29 |
VARJANI S J, GNANSOUNOU E, PANDEY A. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms[J]. Chemosphere, 2017, 188: 280-291.
|
30 |
DANSO D, SCHMEISSER C, CHOW J, et al. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes[J]. Applied and Environmental Microbiology, 2018, 84(8): e02773.
|
31 |
WALLACE P W, HAERNVALL K, RIBITSCH D, et al. PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes [J]. Applied Microbiology and Biotechnology, 2017, 101(6): 2291-2303.
|
32 |
李秀, 杨海涛, 王泽方. 聚对苯二甲酸乙二醇酯降解酶的研究进展[J]. 微生物学报, 2019, 59(12): 2251-2262.
|
|
LI Xiu, YANG Haitao, WANG Zefang. Advance in polyethylene terephthalate degrading enzyme[J]. Acta Microbiologica Sinica, 2019, 59(12): 2251-2262.
|
33 |
LEITAO A L, ENGUITA F J. Structural insights into carboxylic polyester-degrading enzymes and their functional depolymerizing neighbors[J]. International Journal of Molecular Sciences, 2021, 22(5): 2332.
|
34 |
SON H F, JOO S, SEO H, et al. Structural bioinformatics-based protein engineering of thermo-stable PETase from Ideonella sakaiensis [J]. Enzyme and Microbial Technology, 2020, 141: 109656.
|
35 |
TOURNIER V, TOPHAM C M, GILLES A, et al. An engineered PET depolymerase to break down and recycle plastic bottles[J]. Nature, 2020, 580: 216-219.
|
36 |
JOO S, CHO I J, SEO H, et al. Structural insight into molecular mechanism of poly(ethylene terephthalate) degradation[J]. Nature Communications, 2018, 9(1): 382.
|
37 |
孟祥熙. 基于自然进化提升IsPETase稳定性以及塑料降解效率的研究[D]. 北京: 中国农业科学院, 2021.
|
|
MENG Xiangxi. Study on the natural evolutionary protein engineering of stable IsPETase for PET plastic degradation[D]. Beijing:Chinese Academy of Agricultural Sciences, 2021.
|
38 |
ALTSCHUL S F, GISH W, MILLER W, et al. Basic local alignment search tool[J]. Journal of Molecular Biology, 1990, 215(3): 403-410.
|
1 |
GANESH K A, ANJANA K, HINDUJA M, et al. Review on plastic wastes in marine environment—Biodegradation and biotechnological solutions[J]. Marine Pollution Bulletin, 2020, 150: 110733.
|
2 |
BAHL S, DOLMA J, SINGH J J, et al. Biodegradation of plastics: a state of the art review[J]. Materials Today: Proceedings, 2021, 39: 31-34.
|
3 |
VOLLMER I, JENKS M J, ROELANDS M C, et al. Beyond mechanical recycling: giving new life to plastic waste[J]. Angewandte Chemie International Edition, 2020, 59(36): 15402-15423.
|
4 |
GEYER R, JAMBECK J R, LAW K L. Production, use, and fate of all plastics ever made[J]. Science Advances, 2017, 3(7): e1700782.
|
5 |
RAGAERT K, DELVA L, GEEM K V, et al. Mechanical and chemical recycling of solid plastic waste[J]. Waste Management, 2017, 69: 24-58.
|
6 |
ZHANG F, ZHAO Y, WANG D, et al. Current technologies for plastic waste treatment: a review[J]. Journal of Cleaner Production, 2021, 282: 124523.
|
7 |
ASHWORTH D C, ELLIOTT P, TOLEDANO M B. Waste incineration and adverse birth and neonatal outcomes: a systematic review[J]. Environment international, 2014, 69: 120-132.
|
8 |
MOHARIR R V, KUMAR S. Challenges associated with plastic waste disposal and allied microbial routes for its effective degradation: a comprehensive review[J]. Journal of Cleaner Production, 2019, 208: 65-76.
|
9 |
ALI S S, ELSAMAHY T, AL-TOHAMY R, et al. Plastic wastes biodegradation: mechanisms, challenges and future prospects[J]. Science of the Total Environment, 2021, 780: 146590.
|
10 |
NIKOLAIVITS E, PANTELIC B, AZEEM M, et al. Progressing plastics circularity: a review of mechano-biocatalytic approaches for waste plastic (re)valorization[J]. Frontiers in Bioengineering and Biotechnology, 2021, 9: 696040.
|
11 |
李昕玥, 刘卓苗, 薛润泽, 等. 典型塑料的生物降解及其降解机理[J]. 科学通报, 2021, 66(20): 2573-2589.
|
|
LI Xinyue, LIU Zhuomiao, XUE Runze, et al. Biodegradation of typical plastics and its mechanisms[J]. Science Bulletin, 2021, 66(20): 2573-2589.
|
39 |
CHEN C C, DAI L, MA L, et al. Enzymatic degradation of plant biomass and synthetic polymers[J]. Nature Reviews Chemistry, 2020, 4: 114-126.
|
40 |
DELRE C, JIANG Y, KANG P, et al. Near-complete depolymerization of polyesters with nano-dispersed enzymes[J]. Nature, 2021, 592: 558-563.
|
12 |
RAVISHANKAR K, RAMESH P S, SADHASIVAM B, et al. Wear-induced mechanical degradation of plastics by low-energy wet-grinding[J]. Polymer Degradation and Stability, 2018, 158: 212-219.
|
13 |
GAMERITH C, ZARTL B, PELLIS A, et al. Enzymatic recovery of polyester building blocks from polymer blends[J]. Process Biochemistry, 2017, 59: 58-64.
|
14 |
WEI R, ZIMMERMANN W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: how far are we?[J]. Microbial Biotechnology, 2017, 10(6): 1308-1322.
|
15 |
WEI R, TISO T, BERTLING J, et al. Possibilities and limitations of biotechnological plastic degradation and recycling[J]. Nature Catalysis, 2020, 3: 867–871.
|
16 |
INDERTHAL H, TAI S L, HARRISON S. Non-hydrolyzable plastics—An interdisciplinary look at plastic bio-oxidation[J]. Trends in Biotechnology, 2021, 39(1): 12-23.
|
17 |
ZIMMERMANN K. Microwave as an emerging technology for the treatment of biohazardous waste: a mini-review[J]. Waste Management & Research, 2017, 35(5): 471-479.
|
18 |
刘友林. 微波消毒灭菌技术应用于医院制剂的可行性[J]. 医药产业资讯, 2006, 3(9): 37-38.
|
|
LIU Youlin. Feasibility of microwave disinfection and sterilization technology applied to hospital preparations[J]. Medicine Industry Information, 2006, 3(9): 37-38.
|
19 |
ZHOU B W, SHIN S G, HWANG K H, et al. Effect of microwave irradiation on cellular disintegration of gram positive and negative cells[J]. Applied Microbiology and Biotechnology, 2010, 87(2): 765-770.
|
20 |
陈欢, 万坤, 牛波, 等. 废弃塑料化学回收及升级再造研究进展[J]. 化工进展, 2022, 41(3): 1453-1469.
|
|
CHEN Huan, WAN Kun, NIU Bo, et al. Recent progresses in chemical recycling and upcycling of waste plastics[J]. Chemical Industry and Engineering Progress, 2022, 41(3): 1453-1469.
|
21 |
康菡子, 袁璐璇, 王彦博, 等. 废旧PET聚酯回收利用进展[J]. 塑料, 2021, 55(5): 61-66.
|
|
KANG Hanzi, YUAN Luxuan, WANG Yanbo, et al. Research progress of waste PET recycling[J]. Plastics, 2021, 55(5): 61-66.
|
22 |
FRANDEN M A, JAYAKODY L N, LI W J, et al. Engineering Pseudomonas putida KT2440 for efficient ethylene glycol utilization[J]. Metabolic Engineering, 2018,48: 197-207.
|
23 |
KENNY S T, RUNIC J N, KAMINSKY W, et al. Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate[J]. Applied Microbiology and Biotechnology, 2012, 95(3): 623-633.
|
24 |
罗中, 程瑾. 废PET聚酯化学解聚及应用研究进展[J]. 精细石油化工, 2021, 38(1): 72-78.
|
|
LUO Zhong, CHENG Jin. Research progress in chemical depolymerization and application of waste PET polyester[J]. Speciality Petrochemicals, 2021, 38(1): 72-78.
|
25 |
ZHANG F, ZENG M, YAPPERT R D, et al. Polyethylene upcycling to long-chain alkylaromatics by tandem hydrogenolysis/aromatization[J]. Science, 2020, 370: 437-441.
|
26 |
TENNAKOON A, WU X, PATERSON A L, et al. Catalytic upcycling of high-density polyethylene via a processive mechanism[J]. Nature Catalysis, 2020, 3(11): 893-901.
|
27 |
DONG L, XIA J, GUO Y, et al. Mechanisms of Caromatic—C bonds cleavage in lignin over NbO x -supported Ru catalyst[J]. Journal of Catalysis, 2021, 394: 94-103.
|
28 |
BURANGE A S, GAWANDE M B, LAM F L Y, et al. Heterogeneously catalyzed strategies for the deconstruction of high density polyethylene: plastic waste valorisation to fuels[J]. Green Chemistry, 2015, 17(1): 146-156.
|