mol | 2.49 | 2.48 | 1.65 | 1.63 | 0.93 | 1.25 | 1.23 | 1.71 | |||
1kg H2的CO2排放量/kg | 9.18 | 1.57 | 5.26 | 0.45 | 1.46 | 6.16 | 0.56 | 1.01 | |||
CO2减排率/% | — | 83 | 43 | 95 | 84 | 33 | 94 | 89 |
表3 不同供能方式对碳排放的影响
CO2捕集条件 | SMR | 熔融金属法 (碳供能) | 熔融金属法 (氢供能) | 熔融金属法 (天然气供能) | 熔融金属法 (电供能) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
— | MDEA脱碳 | — | MEA脱碳 | — | MEA脱碳 | ||||||
反应温度/℃ | 890 | 890 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | |||
反应压力/MPa | 3.2 | 3.2 | 1 | 1 | 1 | 1 | 1 | 1 | |||
NG流率/kg·s-1 | 2.62 | 2.81 | 3.86 | 3.86 | 7.31 | 5.33 | 5.33 | 3.86 | |||
H2流率/kg·s-1 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | |||
1mol CH4的H2产率/mol | 2.49 | 2.48 | 1.65 | 1.63 | 0.93 | 1.25 | 1.23 | 1.71 | |||
1kg H2的CO2排放量/kg | 9.18 | 1.57 | 5.26 | 0.45 | 1.46 | 6.16 | 0.56 | 1.01 | |||
CO2减排率/% | — | 83 | 43 | 95 | 84 | 33 | 94 | 89 |
1 | ABÁNADES A, RUBBIA C, SALMIERI D. Thermal cracking of methane into Hydrogen for a CO2-free utilization of natural gas[J]. International Journal of Hydrogen Energy, 2013, 38(20): 8491-8496. |
2 | HE Yangdong, ZHU Lin, FAN Junming, et al. Life cycle assessment of CO2 emission reduction potential of carbon capture and utilization for liquid fuel and power cogeneration[J]. Fuel Processing Technology, 2021, 221: 106924. |
3 | HE Yangdong, ZHU Lin, LI Luling, et al. Hydrogen and power cogeneration based on chemical looping combustion: is it capable of reducing carbon emissions and the cost of production?[J]. Energy & Fuels, 2020, 34(3): 3501-3512. |
4 | NOH Y G, LEE Y J, KIM J, et al. Enhanced efficiency in CO2-free hydrogen production from methane in a molten liquid alloy bubble column reactor with zirconia beads[J]. Chemical Engineering Journal, 2022, 428: 131095. |
5 | ABÁNADES A, RUIZ E, FERRUELO E M, et al. Experimental analysis of direct thermal methane cracking[J]. International Journal of Hydrogen Energy, 2011, 36(20): 12877-12886. |
6 | SERBAN M, LEWIS M A, MARSHALL C L, et al. Hydrogen production by direct contact pyrolysis of natural gas[J]. Energy & Fuels, 2003, 17(3): 705-713. |
7 | AO Dongyi, TANG Yongliang, XU Xiaofeng, et al. Highly conductive PDMS composite mechanically enhanced with 3D-graphene network for high-performance EMI shielding application[J]. Nanomaterials (Basel, Switzerland), 2020, 10(4): 768. |
8 | GEIßLER T, ABÁNADES A, HEINZEL A,et al. Hydrogen production via methane pyrolysis in a liquid metal bubble column reactor with a packed bed[J]. Chemical Engineering Journal, 2016, 299: 192-200. |
9 | CHEN C J, BACK M H, BACK R A. The thermal decomposition of methane. Ⅱ. Secondary reactions, autocatalysis and carbon formation; non-Arrhenius behaviour in the reaction of CH3 with ethane[J]. Canadian Journal of Chemistry, 1976, 54(20): 3175-3184. |
10 | CHEN C J, BACK M H, BACK R A. Mechanism of the thermal decomposition of methane[J]. ACS Symposium Series, 1976(32): 1-16. |
11 | ROSCOE J M, THOMPSON M J. Thermal decomposition of methane: Autocatalysis[J]. International Journal of Chemical Kinetics, 1985, 17(9): 967-990. |
12 | KHAN M S, CRYNES B L. Survey of recent methane pyrolysis literature[J]. Industrial & Engineering Chemistry, 1970, 62(10): 54-59. |
13 | KEVORKIAN V, HEATH C E, BOUDART M. The decomposition of methane in shock waves[J]. The Journal of Physical Chemistry, 1960, 64(8): 964-968. |
14 | KOZLOV G I, KNORRE V G. Single-pulse shock tube studies on the kinetics of the thermal decomposition of methane[J]. Combustion and Flame, 1962, 6: 253-263. |
15 | CHEN Q Q, LUA A C. Kinetic reaction and deactivation studies on thermocatalytic decomposition of methane by electroless nickel plating catalyst[J]. Chemical Engineering Journal, 2020, 389: 124366. |
16 | WANG Jiaofei, LI Xiaoming, ZHOU Yang, et al. Mechanism of methane decomposition with hydrogen addition over activated carbon via in-situ pyrolysis-electron impact ionization time-of-flight mass spectrometry[J]. Fuel, 2020, 263: 116734. |
17 | YADAV M D, DASGUPTA K, PATWARDHAN A W, et al. Kinetic study of single-walled carbon nanotube synthesis by thermocatalytic decomposition of methane using floating catalyst chemical vapour deposition[J]. Chemical Engineering Science, 2019, 196: 91-103. |
18 | WANG K, LI W S, ZHOU X P. Hydrogen generation by direct decomposition of hydrocarbons over molten magnesium[J]. Journal of Molecular Catalysis A: Chemical, 2008, 283(1/2): 153-157. |
19 | ZHOU Lu, ENAKONDA L R, HARB M, et al. Fe catalysts for methane decomposition to produce hydrogen and carbon nano materials[J]. Applied Catalysis B: Environmental, 2017, 208: 44-59. |
20 | PLEVAN M, GEIßLER T, ABÁNADES A, et al. Thermal cracking of methane in a liquid metal bubble column reactor: Experiments and kinetic analysis[J]. International Journal of Hydrogen Energy, 2015, 40(25): 8020-8033. |
21 | TANG Yongliang, PENG Peng, WANG Shuangyue, et al. Continuous production of graphite nanosheets by bubbling chemical vapor deposition using molten copper[J]. Chemistry of Materials, 2017, 29(19): 8404-8411. |
22 | ZENG J R, TARAZKAR M, PENNEBAKER T, et al. Catalytic methane pyrolysis with liquid and vapor phase tellurium[J]. ACS Catalysis, 2020, 10(15): 8223-8230. |
23 | PÉREZ B J L, MEDRANO JIMÉNEZ J A, BHARDWAJ R, et al. Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment[J]. International Journal of Hydrogen Energy, 2020, 46(7): 4917-4935. |
24 | UPHAM D C, AGARWAL V, KHECHFE A, et al. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon[J]. Science, 2017, 358(6365): 917-921. |
25 | PALMER C, BUNYAN E, GELINAS J, et al. CO2-Free hydrogen production by catalytic pyrolysis of hydrocarbon feedstocks in molten Ni-Bi[J]. Energy & Fuels, 2020, 34(12): 16073-16080. |
26 | 敖东羿. 多层高品质石墨烯的大量制备及其应用研究[D]. 成都: 电子科技大学, 2020. |
AO Dongyi. Study on massive production of multilayer high-quality graphene and its applications[D]. Chengdu: University of Electronic Science and Technology of China, 2020. | |
27 | PALMER C, TARAZKAR M, KRISTOFFERSEN H H, et al. Methane pyrolysis with a molten Cu-Bi alloy catalyst[J]. ACS Catalysis, 2019, 9(9): 8337-8345. |
28 | RIEDEWALD F, SOUSA-GALLAGHER M. Novel waste printed circuit board recycling process with molten salt[J]. Methods X, 2015, 2: 100-106. |
29 | RAHIMI N, KANG D, GELINAS J, et al. Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts[J]. Carbon, 2019, 151: 181-191. |
30 | WICHTERLE K. Breakup of gas bubbles rising in molten metals[J]. Steel Research International, 2010, 81(5): 356-361. |
31 | KANG D, RAHIMI N, GORDON M J, et al. Catalytic methane pyrolysis in molten MnCl2-KCl[J]. Applied Catalysis B: Environmental, 2019, 254: 659-666. |
32 | KANG D, PALMER C, MANNINI D, et al. Catalytic methane pyrolysis in molten alkali chloride salts containing iron[J]. ACS Catalysis, 2020, 10(13): 7032-7042. |
33 | PARKINSON B, PATZSCHKE C F, NIKOLIS D, et al. Methane pyrolysis in monovalent alkali halide salts: Kinetics and pyrolytic carbon properties[J]. International Journal of Hydrogen Energy, 2021, 46(9): 6225-6238. |
34 | PARKINSON B, TABATABAEI M, UPHAM D C, et al. Hydrogen production using methane: Techno-economics of decarbonizing fuels and chemicals[J]. International Journal of Hydrogen Energy, 2018, 43(5): 2540-2555. |
35 | 芶富均, 陈建军, 叶宗标, 等. 一种催化辅助甲烷裂解制氢的设备: CN113213423A[P]. 2021-08-06. |
GOU Fujun, CHEN Jianjun, YE Zongbiao,et al. Catalysis-assisted methane cracking hydrogen production equipment: CN113213423A[P]. 2021-08-06. | |
36 | KUDINOV I V, PIMENOV A A, KRYUKOV Y A, et al. A theoretical and experimental study on hydrodynamics, heat exchange and diffusion during methane pyrolysis in a layer of molten tin[J]. International Journal of Hydrogen Energy, 2021, 46(17): 10183-10190. |
37 | PARKINSON B, MATTHEWS J W, MCCONNAUGHY T B, et al. Techno-economic analysis of methane pyrolysis in molten metals: Decarbonizing natural gas[J]. Chemical Engineering & Technology, 2017, 40(6): 1022-1030. |
38 | TIMMERBERG S, KALTSCHMITT M, FINKBEINER M. Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas-GHG emissions and costs[J]. Energy Conversion and Management: X, 2020, 7: 100043. |
39 | ABÁNADES A, RATHNAM R K, GEIßLER T, et al. Development of methane decarbonisation based on liquid metal technology for CO2-free production of hydrogen[J]. International Journal of Hydrogen Energy, 2016, 41(19): 8159-8167. |
40 | STEINBERG M. Fossil fuel decarbonization technology for mitigating global warming[J]. International Journal of Hydrogen Energy, 1999, 24(8): 771-777. |
41 | RODAT S, ABÁNADS S, FLAMANT G. Co-production of hydrogen and carbon black from solar thermal methane splitting in a tubular reactor prototype[J]. Solar Energy, 2011, 85(4): 645-652. |
42 | DUFOUR J, GÁLVEZ J L, SERRANO D P, et al. Life cycle assessment of hydrogen production by methane decomposition using carbonaceous catalysts[J]. International Journal of Hydrogen Energy, 2010, 35(3): 1205-1212. |
43 | POSTELS S, ABÁNADES A, VON DER ASSEN N, et al. Life cycle assessment of hydrogen production by thermal cracking of methane based on liquid-metal technology[J]. International Journal of Hydrogen Energy, 2016, 41(48): 23204-23212. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[3] | 杨建平. 降低HPPO装置反应系统原料消耗的PSE[J]. 化工进展, 2023, 42(S1): 21-32. |
[4] | 赖诗妮, 江丽霞, 李军, 黄宏宇, 小林敬幸. 含碳掺氨燃料的研究进展[J]. 化工进展, 2023, 42(9): 4603-4615. |
[5] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[6] | 葛全倩, 徐迈, 梁铣, 王凤武. MOFs材料在光电催化领域应用的研究进展[J]. 化工进展, 2023, 42(9): 4692-4705. |
[7] | 史柯柯, 刘木子, 赵强, 李晋平, 刘光. 镁基储氢材料的性能及研究进展[J]. 化工进展, 2023, 42(9): 4731-4745. |
[8] | 刘木子, 史柯柯, 赵强, 李晋平, 刘光. 固体储氢材料的研究进展[J]. 化工进展, 2023, 42(9): 4746-4769. |
[9] | 邵志国, 任雯, 许世佩, 聂凡, 许毓, 刘龙杰, 谢水祥, 李兴春, 王庆吉, 谢加才. 终温对油基钻屑热解产物分布和特性影响[J]. 化工进展, 2023, 42(9): 4929-4938. |
[10] | 李志远, 黄亚继, 赵佳琪, 于梦竹, 朱志成, 程好强, 时浩, 王圣. 污泥与聚氯乙烯共热解重金属特性[J]. 化工进展, 2023, 42(9): 4947-4956. |
[11] | 毛善俊, 王哲, 王勇. 基团辨识加氢:从概念到应用[J]. 化工进展, 2023, 42(8): 3917-3922. |
[12] | 王兰江, 梁瑜, 汤琼, 唐明兴, 李学宽, 刘雷, 董晋湘. 快速热解铂前体合成高分散的Pt/HY催化剂及其萘深度加氢性能[J]. 化工进展, 2023, 42(8): 4159-4166. |
[13] | 郭晋, 张耕, 陈国华, 朱鸣, 谭粤, 李蔚, 夏莉, 胡昆. 车载液氢气瓶设计技术的研究进展[J]. 化工进展, 2023, 42(8): 4221-4229. |
[14] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[15] | 张亚娟, 徐惠, 胡贝, 史星伟. 化学镀法制备NiCoP/rGO/NF高效电解水析氢催化剂[J]. 化工进展, 2023, 42(8): 4275-4282. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |