化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5162-5178.DOI: 10.16085/j.issn.1000-6613.2022-2022
吴毅恒(), 张耀远(), 吴芹, 史大昕, 陈康成, 黎汉生()
收稿日期:
2022-10-31
修回日期:
2023-01-23
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
张耀远,黎汉生
作者简介:
吴毅恒(1999—),女,硕士研究生,研究方向为低碳烷烃芳构化。E-mail:3120211313@bit.edu.cn。
基金资助:
WU Yiheng(), ZHANG Yaoyuan(), WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng()
Received:
2022-10-31
Revised:
2023-01-23
Online:
2023-10-15
Published:
2023-11-11
Contact:
ZHANG Yaoyuan, LI Hansheng
摘要:
苯、甲苯和二甲苯(BTX)作为重要的基础化工原料,主要来源于催化重整和蒸汽裂解的石油基工艺路线。随着石油资源的日益消耗,开发新的BTX生产工艺势在必行。目前报道的其他BTX生产工艺有甲醇制芳烃、合成气制芳烃、二氧化碳加氢合成芳烃和低碳烷烃的芳构化。其中,低碳烷烃芳构化工艺因其原料来源丰富、工艺过程成本低而引起人们的广泛关注。在众多芳构化催化剂中,镓改性HZSM-5催化剂具有最优异的脱氢-芳构化性能,是本领域的研究热点。基于此,本文主要从低碳烷烃芳构化反应机理、镓改性的HZSM-5性质调控、低碳烷烃芳构化反应操作条件等方面综述了镓改性HZSM-5催化剂在低碳烷烃芳构化中研究进展。总结发现,镓的引入方式、气氛预处理、煅烧温度可以调控Ga物种的状态和分布;调控HZSM-5的酸性质和孔道结构可以提高催化活性和稳定性;引入助剂如Pd、Ag、Ni、Pt、Cr可增强脱氢活性进而提高芳构化性能;镓改性HZSM-5催化剂中B酸位和L酸位(活性Ga物种)之间的协同效应有助于提高低碳烷烃芳构化反应性能。最后,本文指出发展低碳烷烃芳构化与CO2共转化过程中多功能协同镓改性HZSM-5催化剂是实现BTX产量提升与CO2减排的关键。
中图分类号:
吴毅恒, 张耀远, 吴芹, 史大昕, 陈康成, 黎汉生. 镓改性HZSM-5催化低碳烷烃芳构化研究进展[J]. 化工进展, 2023, 42(10): 5162-5178.
WU Yiheng, ZHANG Yaoyuan, WU Qin, SHI Daxin, CHEN Kangcheng, LI Hansheng. Research progress of gallium modified HZSM-5 catalysts for aromatization of light alkanes[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5162-5178.
催化剂组成 | 温度/℃ | 原料组成 | 重时空速/h-1 | 烷烃转化率/% | 芳烃选择性/% | 参考文献 |
---|---|---|---|---|---|---|
GaZSM-5 | 550 | 丙烷 | 4.0 | 66.5 | 58.6 | [ |
GaLaZSM-5 | 550 | 丙烷 | 4.0 | 57.7 | 57.9 | [ |
GaPdZSM-5 | 550 | 丙烷 | 4.0 | 79.6 | 66.0 | [ |
GaAgZSM-5 | 550 | 丙烷 | 4.0 | 78.3 | 66.6 | [ |
NiZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 25.0 | 70.0 BTX选择性 | [ |
GaZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 8.0 | 84.0 BTX选择性 | [ |
Ni1Ga1ZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 13.0 | 82.5 BTX选择性 | [ |
Ni1Ga1/3ZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 7.5 | 75.0 BTX选择性 | [ |
Ni1Ga3ZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 10.0 | 81.0 BTX选择性 | [ |
Mo/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 30.0 | 21.9 苯+甲苯选择性 | [ |
Ga/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 31.0 | 23.3 苯+甲苯选择性 | [ |
Pt/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 9.0 | 2.1 苯+甲苯选择性 | [ |
GaPt/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 90.0 | 31.1 苯+甲苯选择性 | [ |
Ga/HZSM-5 | 550 | 99.95%丙烷 | 17.7 | 55.4 | 59.3 BTX选择性 | [ |
Pt/HZSM-5 | 550 | 99.95%丙烷 | 17.7 | 87.9 | 29.8 BTX选择性 | [ |
Pt-Ga/HZSM-5 | 550 | 99.95%丙烷 | 17.7 | 64.9 | 52.2 BTX选择性 | [ |
GaZSM-5 | 615 | 乙烷/氮气=3∶7 | 8.0 | 32.0 | 28.0 | [ |
GaPtZSM-5 | 615 | 乙烷/氮气=3∶7 | 8.0 | 63.0 | 32.0 | [ |
PtZSM-5 | 615 | 乙烷/氮气=3∶7 | 8.0 | 55.0 | 37.0 | [ |
2% Ga/HZSM-5 | 600 | 乙烷 | — | 29.0 | 58.0 | [ |
0.3% Pt-2% Ga/HZSM-5 | 600 | 乙烷 | — | 48.0 | 63.0 | [ |
HZSM-5 | 600 | 乙烷 | — | 8.4 | 27.0 | [ |
0.3% Pt/HZSM-5 | 600 | 乙烷 | — | 28.0 | 52.0 | [ |
2% Ga/HZSM-5 | 600 | 乙烷 | — | 29.0 | 58.0 | [ |
2% Ga 0.3% Pt/HZSM-5 | 600 | 乙烷 | — | 48.0 | 63.0 | [ |
Ga/ZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 47.0 | 51.5 BTX选择性 | [ |
1Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 50.0 | 53.0 BTX选择性 | [ |
2Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 51.0 | 56.0 BTX选择性 | [ |
4Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 50.5 | 57.5 BTX选择性 | [ |
8Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 50.5 | 54.0 BTX选择性 | [ |
Ga/2CrZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 39.5 | 52.0 BTX选择性 | [ |
2Cr-Ga/ZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 41.0 | 49.0 BTX选择性 | [ |
ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 1.4 | 24.9 | [ |
ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 1.5 | 26.7 | [ |
Ga/ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 14.6 | 41.8 | [ |
Ga/ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 17.1 | 42.6 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 24.6 | 55.5 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 23.3 | 49.8 | [ |
Ga/ZSM-5/P(0.4) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 19.2 | 59.7 | [ |
Ga/ZSM-5/P(0.2) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 15.5 | 50.6 | [ |
Ga/ZSM-5/P(1.6) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 9.8 | 47.0 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 2.7 | 21.2 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 0.5 | 20.7 | [ |
P/Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 36.1 | 42.3 | [ |
P/Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 23.3 | 30.1 | [ |
Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 22.3 | 25.3 | [ |
Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 27.5 | 31.1 | [ |
HZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 29.9 | 16.5 | [ |
HZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 35.8 | 16.5 | [ |
P/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 26.4 | 10.7 | [ |
P/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 36.7 | 18.9 | [ |
表1 不同元素改性含镓HZSM-5催化剂的低碳烷烃芳构化性能
催化剂组成 | 温度/℃ | 原料组成 | 重时空速/h-1 | 烷烃转化率/% | 芳烃选择性/% | 参考文献 |
---|---|---|---|---|---|---|
GaZSM-5 | 550 | 丙烷 | 4.0 | 66.5 | 58.6 | [ |
GaLaZSM-5 | 550 | 丙烷 | 4.0 | 57.7 | 57.9 | [ |
GaPdZSM-5 | 550 | 丙烷 | 4.0 | 79.6 | 66.0 | [ |
GaAgZSM-5 | 550 | 丙烷 | 4.0 | 78.3 | 66.6 | [ |
NiZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 25.0 | 70.0 BTX选择性 | [ |
GaZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 8.0 | 84.0 BTX选择性 | [ |
Ni1Ga1ZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 13.0 | 82.5 BTX选择性 | [ |
Ni1Ga1/3ZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 7.5 | 75.0 BTX选择性 | [ |
Ni1Ga3ZSM-5 | 550 | 乙烷/氩气=1∶1 | 8.0 | 10.0 | 81.0 BTX选择性 | [ |
Mo/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 30.0 | 21.9 苯+甲苯选择性 | [ |
Ga/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 31.0 | 23.3 苯+甲苯选择性 | [ |
Pt/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 9.0 | 2.1 苯+甲苯选择性 | [ |
GaPt/HZSM-5 | 650 | 乙烷/氦气=3∶7 | 12.1 | 90.0 | 31.1 苯+甲苯选择性 | [ |
Ga/HZSM-5 | 550 | 99.95%丙烷 | 17.7 | 55.4 | 59.3 BTX选择性 | [ |
Pt/HZSM-5 | 550 | 99.95%丙烷 | 17.7 | 87.9 | 29.8 BTX选择性 | [ |
Pt-Ga/HZSM-5 | 550 | 99.95%丙烷 | 17.7 | 64.9 | 52.2 BTX选择性 | [ |
GaZSM-5 | 615 | 乙烷/氮气=3∶7 | 8.0 | 32.0 | 28.0 | [ |
GaPtZSM-5 | 615 | 乙烷/氮气=3∶7 | 8.0 | 63.0 | 32.0 | [ |
PtZSM-5 | 615 | 乙烷/氮气=3∶7 | 8.0 | 55.0 | 37.0 | [ |
2% Ga/HZSM-5 | 600 | 乙烷 | — | 29.0 | 58.0 | [ |
0.3% Pt-2% Ga/HZSM-5 | 600 | 乙烷 | — | 48.0 | 63.0 | [ |
HZSM-5 | 600 | 乙烷 | — | 8.4 | 27.0 | [ |
0.3% Pt/HZSM-5 | 600 | 乙烷 | — | 28.0 | 52.0 | [ |
2% Ga/HZSM-5 | 600 | 乙烷 | — | 29.0 | 58.0 | [ |
2% Ga 0.3% Pt/HZSM-5 | 600 | 乙烷 | — | 48.0 | 63.0 | [ |
Ga/ZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 47.0 | 51.5 BTX选择性 | [ |
1Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 50.0 | 53.0 BTX选择性 | [ |
2Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 51.0 | 56.0 BTX选择性 | [ |
4Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 50.5 | 57.5 BTX选择性 | [ |
8Cr/GaZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 50.5 | 54.0 BTX选择性 | [ |
Ga/2CrZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 39.5 | 52.0 BTX选择性 | [ |
2Cr-Ga/ZSM-5 | 540 | 丙烷/氮气=1∶2 | 11.8 | 41.0 | 49.0 BTX选择性 | [ |
ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 1.4 | 24.9 | [ |
ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 1.5 | 26.7 | [ |
Ga/ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 14.6 | 41.8 | [ |
Ga/ZSM-5 | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 17.1 | 42.6 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 24.6 | 55.5 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 23.3 | 49.8 | [ |
Ga/ZSM-5/P(0.4) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 19.2 | 59.7 | [ |
Ga/ZSM-5/P(0.2) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 15.5 | 50.6 | [ |
Ga/ZSM-5/P(1.6) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 9.8 | 47.0 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 2.7 | 21.2 | [ |
Ga/ZSM-5/P(0.8) | 600 | 乙烷/氩气/二氧化碳=3∶4∶3 | 0.8 | 0.5 | 20.7 | [ |
P/Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 36.1 | 42.3 | [ |
P/Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 23.3 | 30.1 | [ |
Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 22.3 | 25.3 | [ |
Ga/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 27.5 | 31.1 | [ |
HZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 29.9 | 16.5 | [ |
HZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 35.8 | 16.5 | [ |
P/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 26.4 | 10.7 | [ |
P/ZSM-5 | 600 | 丙烷/氩气/二氧化碳=3∶4∶3 | 7.1 | 36.7 | 18.9 | [ |
1 | 吴冰峰, 王子健, 马爱增, 等. 低碳烷烃芳构化反应机理研究进展[J]. 石油学报(石油加工), 2021, 37(3): 690-699. |
WU Bingfeng, WANG Zijian, MA Aizeng, et al. Research progress in the mechanism of light alkane aromatization[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(3): 690-699. | |
2 | WANG Kai, DONG Mei, LI Junfen, et al. Facile fabrication of ZSM-5 zeolite hollow spheres for catalytic conversion of methanol to aromatics[J]. Catalysis Science & Technology, 2017, 7(3): 560-564. |
3 | ZHANG Peipei, TAN Li, YANG Guohui, et al. One-pass selective conversion of syngas to para-xylene[J]. Chemical Science, 2017, 8(12): 7941-7946. |
4 | WANG Yang, GAO Weizhe, KAZUMI S, et al. Direct and oriented conversion of CO2 into value-added aromatics[J]. Chemistry, 2019, 25(20): 5149-5153. |
5 | HE Peng, WANG Aiguo, MENG Shijun, et al. Impact of Al sites on the methane co-aromatization with alkanes over Zn/HZSM-5[J]. Catalysis Today, 2019, 323: 94-104. |
6 | WANG C, ZHAO X L, HU M, et al. Unraveling hydrocarbon pool boosted propane aromatization on gallium/ZSM-5 zeolite by solid-state nuclear magnetic resonance spectroscopy[J]. Angewandte Chemie-International Edition, 2021, 60(44): 23630-23634. |
7 | TU C Y, FAN H H, WANG D, et al. CO2-assisted ethane aromatization over zinc and phosphorous modified ZSM-5 catalysts[J]. Applied Catalysis B-Environmental, 2022, 304: 120956. |
8 | LIM Y H, GIM M Y, KIM H, et al. Top-down HCl treatment to prepare highly active Ga species in Ga/ZSM-5 for propane aromatization[J]. Fuel Processing Technology, 2022, 227: 107107. |
9 | GOODARZI F, THUMBAYIL R P, ENEMARK‐RASMUSSEN K, et al. Enhanced catalytic performance of Zn‐containing HZSM‐5 upon selective desilication in ethane dehydroaromatization process[J]. ChemCatChem, 2020, 12(5): 1519-1526. |
10 | LEE B J, LEE J H, KIM D H, et al. Synthesis of aluminum and gallium-incorporated MFI zeotypes and their catalytic activity for ethane dehydroaromatization[J]. Microporous and Mesoporous Materials, 2021, 323: 111243. |
11 | BOGDAN V I, KOKLIN A E, MISHANIN I I, et al. Increasing the yield of aromatic hydrocarbons in aromatization of n-butane over Ga/H-ZSM-5 zeolite using a palladium membrane[J]. Mendeleev Communications, 2021, 31(2): 230-232. |
12 | SAITO H, INAGAKI S, KOJIMA K, et al. Preferential dealumination of Zn/H-ZSM-5 and its high and stable activity for ethane dehydroaromatization[J]. Applied Catalysis A-General, 2018, 549: 76-81. |
13 | LIANG Tingyu, TOGHIANI H, XIANG Yizhi. Transient kinetic study of ethane and ethylene aromatization over Zinc-exchanged HZSM5 catalyst[J]. Industrial And Engineering Chemistry Research, 2018, 57(45): 15301-15309. |
14 | MA L, ZOU X Q. Cooperative catalysis of metal and acid functions in re-HZSM-5 catalysts for ethane dehydroaromatization[J]. Applied Catalysis B-Environmental, 2019, 243: 703-710. |
15 | HALASZ J, KONYA Z, FUDALA A, et al. Indium and gallium containing ZSM-5 zeolites: Acidity and catalytic activity in propane transformation[J]. Catalysis Today, 1996, 31(3/4): 293-304. |
16 | 周微. Fe、Sn助剂对载铂Zn/HZSM-5纳米沸石丙烷芳构化催化剂的调变作用研究[D]. 大连: 大连理工大学, 2019. |
ZHOU Wei, Effects of Fe or Sn additives on propane aromatization performance of Pt promoted Zn/HZSM-5 nano-zeolite catalyst[D]. Dalian: Dalian University of Technology, 2019. | |
17 | 赵星岭. Ga改性ZSM-5分子筛上低碳烷烃活化与转化机理的固体核磁共振研究[D]. 武汉: 中国科学院大学(中国科学院武汉物理与数学研究所), 2020. |
ZHAO Xingling. Activation and conversion of light alkane over gallium-modified ZSM-5 zeolites as studied by solid-state NMR spectroscopy[D]. Wuhan: University of Chinese Academy of Sciences (Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences), 2020. | |
18 | 曾武松. 正丁烷无氧芳构化ZSM-5催化剂的研究[D]. 乌鲁木齐: 新疆大学, 2020. |
ZENG Wusong. Study on ZSM-5 catalyst for n-butane non-oxidative aromatization[D]. Urumqi: Xinjiang University, 2020. | |
19 | ONO Y, NAKATANI H, KITAGAWA H, et al. The role of metal cations in the transformation of lower alkanes into aromatic hydrocarbons[J]. Studies in Surface Science and Catalysis, 1989, 44: 279-290. |
20 | LUKYANOV D B, GNEP N S, GUISNET M R. Kinetic modeling of propane aromatization reaction over HZSM-5 and GaHZSM-5[J]. Industrial & Engineering Chemistry Research, 1995, 34(2): 516-523. |
21 | CAEIRO G, CARVALHO R H, WANG X Q, et al. Activation of C2-C4 alkanes over acid and bifunctional zeolite catalysts[J]. Journal of Molecular Catalysis A: Chemical, 2006, 255(1/2): 131-158. |
22 | LIU Dongyang, CAO Liyuan, ZHANG Guohao, et al. Catalytic conversion of light alkanes to aromatics by metal-containing HZSM-5 zeolite catalysts-A review[J]. Fuel Processing Technology, 2021, 216: 106770. |
23 | KITAGAWA H, SENDODA Y, ONO Y. Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites[J]. Journal of Catalysis, 1986, 101(1): 12-18. |
24 | MOLE T, ANDERSON J, CREER G. The reaction of propane over ZSM-5-H and ZSM-5-Zn zeolite catalysts[J]. Applied catalysis, 1985, 17(1): 141-154. |
25 | GUISNET M, GNEP N S. Aromatization of propane over GaHMFI catalysts. Reaction scheme, nature of the dehydrogenating species and mode of coke formation[J]. Catalysis Today, 1996, 31(3/4): 275-292. |
26 | RAAD M, HAMIEH S, TOUFAILY J, et al. Propane aromatization on hierarchical Ga/HZSM-5 catalysts[J]. Journal of Catalysis, 2018, 366: 223-236. |
27 | XIAO He, ZHANG Junfeng, WANG Xiaoxing, et al. A highly efficient Ga/ZSM-5 catalyst prepared by formic acid impregnation and in situ treatment for propane aromatization[J]. Catalysis Science & Technology, 2015, 5(8): 4081-4090. |
28 | WANG Yuxin, CAIOLA A, ROBINSON B, et al. Hierarchical galloaluminosilicate MFI catalysts for ethane nonoxidative dehydroaromatization[J]. Energy & Fuels, 2020, 34(3): 3100-3109. |
29 | AUSAVASUKHI A, SOOKNOI T. Tunable activity of [Ga]HZSM-5 with H2 treatment: Ethane dehydrogenation[J]. Catalysis Communications, 2014, 45: 63-68. |
30 | SCHREIBER M W, PLAISANCE C P, BAUMGÄRTL M, et al. Lewis-Brønsted acid pairs in Ga/H-ZSM-5 to catalyze dehydrogenation of light alkanes[J]. Journal of the American Chemical Society, 2018, 140(14): 4849-4859. |
31 | JOSHI Y, THOMSON K. High ethane dehydrogenation activity of [GaH]2+ Al pair sites in Ga/H-[Al]ZSM-5: A DFT thermochemical analysis of the catalytic sites under reaction conditions[J]. Journal of Catalysis, 2007, 246(2): 249-265. |
32 | 赵星岭, 齐国栋, 王强, 等. Ga改性Ga/ZSM-5分子筛的结构、性质及其催化丙烷芳构化的固体核磁共振波谱研究[J]. 高等学校化学学报, 2020, 41(12): 2681-2689. |
ZHAO Xingling, QI Guodong, WANG Qiang, et al. Structure, nature and activity of Ga species for propane aromatization in Ga/ZSM-5 revealed by solid-state NMR spectroscopy[J]. Chemical Journal of Chinese Universities, 2020, 41(12): 2681-2689. | |
33 | AL-YASSIR N, AKHTAR M N, AL-KHATTAF S. Physicochemical properties and catalytic performance of galloaluminosilicate in aromatization of lower alkanes: a comparative study with Ga/HZSM-5[J]. Journal of Porous Materials, 2011, 19(6): 943-960. |
34 | 刘汝玲, 朱华青, 吴志伟, 等. Ga改性ZSM-5分子筛催化丙烷芳构化性能研究[J]. 燃料化学学报, 2015, 43(8): 961-969. |
LIU Ruling, ZHU Huaqing, WU Zhiwei, et al. Aromatization of propane over Ga-modified ZSM-5 catalysts[J]. Journal of Fuel Chemistry and Technology, 2015, 43(8): 961-969. | |
35 | HAMID S, DEROUANE E G, MERIAUDEAU P, et al. Effect of reductive and oxidative atmospheres on the propane aromatisation activity and selectivity of Ga/H-ZSM-5 catalysts[J]. Catalysis Today, 1996, 31(3/4): 327-334. |
36 | NOWAK I. Effect of H2-O2 pre-treatments on the state of gallium in Ga/H-ZSM-5 propane aromatisation catalysts[J]. Applied Catalysis A: General, 2003, 251(1): 107-120. |
37 | CHOUDHARY T V, KINAGE A, BANERJEE S, et al. Propane conversion to aromatics on highly active H-GaAlMFI: Effect of thermal pretreatment[J]. Energy & Fuels, 2006, 20(3): 919-922. |
38 | GIANNETTO G, LEON G, PAPA J, et al. Preparation of acidic or bifunctional catalysts by means of straightforward calcination of as-synthesized [Ga]-ZSM-5 zeolites obtained from alkali-free media. Propane aromatization[J]. Catalysis Letters, 1993, 22(4): 381-386. |
39 | NISHI K, KOMAI S I, INAGAKI K, et al. Structure and catalytic properties of Ga-MFI in propane aromatization[J]. Applied Catalysis A-General, 2002, 223(1): 187-193. |
40 | MATSUOKA A, SAKUMA S, ONODERA M, et al. Effects of Ga content and reaction pressure upon the aromatization of propane over H-Ga-Al-bimetallosilicate catalysts[J]. Journal of Porous Materials, 2012, 20(2): 367-373. |
41 | PHATANASRI S, PRASERTHDAM P, SRIPUSITTO A. Aromatization of light paraffins over Ga-containing MFI-type catalyst[J]. Korean Journal of Chemical Engineering, 2000, 17(4): 409-413. |
42 | RAHMAN M, INFANTES-MOLINA A, HOFFMAN A S, et al. Effect of Si/Al ratio of ZSM-5 support on structure and activity of Mo species in methane dehydroaromatization[J]. Fuel, 2020, 278: 118290. |
43 | LEE B J, HUR Y G, KIM D H, et al. Non-oxidative aromatization and ethylene formation over Ga/HZSM-5 catalysts using a mixed feed of methane and ethane[J]. Fuel, 2019, 253: 449-459. |
44 | CHOUDHARY V R, MANTRI K, SIVADINARAYANA C. Influence of various catalyst factors on time-on-stream activity of Ga/H-ZSM-5 in propane aromatization[J]. Indian Journal of Chemical Technology, 1999, 6(3): 166-171. |
45 | GIM M Y, SONG C, LIM Y H, et al. Effect of the Si/Al ratio in Ga/mesoporous HZSM-5 on the production of benzene, toluene, and xylene via coaromatization of methane and propane[J]. Catalysis Science & Technology, 2019, 9(22): 6285-6296. |
46 | JIA Yanming, WANG Junwen, ZHANG Kan, et al. Hierarchical ZSM-5 zeolite synthesized via dry gel conversion-steam assisted crystallization process and its application in aromatization of methanol[J]. Powder Technology, 2018, 328: 415-429. |
47 | WANNAPAKDEE W, WATTANAKIT C, PALUKA V, et al. One-pot synthesis of novel hierarchical bifunctional Ga/HZSM-5 nanosheets for propane aromatization[J]. RSC Advances, 2016, 6(4): 2875-2881. |
48 | HAN Jing, JIANG Guiyuan, HAN Shanlei, et al. The fabrication of Ga2O3/ZSM-5 hollow fibers for efficient catalytic conversion of n-butane into light olefins and aromatics[J]. Catalysts, 2016, 6(1): 13. |
49 | XIAO He, ZHANG Junfeng, WANG Peng, et al. Mechanistic insight to acidity effects of Ga/HZSM-5 on its activity for propane aromatization[J]. RSC Advances, 2015, 5(112): 92222-92233. |
50 | 朱华青, 翟效珍, 王建国. 第二组分改性Ga/HZSM-5催化剂芳构化性能研究[J]. 燃料化学学报, 1999, 27(S1): 75-79. |
ZHU Huaqing, ZHAI Xiaozhen, WANG Jianguo. Study on aromatization over Ga/HZSM-5 catalysis modified by second components[J]. Journal of Fuel Chemistry and Technology, 1999, 27(S1): 75-79. | |
51 | FADAEERAYENI S, SHAN J J, SARNELLO E, et al. Nickel/gallium modified HZSM-5 for ethane aromatization: Influence of metal function on reactivity and stability[J]. Applied Catalysis A: General, 2020, 601: 117629. |
52 | SAMANTA A, BAI X W, ROBINSON B, et al. Conversion of light alkane to value-added chemicals over ZSM-5/metal promoted catalysts[J]. Industrial & Engineering Chemistry Research, 2017, 56(39): 11006-11012. |
53 | 曹荣, 侯震山, 赵洪, 等. Pt-Ga/HZSM-5催化剂上丙烷芳构化[J]. 物理化学学报, 1996, 12(2): 114-118. |
CAO Rong, HOU Zhenshan, ZHAO Hong, Propane aromatization over Pt-Ga/HZSM-5 catalyst[J]. Acta Physico-Chimica Sinica, 1996, 12(2): 114-118. | |
54 | CAIOLA A, ROBINSON B, BAI X W, et al. Study of the hydrogen pretreatment of gallium and platinum promoted ZSM-5 for the ethane dehydroaromatization reaction[J]. Industrial & Engineering Chemistry Research, 2021, 60(30): 11421-11431. |
55 | LAPIDUS A L, MIKHAILOV M N, DERGACHEV A A, et al. Structure of active sites of Ga-Pt zeolite catalysts of alkane aromatization[J]. Doklady Physical Chemistry, 2006, 408(2): 175-177. |
56 | MIKHAILOV M N, DERGACHEV A A, MISHIN I V, et al. The role played by Ga-Pt nanoparticles in the aromatization of lower alkanes on ZSM-5 zeolites[J]. Russian Journal of Physical Chemistry A Focus on Chemistry, 2008, 82(4): 612-618. |
57 | XU Bing, TAN Minghui, WU Xuemei, et al. Propane aromatization tuned by tailoring Cr modified Ga/ZSM‐5 catalysts[J]. ChemCatChem, 2021, 13(16): 3601-3610. |
58 | GOMEZ E, NIE X W, LEE J H, et al. Tandem reactions of CO2 reduction and ethane aromatization[J]. Journal of the American Chemical Society, 2019, 141(44): 17771-17782. |
59 | NIU Xiaoran, NIE Xiaowa, YANG Chunhui, et al. CO2-Assisted propane aromatization over phosphorus-modified Ga/ZSM-5 catalysts[J]. Catalysis Science & Technology, 2020, 10(6): 1881-1888. |
60 | ZHAO Y H, CAO C Y. The effect of hydrothermal treatment on the aromatization performance of HZSM-5 modified by Zn, P[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2015, 37(1): 76-83. |
61 | 樊华华. Zn/P-ZSM-5催化二氧化碳串联乙烷芳构化机理研究[D]. 大连: 大连理工大学, 2021. |
FAN Huahua. Mechanistic study of the tandem reaction of CO2 and ethane aromatization over Zn/P-ZSM-5 catalyst[D]. Dalian: Dalian University of Technology, 2021. | |
62 | 付红英. 低碳烷烃芳构化催化剂研究[D]. 大庆: 大庆石油学院, 2009. |
FU Hongying. Study on catalysts for aromatization of light alkane[D]. Daqing: Daqing Petroleum Institute, 2009. | |
63 | KUMAR N, LINDFORS L E. Synthesis of Ga-and Zn-H-ZSM-5 zeolite catalysts using Ga-and Zn-impregnated γ-Al2O3 for the transformation of n-butane to aromatic hydrocarbons[J]. Studies in Surface Science & Catalysis, 1995, 94: 325-332. |
64 | CHOUDHARY T V, KINAGE A, BANERJEE S, et al. Influence of space velocity on product selectivity and distribution of aromatics in propane aromatization over H-GaAlMFI zeolite[J]. Journal of Molecular Catalysis A: Chemical, 2006, 246(1/2): 79-84. |
65 | BUCKLES G, HUTCHINGS G J. Evidence for the reversible formation of a catalytic active site for propane aromatization for Ga2O3/H-ZSM-5[J]. Catalysis Letters, 1994, 27(3): 361-367. |
66 | BUCKLES G J, HUTCHINGS G J. Conversion of propane using H-ZSM-5 and Ga H-ZSM-5 in the presence of Ga-H-ZSM-5 in the presence of co-fed nitric oxide, oxygen, and hydrogen[J]. Journal of Catalysis, 1995, 151(1): 33-43. |
[1] | 张明焱, 刘燕, 张雪婷, 刘亚科, 李从举, 张秀玲. 非贵金属双功能催化剂在锌空气电池研究进展[J]. 化工进展, 2023, 42(S1): 276-286. |
[2] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[3] | 谢璐垚, 陈崧哲, 王来军, 张平. 用于SO2去极化电解制氢的铂基催化剂[J]. 化工进展, 2023, 42(S1): 299-309. |
[4] | 杨霞珍, 彭伊凡, 刘化章, 霍超. 熔铁催化剂活性相的调控及其费托反应性能[J]. 化工进展, 2023, 42(S1): 310-318. |
[5] | 王乐乐, 杨万荣, 姚燕, 刘涛, 何川, 刘逍, 苏胜, 孔凡海, 朱仓海, 向军. SCR脱硝催化剂掺废特性及性能影响[J]. 化工进展, 2023, 42(S1): 489-497. |
[6] | 邓丽萍, 时好雨, 刘霄龙, 陈瑶姬, 严晶颖. 非贵金属改性钒钛基催化剂NH3-SCR脱硝协同控制VOCs[J]. 化工进展, 2023, 42(S1): 542-548. |
[7] | 许友好, 王维, 鲁波娜, 徐惠, 何鸣元. 中国炼油创新技术MIP的开发策略及启示[J]. 化工进展, 2023, 42(9): 4465-4470. |
[8] | 程涛, 崔瑞利, 宋俊男, 张天琪, 张耘赫, 梁世杰, 朴实. 渣油加氢装置杂质沉积规律与压降升高机理分析[J]. 化工进展, 2023, 42(9): 4616-4627. |
[9] | 王鹏, 史会兵, 赵德明, 冯保林, 陈倩, 杨妲. 过渡金属催化氯代物的羰基化反应研究进展[J]. 化工进展, 2023, 42(9): 4649-4666. |
[10] | 张启, 赵红, 荣峻峰. 质子交换膜燃料电池中氧还原反应抗毒性电催化剂研究进展[J]. 化工进展, 2023, 42(9): 4677-4691. |
[11] | 王伟涛, 鲍婷玉, 姜旭禄, 何珍红, 王宽, 杨阳, 刘昭铁. 醛酮树脂基非金属催化剂催化氧气氧化苯制备苯酚[J]. 化工进展, 2023, 42(9): 4706-4715. |
[12] | 葛亚粉, 孙宇, 肖鹏, 刘琦, 刘波, 孙成蓥, 巩雁军. 分子筛去除VOCs的研究进展[J]. 化工进展, 2023, 42(9): 4716-4730. |
[13] | 向阳, 黄寻, 魏子栋. 电催化有机合成反应的活性和选择性调控研究进展[J]. 化工进展, 2023, 42(8): 4005-4014. |
[14] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[15] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |