化工进展 ›› 2023, Vol. 42 ›› Issue (1): 53-66.DOI: 10.16085/j.issn.1000-6613.2022-1533
收稿日期:
2022-08-19
修回日期:
2022-10-11
出版日期:
2023-01-25
发布日期:
2023-02-20
通讯作者:
杨宇森
作者简介:
李喆(2000—),女,硕士研究生,研究方向为电催化二氧化碳还原。E-mail:2022200971@mail.buct.edu.cn。
基金资助:
LI Zhe(), LI Zeyang, YANG Yusen(), WEI Min
Received:
2022-08-19
Revised:
2022-10-11
Online:
2023-01-25
Published:
2023-02-20
Contact:
YANG Yusen
摘要:
随着日益增长的能源需求,人类社会对于传统碳基化石能源过度依赖,不仅加速了地球上有限能源储备的消耗,还导致大气中二氧化碳(CO2)不断累积。如何对二氧化碳进行可持续的捕获再利用,实现高效的零碳网络循环,已成为人类亟需解决的重大挑战之一。近年来,使用绿色可持续电力的电化学二氧化碳还原反应(CO2RR)生产增值化学品成为研究热点。本文首先介绍了CO2RR的基本电化学反应原理;然后总结了电化学还原CO2制备甲酸/甲酸盐的主要金属基催化剂,着重介绍了Bi、Sn、In三类金属基催化剂的设计调控策略;进一步概括了电化学相关的原位表征手段,分别介绍了原位光谱技术和原位X射线表征技术;最后对电催化二氧化碳还原研究领域的未来发展进行了展望。
中图分类号:
李喆, 李泽洋, 杨宇森, 卫敏. 电化学二氧化碳还原制甲酸催化剂的研究进展[J]. 化工进展, 2023, 42(1): 53-66.
LI Zhe, LI Zeyang, YANG Yusen, WEI Min. Research progress on catalysts for electrocatalytic reduction of carbon dioxide to formic acid[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 53-66.
物理/化学性质 | 数值 |
---|---|
熔点/℃ | -78.5 |
沸点/℃ | -56.6 |
溶解度/g·L-1 | 1.45 |
第一电离能/eV | 13.79 |
电子结合能/eV | 38 |
表1 CO2物理化学性质[6,15]
物理/化学性质 | 数值 |
---|---|
熔点/℃ | -78.5 |
沸点/℃ | -56.6 |
溶解度/g·L-1 | 1.45 |
第一电离能/eV | 13.79 |
电子结合能/eV | 38 |
1 | LAL R. Sequestration of atmospheric CO2 in global carbon pools[J]. Energy & Environmental Science, 2008, 1(1): 86-100. |
2 | BUI M, ADJIMAN C S, BARDOW A, et al. Carbon capture and storage (CCS): the way forward[J]. Energy & Environmental Science, 2018, 11(5): 1062-1176. |
3 | HO H J, IIZUKA A, SHIBATA E. Carbon capture and utilization technology without carbon dioxide purification and pressurization: a review on its necessity and available technologies[J]. Industrial & Engineering Chemistry Research, 2019, 58(21): 8941-8954. |
4 | LI Li, LI Xiaodong, SUN Yongfu, et al. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network[J]. Chemical Society Reviews, 2022, 51(4): 1234-1252. |
5 | AN Xiaowei, LI Shasha, HAO Xiaoqiong, et al. Common strategies for improving the performances of tin and bismuth-based catalysts in the electrocatalytic reduction of CO2 to formic acid/formate[J]. Renewable and Sustainable Energy Reviews, 2021, 143: 110952. |
6 | SENTHILKUMAR P, MOHAPATRA M, BASU S. The inchoate horizon of electrolyzer designs, membranes and catalysts towards highly efficient electrochemical reduction of CO2 to formic acid[J]. RSC Advances, 2022, 12(3): 1287-1309. |
7 | Jörg EPPINGER, HUANG Kuowei. Formic acid as a hydrogen energy carrier[J]. ACS Energy Letters, 2017, 2(1): 188-195. |
8 | NIE Renfeng, TAO Yuewen, NIE Yunqing, et al. Recent advances in catalytic transfer hydrogenation with formic acid over heterogeneous transition metal catalysts[J]. ACS Catalysis, 2021, 11(3): 1071-1095. |
9 | GAO Y X, JAENICKE S, CHUAH G K. Highly efficient transfer hydrogenation of aldehydes and ketones using potassium formate over AlO(OH)-entrapped ruthenium catalysts[J]. Applied Catalysis A: General, 2014, 484: 51-58. |
10 | SZATMÁRI I, PAPP G, JOÓ F, et al. Unexpectedly fast catalytic transfer hydrogenation of aldehydes by formate in 2-propanol-water mixtures under mild conditions[J]. Catalysis Today, 2015, 247: 14-19. |
11 | LI Jun, ZHANG Yanmei, HAN Difei, et al. Asymmetric transfer hydrogenation using recoverable ruthenium catalyst immobilized into magnetic mesoporous silica[J]. Journal of Molecular Catalysis A: Chemical, 2009, 298(1/2): 31-35. |
12 | JAGADEESH R V, BANERJEE D, AROCKIAM P B, et al. Highly selective transfer hydrogenation of functionalised nitroarenes using cobalt-based nanocatalysts[J]. Green Chemistry, 2015, 17(2): 898-902. |
13 | WAGH Y S, ASAO N. Selective transfer semihydrogenation of alkynes with nanoporous gold catalysts[J]. The Journal of Organic Chemistry, 2014, 80(2): 847-851. |
14 | LI Jie, CHENG Saisai, DU Tianxing, et al. Pd anchored on C3N4 nanosheets/reduced graphene oxide: an efficient catalyst for the transfer hydrogenation of alkenes[J]. New Journal of Chemistry, 2018, 42(11): 9324-9331. |
15 | JIN Song, HAO Zhimeng, ZHANG Kai, et al. Advances and challenges for the electrochemical reduction of CO2 to CO: from fundamentals to industrialization[J]. Angewandte Chemie International Edition, 2021, 60(38): 20627-20648. |
16 | JOUNY M, LUC W, JIAO Feng. General techno-economic analysis of CO2 electrolysis systems[J]. Industrial & Engineering Chemistry Research, 2018, 57(6): 2165-2177. |
17 | KIBRIA M G, EDWARDS J P, GABARDO C M, et al. Electrochemical CO2 reduction into chemical feedstocks: from mechanistic electrocatalysis models to system design[J]. Advanced Materials, 2019, 31(31): e1807166. |
18 | SEIFITOKALDANI A, GABARDO C M, BURDYNY T, et al. Hydronium-induced switching between CO2 electroreduction pathways[J]. Journal of the American Chemical Society, 2018, 140(11): 3833-3837. |
19 | FEASTER J T, SHI Chuan, CAVE E R, et al. Understanding selectivity for the electrochemical reduction of carbon dioxide to formic acid and carbon monoxide on metal electrodes[J]. ACS Catalysis, 2017, 7(7): 4822-4827. |
20 | 李泽洋, 杨宇森, 卫敏. 二氧化碳还原电催化剂的结构设计及性能研究进展[J]. 化学学报, 2022, 80(2): 199-213. |
LI Zeyang, YANG Yusen, WEI Min. Structural design and performance of electrocatalysts for carbon dioxide reduction: a review[J]. Acta Chimica Sinica, 2022, 80(2): 199-213. | |
21 | ZHANG Baohua, JIANG Yinzhu, GAO Mingxia, et al. Recent progress on hybrid electrocatalysts for efficient electrochemical CO2 reduction[J]. Nano Energy, 2021, 80: 105504. |
22 | KOMATSU S, YANAGIHARA T, HIRAGA Y, et al. Electrochemical reduction of CO2 at Sb and Bi electrodes in KHCO3 solution[J]. Denki Kagaku Oyobi Kogyo Butsuri Kagaku, 1995, 63(3): 217-224. |
23 | ZHANG Xiaolong, SUN Xinghuan, GUO Sixuan, et al. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential[J]. Energy & Environmental Science, 2019, 12(4): 1334-1340. |
24 | ZHENG Hongzhi, WU Guanglei, GAO Guanhui, et al. The bismuth architecture assembled by nanotubes used as highly efficient electrocatalyst for CO2 reduction to formate[J]. Chemical Engineering Journal, 2021, 421: 129606. |
25 | ZHANG Xia, LEI Tao, LIU Yuyu, et al. Enhancing CO2 electrolysis to formate on facilely synthesized Bi catalysts at low overpotential[J]. Applied Catalysis B: Environmental, 2017, 218: 46-50. |
26 | ZHAO Meiming, GU Yaliu, GAO Weicheng, et al. Atom vacancies induced electron-rich surface of ultrathin Bi nanosheet for efficient electrochemical CO2 reduction[J]. Applied Catalysis B: Environmental, 2020, 266: 118625. |
27 | WANG Haiying, WEI Dun, HE Yingjie, et al. Carbon nanoarchitectonics with Bi nanoparticle encapsulation for improved electrochemical deionization performance[J]. ACS Applied Materials & Interfaces, 2022, 14(11): 13177-13185. |
28 | KOH J H, WON DA HYE, EOM T, et al. Facile CO2 electro-reduction to formate via oxygen bidentate intermediate stabilized by high-index Planes of Bi dendrite catalyst[J]. ACS Catalysis, 2017, 7(8): 5071-5077. |
29 | 郑元波, 张前, 石坚, 等. 电催化还原CO2生成多种产物催化剂研究进展[J]. 化工进展, 2022, 41(3): 1209-1223. |
ZHENG Yuanbo, ZHANG Qian, SHI Jian, et al. Research progress of catalysts for electrocatalytic reduction of CO2 to various products[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1209-1223. | |
30 | YANG Xuxiao, DENG Peilin, LIU Dongyu, et al. Partial sulfuration-induced defect and interface tailoring on bismuth oxide for promoting electrocatalytic CO2 reduction[J]. Journal of Materials Chemistry A, 2020, 8(5): 2472-2480. |
31 | CHEN Jialei, CHEN Shan, LI Youzeng, et al. Galvanic-cell deposition enables the exposure of bismuth grain boundary for efficient electroreduction of carbon dioxide[J]. Small, 2022, 18(22): 2201633. |
32 | YUAN Yuliang, WANG Qiyou, QIAO Yan, et al. In situ structural reconstruction to generate the active sites for CO2 electroreduction on bismuth ultrathin nanosheets[J]. Advanced Energy Materials, 2022, 12(29): 2200970. |
33 | CHEN Chubai, LI Yifan, YANG Peidong. Address the “alkalinity problem” in CO2 electrolysis with catalyst design and translation[J]. Joule, 2021, 5(4): 737-742. |
34 | KIBRIA NABIL S, MCCOY S, KIBRIA M G. Comparative life cycle assessment of electrochemical upgrading of CO2 to fuels and feedstocks[J]. Green Chemistry, 2021, 23(2): 867-880. |
35 | XIE Yi, Pengfei OU, WANG Xue, et al. High carbon utilization in CO2 reduction to multi-carbon products in acidic media[J]. Nature Catalysis, 2022, 5(6): 564-570. |
36 | MONTEIRO M C O, PHILIPS M F, SCHOUTEN K J P, et al. Efficiency and selectivity of CO2 reduction to CO on gold gas diffusion electrodes in acidic media[J]. Nature Communications, 2021, 12: 4943. |
37 | BONDUE C J, GRAF M, GOYAL A, et al. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction[J]. Journal of the American Chemical Society, 2021, 143(1): 279-285. |
38 | HUANG J E, LI Fengwang, OZDEN A, et al. CO2 electrolysis to multicarbon products in strong acid[J]. Science, 2021, 372(6546): 1074-1078. |
39 | QIAO Yan, LAI Wenchuan, HUANG Kai, et al. Engineering the local microenvironment over Bi nanosheets for highly selective electrocatalytic conversion of CO2 to HCOOH in strong acid[J]. ACS Catalysis, 2022, 12(4): 2357-2364. |
40 | VESBORG P C K, JARAMILLO T F. Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy[J]. RSC Advances, 2012, 2(21): 7933. |
41 | ZHAO Shulin, LI Sheng, GUO Tao, et al. Advances in Sn-based catalysts for electrochemical CO2 reduction[J]. Nano-Micro Letters, 2019, 11(1): 62. |
42 | DUTTA A, KUZUME A, RAHAMAN M, et al. Monitoring the chemical state of catalysts for CO2 electroreduction: an in operando study[J]. ACS Catalysis, 2015, 5(12): 7498-7502. |
43 | NGUYEN-PHAN T D, HU L M, HOWARD B H, et al. High current density electroreduction of CO2 into formate with tin oxide nanospheres[J]. Scientific Reports, 2022, 12: 8420. |
44 | CUI Chaonan, HAN Jinyu, ZHU Xinli, et al. Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnO x /Sn electrode[J]. Journal of Catalysis, 2016, 343: 257-265. |
45 | CHEN Y H, KANAN M W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts[J]. Journal of the American Chemical Society, 2012, 134(4): 1986-1989. |
46 | AN Xiaowei, LI Shasha, YOSHIDA Akihiro, et al. Electrodeposition of tin-based electrocatalysts with different surface tin species distributions for electrochemical reduction of CO2 to HCOOH[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(10): 9360-9368. |
47 | KO Y J, KIM J Y, LEE W H, et al. Exploring dopant effects in stannic oxide nanoparticles for CO2 electro-reduction to formate[J]. Nature Communications, 2022, 13(1): 2205. |
48 | LIU Xue, HUANG Jiaqi, ZHANG Qiang, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(20): 1601759. |
49 | ZHENG Xueli, DE LUNA Phil, GARCÍA DE ARQUER F Pelayo, et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate[J]. Joule, 2017, 1(4): 794-805. |
50 | CHEN Tao, LIU Tong, DING Tao, et al. Surface oxygen injection in tin disulfide nanosheets for efficient CO2 electroreduction to formate and syngas[J]. Nano-Micro Letters, 2021, 13(1): 1-11. |
51 | ZHANG An, HE Rong, LI Huiping, et al. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction[J]. Angewandte Chemie International Edition, 2018, 57(34): 10954-10958. |
52 | TUREKIAN K K, WEDEPOHL K H. Distribution of the elements in some major units of the earth’s crust[J]. Geological Society of America Bulletin, 1961, 72(2): 175. |
53 | HAN Na, DING Pan, HE Le, et al. CO2 reduction: promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate[J]. Advanced Energy Materials, 2020, 10(11): 2070046. |
54 | DETWEILER Z M, WHITE J L, BERNASEK S L, et al. Anodized indium metal electrodes for enhanced carbon dioxide reduction in aqueous electrolyte[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2014, 30(25): 7593-7600. |
55 | ZU Xiaolong, LI Xiaodong, LIU Wei, et al. Efficient and robust carbon dioxide electroreduction enabled by atomically dispersed Sn δ + sites[J]. Advanced Materials, 2019, 31(15): 1808135. |
56 | WANG Zhitong, ZHOU Yansong, LIU Dongyu, et al. Carbon-confined indium oxides for efficient carbon dioxide reduction in a solid-state electrolyte flow cell[J]. Angewandte Chemie International Edition, 2022, 61(21): e202200552. |
57 | WIJAYA D T, LEE C W. Metal-Organic framework catalysts: a versatile platform for bioinspired electrochemical conversion of carbon dioxide[J]. Chemical Engineering Journal, 2022, 446: 137311. |
58 | WANG Zhitong, ZHOU Yansong, XIA Chenfeng, et al. Efficient electroconversion of carbon dioxide to formate by a reconstructed amino-functionalized indium-organic framework electrocatalyst[J]. Angewandte Chemie International Edition, 2021, 60(35): 19107-19112. |
59 | SHANG Huishan, WANG Tao, PEI Jiajing, et al. Design of a single-atom indium δ +-N4 interface for efficient electroreduction of CO2 to formate[J]. Angewandte Chemie International Edition, 2020, 59(50): 22465-22469. |
60 | GAO Dunfeng, ZHOU Hu, CAI Fan, et al. Pd-containing nanostructures for electrochemical CO2 reduction reaction[J]. ACS Catalysis, 2018, 8(2): 1510-1519. |
61 | KLINKOVA A, DE LUNA P, DINH C T, et al. Rational design of efficient palladium catalysts for electroreduction of carbon dioxide to formate[J]. ACS Catalysis, 2016, 6(12): 8115-8120. |
62 | HAN Na, SUN Mingzi, ZHOU Yuan, et al. Alloyed palladium-silver nanowires enabling ultrastable carbon dioxide reduction to formate[J]. Advanced Materials, 2021, 33(4): e2005821. |
63 | ZHANG Shengli, YAN Zhong, LI Yafei, et al. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions[J]. Angewandte Chemie International Edition, 2015, 54(10): 3112-3115. |
64 | LI Fengwang, XUE Mianqi, LI Jiezhen, et al. Unlocking the electrocatalytic activity of antimony for CO2 reduction by two-dimensional engineering of the bulk material[J]. Angewandte Chemie International Edition, 2017, 56(46): 14718-14722. |
65 | SHUI Ziqing, WANG Yu, LI Yafei. Activity origin of antimony nanosheets toward selective electroreduction of CO2 to formic acid[J]. The Journal of Physical Chemistry C, 2022, 126(8): 4015-4023. |
66 | HANDOKO A D, WEI Fengxia, JENNDY, et al. Understanding heterogeneous electrocatalytic carbon dioxide reduction through operando techniques[J]. Nature Catalysis, 2018, 1(12): 922-934. |
67 | LI Xiaodong, WANG Shumin, LI Li, et al. Progress and perspective for in situ studies of CO2 reduction[J]. Journal of the American Chemical Society, 2020, 142(21): 9567-9581. |
68 | YANG Chengwu, Christof WÖLL. IR spectroscopy applied to metal oxide surfaces: adsorbate vibrations and beyond[J]. Advances in Physics: X, 2017, 2(2): 373-408. |
69 | WEI Xing, YIN Zhenglei, Kangjie LYU, et al. Highly selective reduction of CO2 to C2+ hydrocarbons at copper/polyaniline interfaces[J]. ACS Catalysis, 2020, 10(7): 4103-4111. |
70 | SUI Pengfei, GAO Minrui, LIU Subiao, et al. Carbon dioxide valorization via formate electrosynthesis in a wide potential window[J]. Advanced Functional Materials, 2022, 32(32): 2203794. |
71 | KIM Y, PARK S, SHIN S J, et al. Time-resolved observation of C—C coupling intermediates on Cu electrodes for selective electrochemical CO2 reduction[J]. Energy & Environmental Science, 2020, 13(11): 4301-4311. |
72 | DUNWELL M, YANG Xuan, SETZLER B P, et al. Examination of near-electrode concentration gradients and kinetic impacts on the electrochemical reduction of CO2 using surface-enhanced infrared spectroscopy[J]. ACS Catalysis, 2018, 8(5): 3999-4008. |
73 | BANERJEE S, ZHANG Zhuoqun, HALL A S, et al. Surfactant perturbation of cation interactions at the electrode-electrolyte interface in carbon dioxide reduction[J]. ACS Catalysis, 2020, 10(17): 9907-9914. |
74 | ZOU Yuqin, WANG Shuangyin. An investigation of active sites for electrochemical CO2 reduction reactions: from in situ characterization to rational design[J]. Advanced Science, 2021, 8(9): 2003579. |
75 | WANG Hongbo, TANG Chongyang, SUN Bo, et al. In-situ structural evolution of Bi2O3 nanoparticle catalysts for CO2 electroreduction[J]. International Journal of Extreme Manufacturing, 2022, 4(3): 035002. |
76 | HE Ming, CHANG Xiaoxia, CHAO Tzu-Hsuan, et al. Selective enhancement of methane formation in electrochemical CO2 reduction enabled by a Raman-inactive oxygen-containing species on Cu[J]. ACS Catalysis, 2022, 12(10): 6036-6046. |
77 | ZHAO Yang, LIU Xunlin, LIU Zhixiao, et al. Spontaneously Sn-doped Bi/BiO x core-shell nanowires toward high-performance CO2 electroreduction to liquid fuel[J]. Nano Letters, 2021, 21(16): 6907-6913. |
78 | HOLLANDER J M, JOLLY W L. X-ray photoelectron spectroscopy[J]. Accounts of Chemical Research, 1970, 3(6): 193-200. |
79 | CHOI Y W, SCHOLTEN F, SINEV I, et al. Enhanced stability and CO/formate selectivity of plasma-treated SnO x /AgO x catalysts during CO2 electroreduction[J]. Journal of the American Chemical Society, 2019, 141(13): 5261-5266. |
80 | LI Jing, WU Donghuan, MALKANI A S, et al. Hydroxide is not a promoter of C2+ product formation in the electrochemical reduction of CO on copper[J]. Angewandte Chemie International Edition, 2020, 59(11): 4464-4469. |
81 | GABARDO C M, SEIFITOKALDANI A, EDWARDS J P, et al. Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO[J]. Energy & Environmental Science, 2018, 11(9): 2531-2539. |
82 | THORSON M R, SIIL K I, KENIS P J A. Effect of cations on the electrochemical conversion of CO2 to CO[J]. Journal of the Electrochemical Society, 2012, 160(1): F69-F74. |
83 | GAO Feiyue, BAO Ruicheng, GAO Minrui, et al. Electrochemical CO2-to-CO conversion: electrocatalysts, electrolytes, and electrolyzers[J]. Journal of Materials Chemistry A, 2020, 8(31): 15458-15478. |
84 | KIM D, CHOI W, LEE H W, et al. Electrocatalytic reduction of low concentrations of CO2 gas in a membrane electrode assembly electrolyzer[J]. ACS Energy Letters, 2021, 6(10): 3488-3495. |
85 | GE Lei, RABIEE H, LI Mengran, et al. Electrochemical CO2 reduction in membrane-electrode assemblies[J]. Chem., 2022, 8(3): 663-692. |
86 | 李冰玉, 毛庆, 赵健, 等. 二氧化碳电化学还原反应器的研究进展[J]. 化工进展, 2019, 38(11): 4901-4910. |
LI Bingyu, MAO Qing, ZHAO Jian, et al. Research progress in CO2 electroreduction reactor[J]. Chemical Industry and Engineering Progress, 2019, 38(11): 4901-4910. | |
87 | WEI Xinfa, LI Yan, CHEN Lisong, et al. Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3 OH oxidation[J]. Angewandte Chemie International Edition, 2021, 60(6): 3148-3155. |
88 | LI Yu, HUO Cuizhu, WANG Hongjuan, et al. Coupling CO2 reduction with CH3OH oxidation for efficient electrosynthesis of formate on hierarchical bifunctional CuSn alloy[J]. Nano Energy, 2022, 98: 107277. |
89 | GUO Shengyuan, ASSET T, ATANASSOV P. Catalytic hybrid electrocatalytic/biocatalytic cascades for carbon dioxide reduction and valorization[J]. ACS Catalysis, 2021, 11(9): 5172-5188. |
90 | NAHA S, JOSHI C, CHANDRASHEKHAR B, et al. Bioelectrosynthesis of organic and inorganic chemicals in bioelectrochemical system[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2020, 24(2): 03120001. |
91 | CASTAÑEDA-LOSADA L, ADAM D, PACZIA N, et al. Bioelectrocatalytic cofactor regeneration coupled to CO2 fixation in a redox-active hydrogel for stereoselective C—C bond formation[J]. Angewandte Chemie International Edition, 2021, 60(38): 21056-21061. |
92 | WU Yun, LI Weichao, WANG Lutian, et al. Enhancing the selective synthesis of butyrate in microbial electrosynthesis system by gas diffusion membrane composite biocathode[J]. Chemosphere, 2022, 308: 136088. |
93 | LIANG Qinjun, GAO Yu, LI Zhigang, et al. Electricity-driven ammonia oxidation and acetate production in microbial electrosynthesis systems[J]. Frontiers of Environmental Science & Engineering, 2021, 16(4): 1-10. |
94 | ZHENG Tingting, ZHANG Menglu, WU Lianghuan, et al. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering[J]. Nature Catalysis, 2022, 5(5): 388-396. |
95 | ZHANG Zhen, WEN Guobin, LUO Dan, et al. “Two ships in a bottle” design for Zn-Ag-O catalyst enabling selective and long-lasting CO2 electroreduction[J]. Journal of the American Chemical Society, 2021, 143(18): 6855-6864. |
96 | ZHAO Qing, MARTIREZ J M P, CARTER E A. Revisiting understanding of electrochemical CO2 reduction on Cu(111): competing proton-coupled electron transfer reaction mechanisms revealed by embedded correlated wavefunction theory[J]. Journal of the American Chemical Society, 2021, 143(16): 6152-6164. |
97 | CHEN Baotong, LI Boran, TIAN Ziqi, et al. Enhancement of mass transfer for facilitating industrial-level CO2 electroreduction on atomic Ni-N4 sites[J]. Advanced Energy Materials, 2021, 11(40): 2102152. |
98 | ZHANG Ningqiang, ZHANG Xinxin, KANG Yikun, et al. A supported Pd2 dual-atom site catalyst for efficient electrochemical CO2 reduction[J]. Angewandte Chemie International Edition, 2021, 60(24): 13388-13393. |
99 | NØRSKOV J K, BLIGAARD T, ROSSMEISL J, et al. Towards the computational design of solid catalysts[J]. Nature Chemistry, 2009, 1(1): 37-46. |
100 | SUN Zhehao, YIN Hang, LIU Kaili, et al. Machine learning accelerated calculation and design of electrocatalysts for CO2 reduction[J]. SmartMat, 2022, 3(1): 68-83. |
[1] | 时永兴, 林刚, 孙晓航, 蒋韦庚, 乔大伟, 颜彬航. 二氧化碳加氢制甲醇过程中铜基催化剂活性位点研究进展[J]. 化工进展, 2023, 42(S1): 287-298. |
[2] | 郑谦, 官修帅, 靳山彪, 张长明, 张小超. 铈锆固溶体Ce0.25Zr0.75O2光热协同催化CO2与甲醇合成DMC[J]. 化工进展, 2023, 42(S1): 319-327. |
[3] | 戴欢涛, 曹苓玉, 游新秀, 徐浩亮, 汪涛, 项玮, 张学杨. 木质素浸渍柚子皮生物炭吸附CO2特性[J]. 化工进展, 2023, 42(S1): 356-363. |
[4] | 孙玉玉, 蔡鑫磊, 汤吉海, 黄晶晶, 黄益平, 刘杰. 反应精馏合成甲基丙烯酸甲酯工艺优化及节能[J]. 化工进展, 2023, 42(S1): 56-63. |
[5] | 杨寒月, 孔令真, 陈家庆, 孙欢, 宋家恺, 王思诚, 孔标. 微气泡型下向流管式气液接触器脱碳性能[J]. 化工进展, 2023, 42(S1): 197-204. |
[6] | 王胜岩, 邓帅, 赵睿恺. 变电吸附二氧化碳捕集技术研究进展[J]. 化工进展, 2023, 42(S1): 233-245. |
[7] | 刘炫麟, 王驿凯, 戴苏洲, 殷勇高. 热泵中氨基甲酸铵分解反应特性及反应器结构优化[J]. 化工进展, 2023, 42(9): 4522-4530. |
[8] | 王耀刚, 韩子姗, 高嘉辰, 王新宇, 李思琪, 杨全红, 翁哲. 铜基催化剂电还原二氧化碳选择性的调控策略[J]. 化工进展, 2023, 42(8): 4043-4057. |
[9] | 刘毅, 房强, 钟达忠, 赵强, 李晋平. Ag/Cu耦合催化剂的Cu晶面调控用于电催化二氧化碳还原[J]. 化工进展, 2023, 42(8): 4136-4142. |
[10] | 黄玉飞, 李子怡, 黄杨强, 金波, 罗潇, 梁志武. 光催化CO2和CH4重整催化剂研究进展[J]. 化工进展, 2023, 42(8): 4247-4263. |
[11] | 娄宝辉, 吴贤豪, 张驰, 陈臻, 冯向东. 纳米流体用于二氧化碳吸收分离研究进展[J]. 化工进展, 2023, 42(7): 3802-3815. |
[12] | 白亚迪, 邓帅, 赵睿恺, 赵力, 杨英霞. 变温吸附碳捕集机组标准化测试方案探讨及性能实验[J]. 化工进展, 2023, 42(7): 3834-3846. |
[13] | 顾诗亚, 董亚超, 刘琳琳, 张磊, 庄钰, 都健. 考虑中间节点的碳捕集管路系统设计与优化[J]. 化工进展, 2023, 42(6): 2799-2808. |
[14] | 吕超, 张习文, 金理健, 杨林军. 新型两相吸收剂-离子液体系统高效捕获CO2[J]. 化工进展, 2023, 42(6): 3226-3232. |
[15] | 王科菊, 赵成, 胡晓玫, 云军阁, 魏凝涵, 姜雪迎, 邹昀, 陈志航. 金属氧化物低温催化氧化VOCs的研究进展[J]. 化工进展, 2023, 42(5): 2402-2412. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |