1 |
ALTHOR G, WATSON J E M, FULLER R A. Global mismatch between greenhouse gas emissions and the burden of climate change[J]. Scientific Reports, 2016, 6: 20281.
|
2 |
ZHANG Xiaolei. Essential scientific mapping of the value chain of thermochemically converted second-generation bio-fuels[J]. Green Chemistry, 2016, 18(19): 5086-5117.
|
3 |
CHEN Binglin, PENG Zhiqing, LI Chuang, et al. Catalytic conversion of biomass to furanic derivatives with deep eutectic solvents[J]. ChemSusChem, 2021, 14(6): 1496-1506.
|
4 |
HU Yifan, LI Hongxuan, LI Zesheng, et al. Progress in batch preparation of single-atom catalysts and application in sustainable synthesis of fine chemicals[J]. Green Chemistry, 2021, 23(22): 8754-8794.
|
5 |
SHEN F, SMITH JR R L, LI J L, et al. Critical assessment of reaction pathways for conversion of agricultural waste biomass into formic acid[J]. Green Chemistry, 2021, 23(4): 1536-1561.
|
6 |
RUDDY D A, SCHAIDLE J A, FERRELL Ⅲ J R, et al. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: Catalyst development through the study of model compounds[J]. Green Chemistry, 2014, 16(2): 454-490.
|
7 |
UPTON B M, KASKO A M. Strategies for the conversion of lignin to high-value polymeric materials: Review and perspective[J]. Chemical Reviews, 2016, 116(4): 2275-2306.
|
8 |
石宁, 唐文勇, 唐石云, 等. 木质纤维素衍生平台化学品制备液态烷烃的研究进展[J]. 化工进展, 2019, 38(7): 3097-3110.
|
|
SHI Ning, TANG Wenyong, TANG Shiyun, et al. Advances in the catalytic conversion of lignocellulosic derived platform chemicals into liquid alkanes[J]. Chemical Industry and Engineering Progress, 2019, 38(7): 3097-3110.
|
9 |
WANG Min, MA Jiping, LIU Huifang, et al. Sustainable productions of organic acids and their derivatives from biomass via selective oxidative cleavage of C-C bond[J]. ACS Catalysis, 2018, 8(3): 2129-2165.
|
10 |
SHEN Xiaojun, XIN Yu, LIU Huizhen, et al. Product-oriented direct cleavage of chemical linkages in lignin[J]. ChemSusChem, 2020, 13(17): 4367-4381.
|
11 |
XU Jiayun, LI Chenyu, DAI Lin, et al. Biomass fractionation and lignin fractionation towards lignin valorization[J]. ChemSusChem, 2020, 13(17): 4284-4295.
|
12 |
ZHAO Zhimin, LIU Zhihua, PU Yunqiao, et al. Emerging strategies for modifying lignin chemistry to enhance biological lignin valorization[J]. ChemSusChem, 2020, 13(20): 5423-5432.
|
13 |
简雅婷, 余强, 陈小燕, 等. 木质素制备生物液体燃料进展[J]. 化工进展, 2021, 40(S2): 109-116.
|
|
JIAN Yating, YU Qiang, CHEN Xiaoyan, et al. Progress in the preparation of liquid biofuels from lignin[J]. Chemical Industry and Engineering Progress, 2021, 40(S2): 109-116.
|
14 |
ZHANG Fumin, ZHENG Shuang, XIAO Qiang, et al. Synergetic catalysis of palladium nanoparticles encaged within amine-functionalized UiO-66 in the hydrodeoxygenation of vanillin in water[J]. Green Chemistry, 2016, 18(9): 2900-2908.
|
15 |
HUANG Hao, ZONG Rui, LI Hao. Synergy effects between oxygen groups and defects in hydrodeoxygenation of biomass over a carbon nanosphere supported Pd catalyst[J]. ACS Sustainable Chemistry & Engineering, 2020, 8(42): 15998-16009.
|
16 |
LU Xiaowen, GUO Chunmu, ZHANG Mingyang, et al. Rational design of palladium single-atoms and clusters supported on silicoaluminophosphate-31 by a photochemical route for chemoselective hydrodeoxygenation of vanillin[J]. Nano Research, 2021, 14(11): 4347-4355.
|
17 |
Zhongfei LYU, SUN Qi, MENG Xiangju, et al. Superhydrophilic mesoporous sulfonated melamine-formaldehyde resin supported palladium nanoparticles as an efficient catalyst for biofuel upgrade[J]. Journal of Materials Chemistry A, 2013, 1(30): 8630-8635.
|
18 |
WANG Qi, GUPTA N, WEN Guodong, et al. Palladium and carbon synergistically catalyzed room-temperature hydrodeoxygenation (HDO) of vanillyl alcohol—A typical lignin model molecule[J]. Journal of Energy Chemistry, 2017, 26(1): 8-16.
|
19 |
TIAN Shubo, WANG Ziyun, GONG Wanbing, et al. Temperature-controlled selectivity of hydrogenation and hydrodeoxygenation in the conversion of biomass molecule by the Ru1/mpg-C3N4 catalyst[J]. Journal of the American Chemical Society, 2018, 140(36): 11161-11164.
|
20 |
BAKURU V R, DAVIS D, KALIDINDI S B. Cooperative catalysis at the metal-MOF interface: Hydrodeoxygenation of vanillin over Pd nanoparticles covered with a UiO-66(Hf) MOF[J]. Dalton Transactions, 2019, 48(24): 8573-8577.
|
21 |
SANTOS J L, MÄKI-ARVELA P, MONZÓN A, et al. Metal catalysts supported on biochars Part Ⅰ: Synthesis and characterization[J]. Applied Catalysis B: Environmental, 2020, 268: 118423.
|
22 |
GARCÍA A, COLILLA M, IZQUIERDO-BARBA I, et al. Incorporation of phosphorus into mesostructured silicas: A novel approach to reduce the SiO2 leaching in water[J]. Chemistry of Materials, 2009, 21(18): 4135-4145.
|
23 |
LI Zhijun, LU Xiaowen, SUN Weiwei, et al. One-step synthesis of single palladium atoms in WO2.72 with high efficiency in chemoselective hydrodeoxygenation of vanillin[J]. Applied Catalysis B: Environmental, 2021, 298: 120535.
|
24 |
HAO Pengxiao, SCHWARTZ D K, MEDLIN J W. Phosphonic acid promotion of supported Pd catalysts for low temperature vanillin hydrodeoxygenation in ethanol[J]. Applied Catalysis A: General, 2018, 561: 1-6.
|
25 |
SANTOS J L, MÄKI-ARVELA P, WÄRNÅ J, et al. Hydrodeoxygenation of vanillin over noble metal catalyst supported on biochars: Part Ⅱ: Catalytic behaviour[J]. Applied Catalysis B: Environmental, 2020, 268: 118425.
|
26 |
LIANG Haiwei, BRÜLLER S, DONG Renhao, et al. Molecular metal-Nx centres in porous carbon for electrocatalytic hydrogen evolution[J]. Nature Communications, 2015, 6: 7992.
|
27 |
FENG Yunchao, LONG Sishi, CHEN Binglin, et al. Inducing electron dissipation of pyridinic N enabled by single Ni-N4 sites for the reduction of aldehydes/ketones with ethanol[J]. ACS Catalysis, 2021, 11(11): 6398-6405.
|
28 |
FAN Honglei, YANG Yingying, SONG Jinliang, et al. Free-radical conversion of a lignin model compound catalyzed by Pd/C[J]. Green Chemistry, 2015, 17(8): 4452-4458.
|