化工进展 ›› 2023, Vol. 42 ›› Issue (2): 872-883.DOI: 10.16085/j.issn.1000-6613.2022-0766
收稿日期:
2022-04-27
修回日期:
2022-07-05
出版日期:
2023-02-25
发布日期:
2023-03-13
通讯作者:
李龙
作者简介:
胡锦健(1996—),男,硕士研究生,研究方向为智能纺织品。E-mail: 3325332463@qq.com。
基金资助:
HU Jinjian(), LI Long(), DONG Zijing
Received:
2022-04-27
Revised:
2022-07-05
Online:
2023-02-25
Published:
2023-03-13
Contact:
LI Long
摘要:
聚氨酯(PU)纱线基柔性应变传感器具有质轻柔软、透气性好、力学性能优异、传感性能良好、廉价易得等优点,但存在灵敏度与应变范围的非线性关系以及滞后性的问题。本文首先介绍了碳纳米材料/PU纱线基柔性应变传感器的构成,并分析了各构成部分对传感器性能的影响机理。在此基础上,根据PU传感纱线制备方式的不同,分别对均质PU纱类、涂层PU纱类和结构PU纱类三类传感器的研究进展进行了综述,指出选择合理的纺丝原料添加量、纺丝牵伸比、涂覆黏合剂、导电皮层与非导电芯层厚度比、导电皮层对非导电芯层有效包覆率、多维导电网络以及新颖的纱线结构、纱线成型新技术可提高PU导电纱线的传感性能。最后,分析了碳纳米材料/PU纱线基柔性应变传感器存在的问题,对高性能PU基础纱线、高品质碳纳米材料、新型加工及集成技术、研制和应用过程中应满足的基本条件等未来的重点发展方向进行了展望,以期为开发高性能纱线基柔性应变传感器提供参考。
中图分类号:
胡锦健, 李龙, 董子靖. 碳纳米材料在PU纱线基柔性应变传感器中的应用[J]. 化工进展, 2023, 42(2): 872-883.
HU Jinjian, LI Long, DONG Zijing. Application of carbon nanomaterials in PU yarn-based flexible strain sensors[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 872-883.
材料 | 尺寸/nm | 长度/nm | 密度/g·cm-3 | 电导率/S·cm-1 | 拉伸强度/GPa | 杨氏模量/GPa |
---|---|---|---|---|---|---|
炭黑 | ||||||
碳纳米管 | 10~300 | — | 1.8~2.1 | 0.1~10 | — | — |
单壁碳纳米管 | 0.6~1.8 | 2~1000 | 1.3 | 1×103~1×104 | 50~500 | 1500 |
多壁碳纳米管 | 5~50 | 1~500 | 1.75 | 5×102~1×104 | 10~60 | 1000 |
石墨烯 | 0.34 | — | 1.06 | 1×104 | 130 | 1000 |
纳米碳纤维 | 50~200 | 5×104~1×105 | 2 | 1×104 | 2.92 | 240 |
表1 炭黑、碳纳米管、石墨烯与纳米碳纤维的性能比较[21-24]
材料 | 尺寸/nm | 长度/nm | 密度/g·cm-3 | 电导率/S·cm-1 | 拉伸强度/GPa | 杨氏模量/GPa |
---|---|---|---|---|---|---|
炭黑 | ||||||
碳纳米管 | 10~300 | — | 1.8~2.1 | 0.1~10 | — | — |
单壁碳纳米管 | 0.6~1.8 | 2~1000 | 1.3 | 1×103~1×104 | 50~500 | 1500 |
多壁碳纳米管 | 5~50 | 1~500 | 1.75 | 5×102~1×104 | 10~60 | 1000 |
石墨烯 | 0.34 | — | 1.06 | 1×104 | 130 | 1000 |
纳米碳纤维 | 50~200 | 5×104~1×105 | 2 | 1×104 | 2.92 | 240 |
材料 | 导电性 | 灵敏度 | 应变范围 | 耐久性(应变) | 响应时间 | 线性 | 参考文献 |
---|---|---|---|---|---|---|---|
MWCNT/PC | — | 约16 | — | — | — | — | [ |
PU/AgNPs/GNPs | 82874S/m | — | 约150% | — | — | — | [ |
PU/PEDOT:PSS | 约9.4S/cm | 约350(100%) 约1500(200%) | 200% | 500次(200%) | — | — | [ |
SBS-SBS/MWCNTs | 10-3~10-2 | 25832.77(41.5%) | 41.5% | 5000次(10%) | — | — | [ |
CB/TPU@TPU纤维 | — | 28084 | >200% | >11000次(60%) | 200ms | 是 | [ |
CNT/TPU | 1.02kΩ/cm | — | 200% | 1250次(140%) | — | 是 | [ |
SWCNT/MWCNT、TPU | 13S/cm | 1.67(0~20%) 1.24(20%~100%) | 100% | 2000次(50%) | — | — | [ |
表2 均质PU纱线柔性应变传感器的性能比较
材料 | 导电性 | 灵敏度 | 应变范围 | 耐久性(应变) | 响应时间 | 线性 | 参考文献 |
---|---|---|---|---|---|---|---|
MWCNT/PC | — | 约16 | — | — | — | — | [ |
PU/AgNPs/GNPs | 82874S/m | — | 约150% | — | — | — | [ |
PU/PEDOT:PSS | 约9.4S/cm | 约350(100%) 约1500(200%) | 200% | 500次(200%) | — | — | [ |
SBS-SBS/MWCNTs | 10-3~10-2 | 25832.77(41.5%) | 41.5% | 5000次(10%) | — | — | [ |
CB/TPU@TPU纤维 | — | 28084 | >200% | >11000次(60%) | 200ms | 是 | [ |
CNT/TPU | 1.02kΩ/cm | — | 200% | 1250次(140%) | — | 是 | [ |
SWCNT/MWCNT、TPU | 13S/cm | 1.67(0~20%) 1.24(20%~100%) | 100% | 2000次(50%) | — | — | [ |
材料 | 导电性 | 灵敏度(应变) | 应变范围 | 耐久性(应变) | 响应时间 | 线性 | 参考文献 |
---|---|---|---|---|---|---|---|
PU纱、CB、天然橡胶 | 4.1MΩ/cm | 38.9(1%) | 0~1% | 10000次(1%) | — | — | [ |
PU纱、PVA、GMs、 PDMS、AgNPs | 423.7mS/cm | 490.20(0~50%) | 0~50% | 2000次(50%) | — | 是 | [ |
PU纱 PDA、rGO | (30.3±1.4)kΩ/cm | 131.8(90%) | 90% | 30000次(50%) | — | 是 | [ |
PU纱 石墨烯/PVA | 0.68kΩ/cm | 86.86 | 0~50% | 100次(50%) | — | 是 | [ |
PU纱 SR、GnP | 10~102S/m | 13.2(40%) | 104.0% | — | — | — | [ |
PU纱 PDMS、GnP、Au | — | 661.59(50%) 668.33(50%~75%) | 0~75% | 10000次(50%) | 约10ms | 是 | [ |
PU纱 CNT、CB | — | 45.4(150%) | 15%~150% | >1300次(100%) | — | 是 | [ |
PU纤维、CNT | — | 约900% | 100次(200%) | — | 是 | [ | |
PDMS纤维MWCNTs、石墨烯片、聚苯胺 | 1.2kΩ/cm | — | 1%~100% | — | — | — | [ |
PU纱 GNPs、CB、SWCNTs | — | 2.14(100%) | 0.5%~350% | >2400次 (10%~25%) | 约65ms | 是 | [ |
PP纱、橡胶芯 CNT、PDMS | — | — | 0~100% | — | 0.35s | — | [ |
PET纱、PU纱 GO | — | 12.06(50%) | 0~50% | — | — | — | [ |
PU纱 SWNT | 480kΩ/mm | 0.65±0.04 | 300% | 300000次(40%) | — | [ | |
PET/弹性复合纱CNT | 0.12kΩ/cm | 46.4(0%~15%) 353(15%~29%) 980(29%~44%) | 0~125% | 1000次(20%) | 200ms | — | [ |
表3 涂层PU纱线柔性应变传感器的性能比较
材料 | 导电性 | 灵敏度(应变) | 应变范围 | 耐久性(应变) | 响应时间 | 线性 | 参考文献 |
---|---|---|---|---|---|---|---|
PU纱、CB、天然橡胶 | 4.1MΩ/cm | 38.9(1%) | 0~1% | 10000次(1%) | — | — | [ |
PU纱、PVA、GMs、 PDMS、AgNPs | 423.7mS/cm | 490.20(0~50%) | 0~50% | 2000次(50%) | — | 是 | [ |
PU纱 PDA、rGO | (30.3±1.4)kΩ/cm | 131.8(90%) | 90% | 30000次(50%) | — | 是 | [ |
PU纱 石墨烯/PVA | 0.68kΩ/cm | 86.86 | 0~50% | 100次(50%) | — | 是 | [ |
PU纱 SR、GnP | 10~102S/m | 13.2(40%) | 104.0% | — | — | — | [ |
PU纱 PDMS、GnP、Au | — | 661.59(50%) 668.33(50%~75%) | 0~75% | 10000次(50%) | 约10ms | 是 | [ |
PU纱 CNT、CB | — | 45.4(150%) | 15%~150% | >1300次(100%) | — | 是 | [ |
PU纤维、CNT | — | 约900% | 100次(200%) | — | 是 | [ | |
PDMS纤维MWCNTs、石墨烯片、聚苯胺 | 1.2kΩ/cm | — | 1%~100% | — | — | — | [ |
PU纱 GNPs、CB、SWCNTs | — | 2.14(100%) | 0.5%~350% | >2400次 (10%~25%) | 约65ms | 是 | [ |
PP纱、橡胶芯 CNT、PDMS | — | — | 0~100% | — | 0.35s | — | [ |
PET纱、PU纱 GO | — | 12.06(50%) | 0~50% | — | — | — | [ |
PU纱 SWNT | 480kΩ/mm | 0.65±0.04 | 300% | 300000次(40%) | — | [ | |
PET/弹性复合纱CNT | 0.12kΩ/cm | 46.4(0%~15%) 353(15%~29%) 980(29%~44%) | 0~125% | 1000次(20%) | 200ms | — | [ |
材料 | 导电性 | 灵敏度 | 应变范围 | 耐久性(应变) | 响应时间 | 线性 | 参考文献 |
---|---|---|---|---|---|---|---|
PU纱、MWCNT | — | 111.1(0~50%) 1344.1(150%~200%) | 0~200% | >10000次(0~30%) | 约80ms | — | [ |
PET长丝纱、PU长丝纱GO | — | 1.46(<5%) | 0~100% | >10000次(0~100%) | 120ms | — | [ |
TPU CNT、RGO | 821.8S/m | 38.1(1%~200%) 317.4(200%~350%) 781.4(350%~450%) 1441.1(450%~550%) 2160.4(550%~620%) | 620% | 1000次(50%) | — | — | [ |
PU纱、棉纱、CNT | — | 3.43(0~100%) 11.93(100%~235%) 21.85(235%~300%) | 0~300% | 150次(20%) | — | — | [ |
表4 结构PU纱线柔性应变传感器的性能比较
材料 | 导电性 | 灵敏度 | 应变范围 | 耐久性(应变) | 响应时间 | 线性 | 参考文献 |
---|---|---|---|---|---|---|---|
PU纱、MWCNT | — | 111.1(0~50%) 1344.1(150%~200%) | 0~200% | >10000次(0~30%) | 约80ms | — | [ |
PET长丝纱、PU长丝纱GO | — | 1.46(<5%) | 0~100% | >10000次(0~100%) | 120ms | — | [ |
TPU CNT、RGO | 821.8S/m | 38.1(1%~200%) 317.4(200%~350%) 781.4(350%~450%) 1441.1(450%~550%) 2160.4(550%~620%) | 620% | 1000次(50%) | — | — | [ |
PU纱、棉纱、CNT | — | 3.43(0~100%) 11.93(100%~235%) 21.85(235%~300%) | 0~300% | 150次(20%) | — | — | [ |
1 | SI Yuying, CHEN Sujie, LI Ming, et al. Flexible strain sensors for wearable hand gesture recognition: From devices to systems[J]. Advanced Intelligent Systems, 2022, 4(2): 2100046. |
2 | LIU Qingqing, ZHANG Yue, LI Ang, et al. Reduced graphene oxide-coated carbonized cotton fabric wearable strain sensors with ultralow detection limit[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(20): 17233-17248. |
3 | Nan NAN, HE Jianxin, YOU Xiaolu, et al. A stretchable, highly sensitive, and multimodal mechanical fabric sensor based on electrospun conductive nanofiber yarn for wearable electronics[J]. Advanced Materials Technologies, 2019, 4(3): 1800338. |
4 | ZHONG Junwen, ZHANG Yan, ZHONG Qize, et al. Fiber-based generator for wearable electronics and mobile medication[J]. ACS Nano, 2014, 8(6): 6273-6280. |
5 | GUO Ying, ZHONG Mengjuan, FANG Zhiwei, et al. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human-machine interfacing[J]. Nano Letters, 2019, 19(2): 1143-1150. |
6 | SHIN Sanghun, Byeongjo KO, Hongyun SO. Structural effects of 3D printing resolution on the gauge factor of microcrack-based strain gauges for health care monitoring[J]. Microsystems & Nanoengineering, 2022, 8(1): 12. |
7 | ZHANG Ding, XU Suwen, ZHAO Xue, et al. Wireless monitoring of small strains in intelligent robots via a joule heating effect in stretchable graphene-polymer nanocomposites[J]. Advanced Functional Materials, 2020, 30(13): 1910809. |
8 | CHEN Shuai, LOU Zheng, CHEN Di, et al. Wearable electronics: Polymer-enhanced highly stretchable conductive fiber strain sensor used for electronic data gloves[J]. Advanced Materials Technologies, 2016, 1(7):1600136. |
9 | PANG Yaokun, XU Xianchen, CHEN Shoue, et al. Skin-inspired textile-based tactile sensors enable multifunctional sensing of wearables and soft robots[J]. Nano Energy, 2022, 96: 107137. |
10 | ZHAI Wei, ZHU Jingzhan, WANG Ziqi,et al. Stretchable, sensitive strain sensors with a wide workable range and low detection limit for wearable electronic skins[J]. ACS Applied Materials & Interfaces, 2022, 14(3): 4562-4570. |
11 | MA Chao, WANG Meng, UZABAKIRIHO Pierre Claver, et al. High sensitivity, broad working range, comfortable, and biofriendly wearable strain sensor for electronic skin[J]. Advanced Materials Technologies, 2022, 7(8): 2200106. |
12 | LI Wei, XU Fujun, LIU Wei, et al. Flexible strain sensor based on aerogel-spun carbon nanotube yarn with a core-sheath structure[J]. Composites Part A: Applied Science and Manufacturing, 2018, 108: 107-113. |
13 | MA Huan, GAO Yang, LIU Wei, et al. Light-weight strain sensor based on carbon nanotube/epoxy composite yarn[J]. Journal of Materials Science, 2021, 56(23): 13156-13164. |
14 | ABED Ahmed, SAMOUH Zineb, COCHRANE Cédric, et al. Piezo-resistive properties of bio-based sensor yarn made with sisal fibre[J]. Sensors (Basel, Switzerland), 2021, 21(12): 4083. |
15 | LI Qiao, WANG Yuchi, JIANG Shen, et al. Investigation into tensile hysteresis of polyurethane-containing textile substrates for coated strain sensors[J]. Materials & Design, 2020, 188: 108451. |
16 | JANG Siyeon, KIM Jisun, KIM Da Wan, et al. Carbon-based, ultraelastic, hierarchically coated fiber strain sensors with crack-controllable beads[J]. ACS Applied Materials & Interfaces, 2019, 11(16): 15079-15087. |
17 | HE Zuoli, ZHOU Gengheng, BYUN Joon-Hyung, et al. Highly stretchable multi-walled carbon nanotube/thermoplastic polyurethane composite fibers for ultrasensitive, wearable strain sensors[J]. Nanoscale, 2019, 11(13): 5884-5890. |
18 | MAITY Debasis, RAJAVEL Krishnamoorthy, RAJENDRA KUMAR Ramasamy Thangavelu. MWCNT enabled smart textiles based flexible and wearable sensor for human motion and humidity monitoring[J]. Cellulose, 2021, 28(4): 2505-2520. |
19 | WANG Xin, LI Jinfeng, SONG Haonan, et al. Highly stretchable and wearable strain sensor based on printable carbon nanotube layers/polydimethylsiloxane composites with adjustable sensitivity[J]. ACS Applied Materials & Interfaces, 2018, 10(8): 7371-7380. |
20 | HAN Wenpeng, WU Yijun, GONG He, et al. Reliable sensors based on graphene textile with negative resistance variation in three dimensions[J]. Nano Research, 2021, 14(8): 2810-2818. |
21 | Min Juey YEE, MUBARAK N M, ABDULLAH E C, et al. Carbon nanomaterials based films for strain sensing application—A review[J]. Nano-Structures & Nano-Objects, 2019, 18: 100312. |
22 | SPERANZA Giorgio. Carbon nanomaterials: Synthesis, functionalization and sensing applications[J]. Nanomaterials (Basel, Switzerland), 2021, 11(4): 967. |
23 | 王程成, 贺德龙, 崔溢. 结构-导电复合材料研究进展[J]. 材料工程, 2018, 46(9): 1-13. |
WANG Chengcheng, HE Delong, CUI Yi. Research progress in electrically conductive structural composites[J]. Journal of Materials Engineering, 2018, 46(9): 1-13. | |
24 | 王梦柯, 邱志成, 于春晓. 聚酰胺6/碳纳米复合材料的研究进展[J]. 材料导报, 2020, 34(S2): 1555-1561. |
WANG Mengke, QIU Zhicheng, YU Chunxiao. Research progress of polyamide 6/carbon nanocomposites[J]. Materials Reports, 2020, 34(S2): 1555-1561. | |
25 | 马珮珮, 李龙, 吴磊. 导电纱线的制备及其在智能可穿戴装置中的应用研究进展[J]. 材料工程, 2021, 49(10): 31-42. |
MA Peipei, LI Long, WU Lei. Research progress in preparation of conductive yarn and its application in smart wearable devices[J]. Journal of Materials Engineering, 2021, 49(10): 31-42. | |
26 | 马丽芸. 基于皮芯结构复合纱的柔性传感器和纳米发电机的研究[D]. 上海: 东华大学, 2021. |
MA Liyun. Research on flexible sensor and nanogenerator based on composite core-sheath yarn[D]. Shanghai: Donghua University, 2021. | |
27 | BAUTISTA-QUIJANO José Roberto, Petra PÖTSCHKE, Harald BRÜNIG, et al. Strain sensing, electrical and mechanical properties of polycarbonate/multiwall carbon nanotube monofilament fibers fabricated by melt spinning[J]. Polymer, 2016, 82: 181-189. |
28 | KIM Seung Woo, KWON Sung Nam, NA Seok In. Stretchable and electrically conductive polyurethane- silver/graphene composite fibers prepared by wet-spinning process[J]. Composites Part B: Engineering, 2019, 167: 573-581. |
29 | SEYEDIN Shayan, MORADI Sepehr, SINGH Charanpreet, et al. Continuous production of stretchable conductive multifilaments in kilometer scale enables facile knitting of wearable strain sensing textiles[J]. Applied Materials Today, 2018, 11: 255-263. |
30 | LI Wenyue, ZHOU Yanfen, WANG Yuhao, et al. Core-sheath fiber-based wearable strain sensor with high stretchability and sensitivity for detecting human motion[J]. Advanced Electronic Materials, 2021, 7(1): 2000865. |
31 | YUE Xiaoyan, JIA Yanyan, WANG Xiaozheng, et al. Highly stretchable and durable fiber-shaped strain sensor with porous core-sheath structure for human motion monitoring[J]. Composites Science and Technology, 2020, 189: 108038. |
32 | TANG Jian, WU Yuting, MA Shidong, et al. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage[J]. Composites Part B: Engineering, 2022, 232: 109605. |
33 | LI Yahong, ZHOU Bing, ZHENG Guoqiang, et al. Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing[J]. Journal of Materials Chemistry C, 2018, 6(9): 2258-2269. |
34 | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(5): 168-177. |
TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers[J]. Journal of Textile Research, 2021, 42(5): 168-177. | |
35 | WU Xiaodong, HAN Yangyang, ZHANG Xinxing, et al. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive Layer@Polyurethane yarn for tiny motion monitoring[J]. ACS Applied Materials & Interfaces, 2016, 8(15): 9936-9945. |
36 | LI Xiaoting, HU Haibo, HUA Tao, et al. Wearable strain sensing textile based on one-dimensional stretchable and weavable yarn sensors[J]. Nano Research, 2018, 11(11): 5799-5811. |
37 | NIU Ben, HUA Tao, HU Haibo, et al. A highly durable textile-based sensor as a human-worn material interface for long-term multiple mechanical deformation sensing[J]. Journal of Materials Chemistry C, 2019, 7(46): 14651-14663. |
38 | LI Xiaoting, HUA Tao, XU Bingang. Electromechanical properties of a yarn strain sensor with graphene-sheath/polyurethane-core[J]. Carbon, 2017, 118: 686-698. |
39 | MONTAZERIAN Hossein, RASHIDI Armin, DALILI Arash, et al. Graphene-coated spandex sensors embedded into silicone sheath for composites health monitoring and wearable applications[J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(17): e1804991. |
40 | LI Xiaoting, Keng Huat KOH, FARHAN Musthafa, et al. An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles[J]. Nanoscale, 2020, 12(6): 4110-4118. |
41 | ZHANG Ruifeng, PAN Peng, DAI Qiuli, et al. Sensitive and wearable carbon nanotubes/carbon black strain sensors with wide linear ranges for human motion monitoring[J]. Journal of Materials Science: Materials in Electronics, 2018, 29(7): 5589-5596. |
42 | GAO Yuan, GUO Fengyun, CAO Peng, et al. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor[J]. ACS Nano, 2020, 14(3): 3442-3450. |
43 | JIN Chengchao, LIU Daiming, LI Ming, et al. Application of highly stretchy PDMS-based sensing fibers for sensitive weavable strain sensors[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(6): 4788-4796. |
44 | HUANG Ying, ZHAO Yunong, WANG Yang, et al. Highly stretchable strain sensor based on polyurethane substrate using hydrogen bond-assisted laminated structure for monitoring of tiny human motions[J]. Smart Materials and Structures, 2018, 27(3): 035013. |
45 | ZHAO Wei, XU Sheng. A facile structural strategy for a wearable strain sensor based on carbon nanotube modified helical yarns[J]. Nanoscale Advances, 2021, 4(1): 250-257. |
46 | BAI Mingxuan, ZHAI Yujiang, LIU Fu, et al. Stretchable graphene thin film enabled yarn sensors with tunable piezoresistivity for human motion monitoring[J]. Scientific Reports, 2019, 9(1): 18644. |
47 | WANG Zifeng, HUANG Yan, SUN Jinfeng, et al. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection[J]. ACS Applied Materials & Interfaces, 2016, 8(37): 24837-24843. |
48 | PAN Junjie, HAO Baowei, SONG Wenfang, et al. Highly sensitive and durable wearable strain sensors from a core-sheath nanocomposite yarn[J]. Composites Part B: Engineering, 2020, 183: 107683. |
49 | HUANG Jieyu, ZHAO Min, HAO Yi, et al. Flexible, stretchable, and multifunctional electrospun polyurethane mats with 0D-1D-2D ternary nanocomposite-based conductive networks[J]. Advanced Electronic Materials, 2021, 7(1): 2000840. |
50 | HUANG Ching Tang, TANG Chien Fa, LEE Mingchen, et al. Parametric design of yarn-based piezoresistive sensors for smart textiles[J]. Sensors and Actuators A: Physical, 2008, 148(1): 10-15. |
51 | ZHAO Li, HU Hong, SHEN Jianming, et al. The use of a polytrimethylene terephthalate/polyester bi-component filament for the development of seamless garments[J]. Textile Research Journal, 2013, 83(12): 1283-1296. |
52 | SUN Hongling, DAI Kun, ZHAI Wei, et al. A highly sensitive and stretchable yarn strain sensor for human motion tracking utilizing a wrinkle-assisted crack structure[J]. ACS Applied Materials & Interfaces, 2019, 11(39): 36052-36062. |
53 | WANG Lihong, TIAN Mingwei, QI Xiangjun, et al. Customizable textile sensors based on helical core-spun yarns for seamless smart garments[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2021, 37(10): 3122-3129. |
54 | XIE Xiaoxu, HUANG Hong, ZHU Jing, et al. A spirally layered carbon nanotube-graphene/polyurethane composite yarn for highly sensitive and stretchable strain sensor[J]. Composites Part A: Applied Science and Manufacturing, 2020, 135: 105932. |
55 | ZENG Zhen, HAO Baowei, LI Daiqi, et al. Large-scale production of weavable, dyeable and durable spandex/CNT/cotton core-sheath yarn for wearable strain sensors[J]. Composites Part A: Applied Science and Manufacturing, 2021, 149: 106520. |
56 | WEN Ming, GUAN Xinchun, LI Hui, et al. Temperature characteristics of thick-film resistors and its application as a strain sensor with low temperature-sensitivity[J]. Sensors and Actuators A: Physical, 2020, 301: 111779. |
57 | WU Jin, WU Zixuan, WEI Yaoming, et al. Ultrasensitive and stretchable temperature sensors based on thermally stable and self-healing organohydrogels[J]. ACS Applied Materials & Interfaces, 2020, 12(16): 19069-19079. |
58 | WU Yuting, YAN Tao, PAN Zhijuan. Wearable carbon-based resistive sensors for strain detection: A review[J]. IEEE Sensors Journal, 2021, 21(4): 4030-4043. |
59 | DINH Nghia Trong, KANOUN Olfa. Temperature-compensated force/pressure sensor based on multi-walled carbon nanotube epoxy composites[J]. Sensors, 2015, 15(5): 11133-11150. |
[1] | 王鑫, 王兵兵, 杨威, 徐志明. 金属表面PDA/PTFE超疏水涂层抑垢与耐腐蚀性能[J]. 化工进展, 2023, 42(8): 4315-4321. |
[2] | 刘战剑, 付雨欣, 任丽娜, 张曦光, 袁中涛, 杨楠, 汪怀远. 超疏水涂层在防腐阻垢领域研究进展[J]. 化工进展, 2023, 42(6): 2999-3011. |
[3] | 何阳, 李思盈, 李传强, 袁小亚, 郑旭煦. 热还原氧化石墨烯/环氧树脂复合涂层的防腐性能[J]. 化工进展, 2023, 42(4): 1983-1994. |
[4] | 顾海洋, 王冬, 宗永忠, 付少海. 制革污泥蛋白质基生物质棉织物阻燃涂层的制备与阻燃性能[J]. 化工进展, 2023, 42(2): 641-649. |
[5] | 辛华, 彭琪, 李阳帆, 张岩, 陈悦, 李新琦. 含氟聚氨酯二甲基丙烯酸酯为芯材的微胶囊制备及自修复性能[J]. 化工进展, 2023, 42(10): 5406-5413. |
[6] | 刘洋, 赵恒, 李倩, 辛虎, 李杏涛. 全氟聚醚聚合物及其功能复合材料的研究进展[J]. 化工进展, 2023, 42(1): 321-335. |
[7] | 王慧, 刘新懿, 王伟, 万同, 厉宗洁, 王劭妤, 程博闻. 静电纺特殊形貌纳米纤维的应用研究进展[J]. 化工进展, 2022, 41(8): 4341-4356. |
[8] | 詹洵, 陈健, 杨兆哲, 吴国民, 孔振武, 沈葵忠. 纳米纤维素构建超疏水材料研究进展[J]. 化工进展, 2022, 41(8): 4303-4313. |
[9] | 郭制安, 隋智慧, 李亚萍, 徐逸坤, 孙芳, 赵欣. 相变双向调温纺织材料制备技术研究进展[J]. 化工进展, 2022, 41(7): 3648-3659. |
[10] | 朱雪丹, 姚亚丽, 马利利, 王嘉鑫, 杨杰, 彭磊, 何金梅, 屈孟男. 聚氯乙烯基超疏水材料的制备及应用研究进展[J]. 化工进展, 2022, 41(7): 3676-3688. |
[11] | 何美莹, 岳学杰, 张涛, 邱凤仙. 红外辐射调控原理及其在热管理应用中的材料研究进展[J]. 化工进展, 2022, 41(7): 3719-3730. |
[12] | 李博申, 魏铭, 胡瑶瑶, 董月林, 董群锋, 杨立峰. 改性h-BN/聚氨酯丙烯酸酯涂料的制备与性能[J]. 化工进展, 2022, 41(6): 3194-3202. |
[13] | 史慕杨, 芦博慧, 王锦康, 晋阳, 葛明桥. 染料掺杂发光聚氨酯复合材料的制备及性能[J]. 化工进展, 2022, 41(4): 2029-2037. |
[14] | 王喜倩, 尹国强, 郭清兵, 何明. 多巴胺表面修饰角蛋白/聚乳酸纳米纤维膜的制备及性能[J]. 化工进展, 2022, 41(1): 373-381. |
[15] | 张立胜, 黄山, 刘师承, 周屈兰, 裴爱霞, 李娜. 克劳斯工艺防腐蚀涂层数值模拟[J]. 化工进展, 2021, 40(S2): 327-333. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |