12 |
CARDELLA Unberto, DECKER Lutz, KLEIN Harael. Economically viable large-scale hydrogen liquefaction[J]. IOP Conference Series: Materials Science and Engineering, 2017, 171: 012013.
|
13 |
Øivind WILHELMSEN, BERSTAD David, AASEN Ailo, et al. Reducing the exergy destruction in the cryogenic heat exchangers of hydrogen liquefaction processes[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5033–5047.
|
14 |
PARK J, LIM H, RHEE G H, et al. Catalyst filled heat exchanger for hydrogen liquefaction[J]. International Journal of Heat and Mass Transfer, 2021, 170: 121007.
|
15 |
HO J C, WIJEYSUNDERA N E, RAJASEKAR S, et al. Performance of a compact, spiral coil heat exchanger[J]. Heat Recovery Systems and CHP, 1995, 15(5): 457-468.
|
16 |
ZACHÁR A. Analysis of coiled-tube heat exchangers to improve heat transfer rate with spirally corrugated wall[J]. International Journal of Heat and Mass Transfer, 2010, 53(19/20): 3928-3939.
|
17 |
PRABHANJAN D G, RAGHAVAN G S V, RENNIE T J. Comparison of heat transfer rates between a straight tube heat exchanger and a helically coiled heat exchanger[J]. International Communications in Heat and Mass Transfer, 2002, 29(2):185-191.
|
18 |
HO J C, WIJEYSUNDERA N E. Study of a compact spiral-coil cooling and dehumidifying heat exchanger[J]. Applied Thermal Engineering, 1996, 16(10): 777-790.
|
19 |
GENIĆ Srbislav B, JAĆIMOVIĆ Branislav M, JARIĆ Marko S, et al. Research on the shell-side thermal performances of heat exchangers with helical tube coils[J]. International Journal of Heat and Mass Transfer, 2012, 55(15/16): 4295-4300.
|
20 |
PACIO Julio Cesar, DORAO Carlos Alberto. A review on heat exchanger thermal hydraulic models for cryogenic applications[J]. Cryogenics, 2011, 51(7): 366-379.
|
21 |
MESSA Charles J, FOUST Alan S, POEHLEIN Gary W. Shell-side heat transfer coefficients in helical coil heat exchangers[J]. Industrial & Engineering Chemistry Process Design and Development, 1969, 8(3): 343-347.
|
22 |
JIAN G P, PETERSON G P, WANG S M. Experimental investigation of the condensation mechanisms in the shell side of spiral wound heat exchangers[J]. International Journal of Heat and Mass Transfer, 2020, 154: 119733.
|
23 |
ZHU Jianlu, SUN Chongzheng, LI Yuxing, et al. Experiment on adaptability of feed gas flow rate and sea conditions on FLNG spiral wound heat exchanger[J]. International Journal of Heat and Mass Transfer, 2019, 138: 659-666.
|
1 |
张轩, 樊昕晔, 吴振宇, 等. 氢能供应链成本分析及建议[J]. 化工进展, 2022, 41(5): 2364-2371.
|
|
ZHANG Xuan, FAN Xinye, WU Zhenyu, et al. Hydrogen energy supply chain cost analysis and suggestions[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2364-2371.
|
2 |
陈晓露, 刘小敏, 王娟, 等. 液氢储运技术及标准化[J]. 化工进展, 2021, 40(9): 4806-4814.
|
|
CHEN Xiaolu, LIU Xiaomin, WANG Juan, et al. Technology and standardization of liquid hydrogen storage and transportation[J]. Chemical Industry and Engineering Progress, 2021, 40(9): 4806-4814.
|
3 |
曹学文, 杨健, 边江, 等. 新型双压Linde-Hampson氢液化工艺设计与分析[J]. 化工进展, 2021, 40(12): 6663-6669.
|
|
CAO Xuewen, YANG Jian, BIAN Jiang, et al. Design and analysis of a new type of dual-pressure Linde-Hampson hydrogen liquefaction process[J]. Chemical Industry and Engineering Progress, 2021, 40(12): 6663-6669.
|
4 |
WIJAYANTA Agung Tri, Takuya ODA, PURNOMO Chandra Wahyu, et al. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review[J]. International Journal of Hydrogen Energy, 2019, 44(29): 15026-15044.
|
5 |
DONAUBAUER Philipp J, CARDELLA Umberto, DECKER Lutz, et al. Kinetics and heat exchanger design for catalytic ortho-para hydrogen conversion during liquefaction[J]. Chemical Engineering & Technology, 2019, 42(11): 2476-2476.
|
6 |
YANG Jae Hyeon, YOON Younggak, Mincheol RYU, et al. Integrated hydrogen liquefaction process with steam methane reforming by using liquefied natural gas cooling system[J]. Applied Energy, 2019, 255: 113840.
|
7 |
VALENTI Gianluca, MACCHI Ennio, BRIOSCHI Samuele. The influence of the thermodynamic model of equilibrium-hydrogen on the simulation of its liquefaction[J]. International Journal of Hydrogen Energy, 2012, 37(14): 10779-10788.
|
8 |
LEE K H, KIM Y J, KIM H I, et al. Liquid hydrogen properties[R]. Daejon: Korea Atomic Energy Research Institute, 2004.
|
9 |
陈双涛, 周楷淼, 赖天伟, 等. 大规模氢液化方法与装置[J]. 真空与低温, 2020, 26(3): 173-178.
|
|
CHEN Shuangtao, ZHOU Kaimiao, LAI Tianwei, et al. Large-scale hydrogen liquefaction methods and devices[J]. Vacuum and Cryogenics, 2020, 26(3): 173-178.
|
10 |
SKAUGEN Geir, BERSTAD David, Øivind WILHELMSEN. Comparing exergy losses and evaluating the potential of catalyst-filled plate-fin and spiral-wound heat exchangers in a large-scale claude hydrogen liquefaction process[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6663-6679.
|
11 |
SEYAM Shaimaa, DINCER Ibrahim, Martin AGELIN-CHAAB. Analysis of a clean hydrogen liquefaction plant integrated with a geothermal system[J]. Journal of Cleaner Production, 2020, 243: 118562.
|
24 |
SUN Chongzheng, LI Yuxing, HAN Hui, et al. Experimental and numerical simulation study on the offshore adaptability of spiral wound heat exchanger in LNG-FPSO DMR natural gas liquefaction process[J]. Energy, 2019, 189: 116178.
|
25 |
SUN Chongzheng, LI Yuxing, HAN Hui, et al. Effect of compound sloshing conditions on pressure drop and heat transfer characteristics for FLNG spiral wound heat exchanger[J]. Applied Thermal Engineering, 2019, 159: 113791.
|
26 |
LEX T, OHLIG K, FREDHEIM A O, et al. Ready for floating LNG-qualification of spiral wound heat exchangers[C]//15th International Conference and Exhibition on Liquefied Natural Gas Spain. Barcelona, 2007: 960-973.
|
27 |
HUTCHINSON Harold Lee. Analysis of catalytic ortho-parahydrogen reaction mechanisms[D]. Colorado: University of Colorado, 1966.
|
28 |
HUTCHINSON H L, BROWN L F, BARRICK P L. A comparison of rate expressions for the low-temperature para-orthohydrogen shift[M]//Advances in Cryogenic Engineering. Boston: Springer, 1971: 96-103.
|
29 |
徐攀, 文键, 厉彦忠, 等. 氢正仲转化耦合流动换热板翅式换热器研究[J]. 西安交通大学学报, 2021, 55(12): 16-24.
|
|
XU Pan, WEN Jian, LI Yanzhong, et al. Study on hydrogen ortho-para conversion coupled with flow and heat transfer of the plate fin heat exchanger[J]. Journal of Xi’an Jiaotong University, 2021, 55(12): 16-24.
|