化工进展 ›› 2023, Vol. 42 ›› Issue (10): 5191-5199.DOI: 10.16085/j.issn.1000-6613.2022-2207
刘美佳1(), 王刚1(), 张忠东2(), 何盛宝2, 高金森1
收稿日期:
2022-11-29
修回日期:
2023-04-17
出版日期:
2023-10-15
发布日期:
2023-11-11
通讯作者:
王刚,张忠东
作者简介:
刘美佳(1994—),女,博士研究生,研究方向为原油催化裂解技术。E-mail: 1484010080@qq.com。
基金资助:
LIU Meijia1(), WANG Gang1(), ZHANG Zhongdong2(), HE Shengbao2, GAO Jinsen1
Received:
2022-11-29
Revised:
2023-04-17
Online:
2023-10-15
Published:
2023-11-11
Contact:
WANG Gang, ZHANG Zhongdong
摘要:
随着我国炼油产能过剩,而“三烯”等基本化工原料的需求增加,开发原油直接催化裂解制低碳烯烃工艺对实现炼油企业的炼化一体化转型具有重要的意义。本文首先介绍了原油烃分子的结构特点,得出石蜡基原油中约74%的组分为可直接裂化,是炼油工业主要产品从车用燃料升级为基础化工产品的理想油源。然后结合原油中轻、重馏分烃分子的裂解性能区别,阐述了目前的催化裂解加工策略,提出了“快速床+湍动床”的耦合流化床型催化裂解反应器,以提供差异结构烃分子共深度高效转化的催化环境,为全馏分石蜡基原油的高选择性转化、实现石蜡基原油从馏分产品向分子产品转型提供了新的技术路径。
中图分类号:
刘美佳, 王刚, 张忠东, 何盛宝, 高金森. 石蜡基原油直接催化裂解制低碳烯烃新型炼化工艺的开发[J]. 化工进展, 2023, 42(10): 5191-5199.
LIU Meijia, WANG Gang, ZHANG Zhongdong, HE Shengbao, GAO Jinsen. Development of a new refining process for direct catalytic cracking of paraffin based crude oil to produce light olefins[J]. Chemical Industry and Engineering Progress, 2023, 42(10): 5191-5199.
项目 | 数值 | 项目 | 数值 |
---|---|---|---|
密度(20°C)/kg·m-3 | 861.2 | 元素含量(质量分数)/% | |
黏度(50°C)/mm2·s-1 | 22.27 | H | 13.19 |
酸值/mg KOH·g-1 | 0.02 | C | 85.42 |
残炭/% | 3.08 | S | 0.10 |
灰分/% | 0.0019 | N | 0.20 |
水分/% | 0.29 | 馏程①/℃ | |
凝点/°C | 32 | 初馏点 | 76.6 |
胶质(质量分数)/% | 5.47 | 10% | 209.2 |
沥青质(质量分数)/% | 0.31 | 30% | 383.8 |
蜡含量(质量分数)/% | 26.2 | 50% | 448.2 |
金属含量/μg·g-1 | 70% | 602.2 | |
Ni | 2.05 | 90% | 707.2 |
Fe | 0.33 | 95% | 741.2 |
V | 0.04 | API° | 32.1 |
Ca | 1.16 | 无机氯/mg·L-1 | 3.37 |
Cu | 0.13 | ||
Na | 3.66 |
表1 石蜡基(大庆)原油的基本性质[18]
项目 | 数值 | 项目 | 数值 |
---|---|---|---|
密度(20°C)/kg·m-3 | 861.2 | 元素含量(质量分数)/% | |
黏度(50°C)/mm2·s-1 | 22.27 | H | 13.19 |
酸值/mg KOH·g-1 | 0.02 | C | 85.42 |
残炭/% | 3.08 | S | 0.10 |
灰分/% | 0.0019 | N | 0.20 |
水分/% | 0.29 | 馏程①/℃ | |
凝点/°C | 32 | 初馏点 | 76.6 |
胶质(质量分数)/% | 5.47 | 10% | 209.2 |
沥青质(质量分数)/% | 0.31 | 30% | 383.8 |
蜡含量(质量分数)/% | 26.2 | 50% | 448.2 |
金属含量/μg·g-1 | 70% | 602.2 | |
Ni | 2.05 | 90% | 707.2 |
Fe | 0.33 | 95% | 741.2 |
V | 0.04 | API° | 32.1 |
Ca | 1.16 | 无机氯/mg·L-1 | 3.37 |
Cu | 0.13 | ||
Na | 3.66 |
参数 | 汽油 | 柴油 | 参数 | 减压馏分油 | 减压渣油 |
---|---|---|---|---|---|
沸点范围/℃ | 初~200 | 200~350 | 沸点范围/℃ | 350~500 | >500 |
收率/% | 11.50 | 19.70 | 收率/% | 26.00 | 42.80 |
烃组成/% | 平均分子量 | 412 | 1120 | ||
链烷烃 | 60.77 | 62.60 | 平均结构参数 | ||
环烷烃 | 30.41 | 25.50 | CP/% | 74.70 | 73.00 |
芳烃 | 8.82 | 11.90 | CN/% | 16.50 | 11.00 |
CA/% | 8.80 | 16.00 | |||
总环数RT | 2.50 | 5.30 | |||
芳香环数RA | 0.71 | 3.00 | |||
环烷环数RN | 1.79 | 2.30 |
表2 石蜡基(大庆)原油轻、重馏分烃组成及平均分子结构参数[19]
参数 | 汽油 | 柴油 | 参数 | 减压馏分油 | 减压渣油 |
---|---|---|---|---|---|
沸点范围/℃ | 初~200 | 200~350 | 沸点范围/℃ | 350~500 | >500 |
收率/% | 11.50 | 19.70 | 收率/% | 26.00 | 42.80 |
烃组成/% | 平均分子量 | 412 | 1120 | ||
链烷烃 | 60.77 | 62.60 | 平均结构参数 | ||
环烷烃 | 30.41 | 25.50 | CP/% | 74.70 | 73.00 |
芳烃 | 8.82 | 11.90 | CN/% | 16.50 | 11.00 |
CA/% | 8.80 | 16.00 | |||
总环数RT | 2.50 | 5.30 | |||
芳香环数RA | 0.71 | 3.00 | |||
环烷环数RN | 1.79 | 2.30 |
化合物 | 反应条件 | 转化率/% | 乙烯收率(质量分数)/% | 丙烯收率(质量分数)/% | 丁烯收率(质量分数)/% | 参考文献 |
---|---|---|---|---|---|---|
四氢萘 | 600℃;MHSV=8h-1 | 19.07 | 0.02 | 0.10 | 0.05 | [ |
十氢萘 | 28.93 | 0.10 | 0.32 | 0.34 | ||
丁基环己烷 | 33.95 | 0.19 | 0.53 | 0.54 | ||
正癸烷 | 37.60 | 0.23 | 0.81 | 0.87 | ||
正己烷 | 660℃;MHSV=4.10h-1 | 73.73 | 13.88 | 20.48 | 6.94 | [ |
正辛烷 | 96.66 | 21.88 | 24.75 | 8.91 | ||
异辛烷 | 61.15 | 9.70 | 17.36 | 9.26 | ||
环己烷 | 86.18 | 17.01 | 23.94 | 7.94 | ||
乙苯 | 92.56 | 18.87 | 1.67 | 0.49 | ||
1-己烯 | 99.99 | 25.37 | 36.49 | 11.08 |
表3 不同模型化合物催化裂解的转化率与低碳烯烃收率
化合物 | 反应条件 | 转化率/% | 乙烯收率(质量分数)/% | 丙烯收率(质量分数)/% | 丁烯收率(质量分数)/% | 参考文献 |
---|---|---|---|---|---|---|
四氢萘 | 600℃;MHSV=8h-1 | 19.07 | 0.02 | 0.10 | 0.05 | [ |
十氢萘 | 28.93 | 0.10 | 0.32 | 0.34 | ||
丁基环己烷 | 33.95 | 0.19 | 0.53 | 0.54 | ||
正癸烷 | 37.60 | 0.23 | 0.81 | 0.87 | ||
正己烷 | 660℃;MHSV=4.10h-1 | 73.73 | 13.88 | 20.48 | 6.94 | [ |
正辛烷 | 96.66 | 21.88 | 24.75 | 8.91 | ||
异辛烷 | 61.15 | 9.70 | 17.36 | 9.26 | ||
环己烷 | 86.18 | 17.01 | 23.94 | 7.94 | ||
乙苯 | 92.56 | 18.87 | 1.67 | 0.49 | ||
1-己烯 | 99.99 | 25.37 | 36.49 | 11.08 |
产物 | 原油催化裂解/% | 原油催化裂解+部分产物 回炼/% |
---|---|---|
乙烯 | 13.90 | 20.10 |
丙烯 | 23.30 | 24.80 |
碳四烃 | 12.50 | 5.60 |
轻石脑油 | 12.40 | 6.30 |
轻油 | 8.80 | 8.90 |
油浆 | 4.00 | 4.10 |
双烯+轻质芳烃 | 50.80 | 60.60 |
表4 原油催化裂解技术的主要产物收率(质量分数)[33]
产物 | 原油催化裂解/% | 原油催化裂解+部分产物 回炼/% |
---|---|---|
乙烯 | 13.90 | 20.10 |
丙烯 | 23.30 | 24.80 |
碳四烃 | 12.50 | 5.60 |
轻石脑油 | 12.40 | 6.30 |
轻油 | 8.80 | 8.90 |
油浆 | 4.00 | 4.10 |
双烯+轻质芳烃 | 50.80 | 60.60 |
产物 | 中原原油/% | 大庆原油/% |
---|---|---|
干气 | 46.92 | 49.09 |
乙烯 | 30.94 | 32.99 |
液化气 | 30.88 | 31.7 |
丙烯 | 19.32 | 19.30 |
丁烯 | 5.34 | 5.79 |
1,3-丁二烯 | 5.15 | 5.56 |
汽油 | 2.97 | 3.80 |
柴油 | 6.76 | 6.10 |
重油 | 2.27 | 1.92 |
焦炭 | 10.20 | 7.39 |
乙烯+丙烯+丁烯+丁二烯 | 60.75 | 63.64 |
表5 采用UPC技术的原油催化裂解产物收率(质量分数)分布[39]
产物 | 中原原油/% | 大庆原油/% |
---|---|---|
干气 | 46.92 | 49.09 |
乙烯 | 30.94 | 32.99 |
液化气 | 30.88 | 31.7 |
丙烯 | 19.32 | 19.30 |
丁烯 | 5.34 | 5.79 |
1,3-丁二烯 | 5.15 | 5.56 |
汽油 | 2.97 | 3.80 |
柴油 | 6.76 | 6.10 |
重油 | 2.27 | 1.92 |
焦炭 | 10.20 | 7.39 |
乙烯+丙烯+丁烯+丁二烯 | 60.75 | 63.64 |
1 | 李明丰, 吴昊, 沈宇, 等. “双碳”背景下炼化企业高质量发展路径探讨[J]. 石油学报(石油加工), 2022, 38(3): 493-499. |
LI Mingfeng, WU Hao, SHEN Yu, et al. High-quality development path for refining and chemical enterprises under the dual carbon background[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(3): 493-499. | |
2 | 孙丽丽. 新型炼油厂的技术集成与构建[J]. 石油学报(石油加工), 2020, 36(1): 1-10. |
SUN Lili. Technology integration and construction of new refineries[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(1): 1-10. | |
3 | 李振宇, 王红秋, 黄格省, 等.我国乙烯生产工艺现状与发展趋势分析[J]. 化工进展, 2017, 36(3): 767-773. |
LI Zhenyu, WANG Hongqiu, HUANG Gesheng, et al. Analysis on status and development trend of ethylene production technology in China[J]. Chemical Industry and Engineering Progress, 2017, 36(3): 767-773. | |
4 | 宋昌才, 邓中活, 牛传峰. 重油生产低碳烯烃等化工品技术研究进展[J]. 化工进展, 2019, 38(S1): 86-94. |
SONG Changcai, DENG Zhonghuo, NIU Chuanfeng. Advances in production of chemicals such as light olefins from heavy oil[J]. Chemical Industry and Engineering Progress, 2019, 38(S1): 86-94. | |
5 | CORMA A, CORRESA E, MATHIEU Y, et al. Crude oil to chemicals: Light olefins from crude oil[J]. Catalysis Science & Technology, 2017, 7(1): 12-46. |
6 | ALABDULLAH Mohammed, Alberto RODRIGUEZ-GOMEZ, SHOINKHOROVA Tuiana, et al. One-step conversion of crude oil to light olefins using a multi-zone reactor[J]. Nature Catalysis, 2021, 4(3): 233-241. |
7 | ZHOU Xin, LI Shangfeng, WANG Yuan, et al. Crude oil hierarchical catalytic cracking for maximizing chemicals production: Pilot-scale test, process optimization strategy, techno-economic-society-environment assessment[J]. Energy Conversion and Management, 2022, 253: 115149. |
8 | 许友好, 汪燮卿, 舒兴田. 原油最大化生产化工原料的技术思考及相关技术开发[J]. 石油炼制与化工, 2019, 50(11): 1-10. |
XU Youhao, WANG Xieqing, SHU Xingtian. Technical consideration and relevant technological development on maximizing chemicals from crude oil[J]. Petroleum Processing and Petrochemicals, 2019, 50(11): 1-10. | |
9 | ALABDULLAH Mohammed A, SHOINKHOROVA Tuiana, DIKHTIARENKO Alla, et al. Understanding catalyst deactivation during the direct cracking of crude oil[J]. Catalysis Science & Technology, 2022, 12(18): 5657-5670. |
10 | ZHOU Xin, SUN Zongzhuang, YAN Hao, et al. Produce petrochemicals directly from crude oil catalytic cracking, a techno-economic analysis and life cycle society-environment assessment[J]. Journal of Cleaner Production, 2021, 308: 127283. |
11 | USMAN Abdulhafiz, AITANI Abdullah, Sulaiman AL-KHATTAF. Catalytic cracking of light crude oil: Effect of feed mixing with liquid hydrocarbon fractions[J]. Energy & Fuels, 2017, 31(11): 12677-12684. |
12 | TANIMU Abdulkadir, TANIMU Gazali, ALASIRI Hassan, et al. Catalytic cracking of crude oil: Mini review of catalyst formulations for enhanced selectivity to light olefins[J]. Energy & Fuels, 2022, 36(10): 5152-5166. |
13 | AL-ABSI Akram A, AITANI Abdullah M, AL-KHATTAF Sulaiman S. Thermal and catalytic cracking of whole crude oils at high severity[J]. Journal of Analytical and Applied Pyrolysis, 2020, 145: 104705. |
14 | AL-ABSI Akram A, AL-KHATTAF Sulaiman S. Conversion of Arabian light crude oil to light olefins via catalytic and thermal cracking[J]. Energy & Fuels, 2018, 32(8): 8705-8714. |
15 | AL-KHATTAF Sulaiman S, Syed A ALI. Catalytic cracking of Arab super light crude oil to light olefins: An experimental and kinetic study[J]. Energy & Fuels, 2018, 32(2): 2234-2244. |
16 | ZHANG Di, ZONG Peijie, LI Jie, et al. Fundamental studies and pilot verification of an olefins/aromatics-rich chemical production from crude oil dehydrogenation catalytic pyrolysis process[J]. Fuel, 2022, 310: 122435. |
17 | ROGEL Estrella, OVALLES Cesar, VIEN Janie, et al. Asphaltene characterization of paraffinic crude oils[J]. Fuel, 2016, 178: 71-76. |
18 | 丛丽茹, 关旭. 大庆原油性质变化跟踪评价[J]. 炼油与化工, 2014, 25(1): 9-12, 60. |
CONG Liru, GUAN Xu. Tracking assessment on change of Daqing crude oil properties[J]. Refining and Chemical Industry, 2014, 25(1): 9-12, 60. | |
19 | 陈俊武主编,邓先樑等 著. 催化裂化工艺与工程[M]. 2版. 北京: 中国石化出版社, 2005. |
CHEN Junwu, DENG Xianliang. Catalytic cracking process and engineering[M]. 2nd ed. Beijing: China Petrochemical Press, 2005. | |
20 | Petr ZÁMOSTNÝ, Zdeněk BĚLOHLAV, Lucie STARKBAUMOVÁ, et al. Experimental study of hydrocarbon structure effects on the composition of its pyrolysis products[J]. Journal of Analytical and Applied Pyrolysis, 2010, 87(2): 207-216. |
21 | 韩蕾, 欧阳颖, 邢恩会, 等. 不同硅/铝比ZSM-5分子筛对烷烃和环烷烃催化裂解性能的影响[J]. 石油学报(石油加工), 2018, 34(5): 872-881. |
HAN Lei, OUYANG Ying, XING Enhui, et al. Effect of Si/Al ratio on the catalytic performance of ZSM-5 zeolites in alkane and cycloalkane cracking[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2018, 34(5): 872-881. | |
22 | 张睿, 刘贵丽, 王亚东, 等. 轻烃催化裂解制低碳烯烃反应规律与原料特征化[J]. 化工学报, 2016, 67(8): 3387-3393. |
ZHANG Rui, LIU Guili, WANG Yadong, et al. Reaction behaviors and feed characterization of light hydrocarbon catalytic pyrolysis for production of light olefins[J]. CIESC Journal, 2016, 67(8): 3387-3393. | |
23 | 王新, 许友好. 四氢萘和十氢萘的催化裂化反应途径及特征产物[J]. 石油学报(石油加工), 2019, 35(2): 224-233. |
WANG Xin, XU Youhao. Reaction pathways and characteristic products of tetralin and decalin by catalytic cracking[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2019, 35(2): 224-233. | |
24 | 李福超, 袁起民, 魏晓丽. 烃分子结构对其催化裂解反应性能的影响[J]. 石油学报(石油加工), 2020, 36(4): 661-666. |
LI Fuchao, YUAN Qimin, WEI Xiaoli. Effects of molecular structure on hydrocarbon catalytic cracking performance[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2020, 36(4): 661-666. | |
25 | 叶蔚甄. 不同石油分子化学结构及炼制性能初探[D]. 北京: 石油化工科学研究院, 2016. |
YE Weizhen. The primary exploration on the chemical structure and refining properties of different types of petroleum molecules[D]. Beijing: Research Institute of Petroleum Processing, 2016. | |
26 | KISSIN Yury V. Chemical mechanisms of catalytic cracking over solid acidic catalysts: Alkanes and alkenes[J]. Catalysis Reviews, 2001, 43(1/2): 85-146. |
27 | 蔡新恒, 魏晓丽, 梁家林, 等. 基于分子表征的重油丙烯潜产率模型及应用[J]. 石油与天然气化工, 2020, 49(4): 56-61. |
CAI Xinheng, WEI Xiaoli, LIANG Jialin, et al. Research and application of potential propylene yield model based on molecular characterization of heavy oil[J]. Chemical Engineering of Oil and Gas, 2020, 49(4): 56-61. | |
28 | 聂红, 魏晓丽, 胡志海, 等. 化工型炼油厂反应基础与核心技术开发[J]. 石油学报(石油加工), 2021, 37(6): 1205-1215. |
NIE Hong, WEI Xiaoli, HU Zhihai, et al. Reaction fundamentals and core technology development of chemical refinery[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(6): 1205-1215. | |
29 | 刘美佳, 王刚, 张忠东, 等. C5烃催化裂解过程中氢转移反应的研究[J]. 燃料化学学报, 2021, 49(1): 104-112. |
LIU Meijia, WANG Gang, ZHANG Zhongdong, et al. Study on hydrogen transfer reaction in C5 hydrocarbons catalytic pyrolysis[J]. Journal of Fuel Chemistry and Technology, 2021, 49(1): 104-112. | |
30 | 刘美佳, 王刚, 许顺年, 等. 分子筛类型对正戊烷催化裂解反应性能的影响[J]. 石油学报(石油加工), 2022, 38(5): 1010-1020. |
LIU Meijia, WANG Gang, XU Shunnian, et al. Effect of zeolite types on the performance of n-pentane catalytic cracking reaction [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2022, 38(5): 1010-1020. | |
31 | STELL Richard C, BANCROFT Jennifer L, DINICOLANTONIO Arthur R, et al. Converting mist flow to annular flow in thermal cracking application: US20040004028[P]. 2004-01-08. |
32 | ABBA Ibrahim A, SHAFI Raheel, BOURANE Abdennour, et al. Integrated hydroprocessing and fluid catalytic cracking for processing of a crude oil: US20130248421[P]. 2013-09-26. |
33 | 马文明, 朱根权, 杨超, 等. 一种将原油转化成石油化工产品的集成方法和集成装置: CN112745915A[P]. 2021-05-04. |
MA Wenming, ZHU Genquan, YANG Chao, et al. An integrated method and device for converting crude oil into petrochemical products: CN112745915A[P]. 2021-05-04. | |
34 | 李春义, 郭阳玲, 许乃文, 等. 一种烃类催化裂解制低碳烯烃催化剂及其制备方法: CN111203225A[P]. 2020-05-29. |
LI Chunyi, GUO Yangling, XU Naiwen, et al. A catalyst for catalytic cracking of hydrocarbons to light olefins and its preparation method: CN111203225A[P]. 2020-05-29. | |
35 | 中国石化石油化工科学研究院科研处. 中国石化石油化工科学研究院的原油催化裂解生产化学品技术实现全球首次工业应用[J]. 石油炼制与化工, 2022, 53(7): 22. |
The technology of producing chemicals by catalytic cracking of crude oil in China Petrochemical Research Institute has achieved the first industrial application in the world[J]. Petroleum Processing and Petrochemicals, 2022, 53(7): 22. | |
36 | 原油催化裂解技术实现全球首次工业化应用[J]. 石油化工设计, 2021, 38(2): 12. |
Catalytic cracking technology of crude oil realizes the first industrial application in the world[J]. Petrochemical Design, 2021, 38(2): 12. | |
37 | 吴青. 原油(重油)制化学品的技术及其进展——Ⅱ.重油催化裂解与DPC碱催化技术[J]. 炼油技术与工程, 2022, 52(8): 1-7, 15. |
WU Qing. Technology and progress in crude oil to chemicals Part two: Catalytic cracking technology and DPC basic catalytic cutting technology[J]. Petroleum Refinery Engineering, 2022, 52(8): 1-7, 15. | |
38 | 周鑫, 闫昊, 赵辉, 等. 原油直接催化裂解过程模拟与工艺参数优化[J]. 石油学报(石油加工), 2021, 37(6): 1216-1224. |
ZHOU Xin, YAN Hao, ZHAO Hui, et al. Simulation of the crude oil direct catalytic cracking process and optimization of process parameters[J]. Acta Petrolei Sinica (Petroleum Processing Section), 2021, 37(6): 1216-1224. | |
39 | 周鑫. 原油直接制化学品新工艺的生命周期经济-社会-环境对比分析[R]. 珠海: 中国化学会第32届学术年会第十九分会, 2021. |
ZHOU Xin. Life cycle economic-society-environment comparative analysis of a new process for direct production of chemicals from crude oil[R]. Zhuhai: 19th Session of 32nd Academic Annual Meeting of Chinese Chemical Society, 2021. | |
40 | 王平, 杨朝合, 田学民. 面向产品分布协调的两段提升管催化裂解多目标优化[J]. 化工学报, 2017, 68(3): 941-946. |
WANG Ping, YANG Chaohe, TIAN Xuemin. Multi-objective optimization of two-stage-riser catalytic pyrolysis for optimal trade-off in product distribution[J]. CIESC Journal, 2017, 68(3): 941-946. | |
41 | ZHOU Xin, YANG Qingchun, YANG Shiqi, et al. One-step leap in achieving oil-to-chemicals by using a two-stage riser reactor: Molecular-level process model and multi-objective optimization strategy[J]. Chemical Engineering Journal, 2022, 444: 136684. |
42 | 钱伯章. 我国原油蒸汽裂解技术首次工业化应用成功[J]. 石化技术与应用, 2022, 40(1): 65. |
QIAN Bozhang. The first industrial application of steam cracking technology of crude oil in China was successful[J]. Petrochemical Technology & Application, 2022, 40(1): 65. | |
43 | 张晨曦, 魏飞, 王文宏, 等. 一种多级逆流催化裂化/裂解系统及方法: CN108753356B[P]. 2020-09-11. |
ZHANG Chenxi, WEI Fei, WANG Wenhong, et al. Multi-stage reverse flow catalytic cracking/splitting system and method: CN108753356B[P]. 2020-09-11. | |
44 | LIU Fei, WEI Fei, LI Guoliang, et al. Study on the FCC process of a novel riser–downer coupling reactor (Ⅲ): Industrial trial and CFD modeling[J]. Industrial & Engineering Chemistry Research, 2008, 47(22): 8582-8587. |
45 | CHENG Yi, WU Changning, ZHU Jingxu, et al. Downer reactor: From fundamental study to industrial application[J]. Powder Technology, 2008, 183(3): 364-384. |
46 | ALABDULLAH Mohammed, SHOINKHOROVA Tuiana, Alberto RODRIGUEZ-GOMEZ, et al. Composition-performance relationships in catalysts formulation for the direct conversion of crude oil to chemicals[J]. ChemCatChem, 2021, 13(7): 1806-1813. |
47 | 汪燮卿, 舒兴田. 重质油裂解制轻烯烃[M]. 北京: 中国石化出版社, 2015. |
WANG Xieqing, SHU Xingtian. Cracking heavy oil to produce light olefins[M]. Beijing: China Petrochemical Press, 2015. | |
48 | 王巍, 谢朝钢. 催化裂解(DCC)新技术的开发与应用[J]. 石油化工技术经济, 2005, 21(1): 8-13. |
WANG Wei, XIE Chaogang. Development and application of DCC new technology[J]. Techno-Economics in Petrochemicals, 2005, 21(1): 8-13. |
[1] | 常印龙, 周启民, 王青月, 王文俊, 李伯耿, 刘平伟. 废弃聚烯烃的高值化学回收研究进展[J]. 化工进展, 2023, 42(8): 3965-3978. |
[2] | 谭利鹏, 申峻, 王玉高, 刘刚, 徐青柏. 煤沥青和石油沥青共混改性的研究进展[J]. 化工进展, 2023, 42(7): 3749-3759. |
[3] | 索寒生, 贾梦达, 宋光, 刘东庆. 数字孪生技术助力石化智能工厂[J]. 化工进展, 2023, 42(7): 3365-3373. |
[4] | 李若琳, 何少林, 苑宏英, 刘伯约, 纪冬丽, 宋阳, 刘博, 余绩庆, 徐英俊. 原位热解对油页岩物性及地下水水质影响探索[J]. 化工进展, 2023, 42(6): 3309-3318. |
[5] | 戴行, 高瑞雪, 李奕国, 朱锦, 王静刚. 高玻璃化转变温度抗冲击透明聚酯的研究进展[J]. 化工进展, 2023, 42(5): 2555-2565. |
[6] | 范昀培, 金晶, 刘敦禹, 王静杰, 刘秋祺, 许开龙. CaSO4载氧体在煤气化化学链燃烧中的脱汞[J]. 化工进展, 2023, 42(3): 1638-1648. |
[7] | 邱沫凡, 蒋琳, 刘荣正, 刘兵, 唐亚平, 刘马林. 气固流化床化学反应数值模拟中颗粒尺度模型研究进展[J]. 化工进展, 2023, 42(10): 5047-5058. |
[8] | 张潇, 王占一, 吴峙颖, 刘玉婷, 刘子龙, 刘欣佳, 张遂安. 压裂支撑剂的覆膜改性技术[J]. 化工进展, 2023, 42(1): 386-400. |
[9] | 沈天绪, 沈来宏. 基于3kW塔式串行流化床差异燃料的化学链燃烧解析[J]. 化工进展, 2023, 42(1): 138-147. |
[10] | 房科靖, 熊祖鸿, 鲁敏, 黎涛, 陈勇. 垃圾衍生燃料的制备、热转化特性及应用研究进展[J]. 化工进展, 2022, 41(S1): 132-140. |
[11] | 胡文德, 王仰东, 王传明. 合成气直接催化转化制低碳烯烃研究进展[J]. 化工进展, 2022, 41(9): 4754-4766. |
[12] | 郑瑾, 韩瑞瑞, 李丹丹, 王馨妤, 高春阳, 杜显元, 张晓飞, 邹德勋. 过氧化尿素与微生物联合修复石油污染土壤[J]. 化工进展, 2022, 41(9): 5085-5093. |
[13] | 张鹏, 孟凡会, 杨贵楠, 李忠. 金属氧化物在OX-ZEO催化剂中催化CO x 加氢制低碳烯烃研究进展[J]. 化工进展, 2022, 41(8): 4159-4172. |
[14] | 杨超, 矫庆泽, 冯彩虹, 赵芸. 废旧轮胎催化裂解研究进展[J]. 化工进展, 2022, 41(7): 3877-3889. |
[15] | 龚鑫, 刘小冬, 温福山, 师楠, 刘东. 中间相炭微球乳化-聚合法制备及电化学性能[J]. 化工进展, 2022, 41(5): 2379-2388. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |