化工进展 ›› 2023, Vol. 42 ›› Issue (9): 4957-4966.DOI: 10.16085/j.issn.1000-6613.2022-1869
李昕1(), 杨早1, 钟欣茹1, 韩昊轩1, 庄绪宁2, 白建峰2, 董滨1,3(
), 徐祖信1
收稿日期:
2022-10-09
修回日期:
2022-12-20
出版日期:
2023-09-15
发布日期:
2023-09-28
通讯作者:
董滨
作者简介:
李昕(1996—),女,博士研究生,研究方向为污泥处理处置与资源化。E-mail:2110531@tongji.edu.cn。
基金资助:
LI Xin1(), YANG Zao1, ZHONG Xinru1, HAN Haoxuan1, ZHUANG Xuning2, BAI Jianfeng2, DONG Bin1,3(
), XU Zuxin1
Received:
2022-10-09
Revised:
2022-12-20
Online:
2023-09-15
Published:
2023-09-28
Contact:
DONG Bin
摘要:
污泥稳定化产物中含有丰富的功能有机物,能够直接参与重金属的络合过程。超高温堆肥作为一种更有优势的污泥稳定化手段,明晰其产物中的典型功能有机质与重金属结合特性,对于评估其土地利用的价值至关重要。本文采用吸附实验对比分析了超高温堆肥(HTC)、高温堆肥(TC)和生污泥(RS)样品中典型功能有机物胡敏酸(HAs)与Pb2+的吸附效果。结果表明,HTC和TC中HAs对Pb2+的理论最大吸附量(
中图分类号:
李昕, 杨早, 钟欣茹, 韩昊轩, 庄绪宁, 白建峰, 董滨, 徐祖信. 污泥超高温堆肥衍生胡敏酸对Pb2+的结合机制[J]. 化工进展, 2023, 42(9): 4957-4966.
LI Xin, YANG Zao, ZHONG Xinru, HAN Haoxuan, ZHUANG Xuning, BAI Jianfeng, DONG Bin, XU Zuxin. Binding mechanism of Pb2+ onto humic acids from sludge hyper-thermophilic composting[J]. Chemical Industry and Engineering Progress, 2023, 42(9): 4957-4966.
原料 | 含水率/% | 有机质质量分数/% | pH |
---|---|---|---|
生污泥 | 68.3±3.9 | 75.5±1.2 | 8.0±0.1 |
小麦秸秆 | 11.1±0.1 | 88.4±0.1 | 6.6±0.1 |
超高温堆肥腐熟料 | 21.9±0.4 | 35.2±1.1 | 7.8±0.2 |
传统高温堆肥腐熟料 | 31.2±1.4 | 44.3±0.8 | 8.1±0.3 |
表1 实验材料的基本理化性质
原料 | 含水率/% | 有机质质量分数/% | pH |
---|---|---|---|
生污泥 | 68.3±3.9 | 75.5±1.2 | 8.0±0.1 |
小麦秸秆 | 11.1±0.1 | 88.4±0.1 | 6.6±0.1 |
超高温堆肥腐熟料 | 21.9±0.4 | 35.2±1.1 | 7.8±0.2 |
传统高温堆肥腐熟料 | 31.2±1.4 | 44.3±0.8 | 8.1±0.3 |
项目 | qm/mg·g-1 | KL/L·mg-1 | R2 |
---|---|---|---|
RS | 209.51 | 0.030 | 0.8221 |
TC | |||
7d | 274.88 | 0.062 | 0.9786 |
21d | 297.69 | 0.301 | 0.9964 |
35d | 307.99 | 0.034 | 0.7972 |
49d | 303.28 | 0.011 | 0.8498 |
HTC | |||
7d | 317.07 | 0.020 | 0.9712 |
21d | 309.73 | 0.00034 | 0.9398 |
35d | 316.35 | 0.0055 | 0.9295 |
49d | 338.97 | 0.045 | 0.9758 |
表2 HAs对Pb2+的等温吸附方程Langmuir模型拟合参数
项目 | qm/mg·g-1 | KL/L·mg-1 | R2 |
---|---|---|---|
RS | 209.51 | 0.030 | 0.8221 |
TC | |||
7d | 274.88 | 0.062 | 0.9786 |
21d | 297.69 | 0.301 | 0.9964 |
35d | 307.99 | 0.034 | 0.7972 |
49d | 303.28 | 0.011 | 0.8498 |
HTC | |||
7d | 317.07 | 0.020 | 0.9712 |
21d | 309.73 | 0.00034 | 0.9398 |
35d | 316.35 | 0.0055 | 0.9295 |
49d | 338.97 | 0.045 | 0.9758 |
项目 | δ为0~65 | δ为65~110 | δ为110~140 | δ为140~160 | δ为160~190 | δ为190~220 |
---|---|---|---|---|---|---|
脂肪族碳 | 醚、羟基碳 | 芳香碳 | 酚醛碳 | 羧酸碳 | 羰基碳 | |
RS | 45.06 | 12.01 | 12.38 | 7.76 | 16.94 | 5.86 |
TC | ||||||
7d | 43.07 | 14.31 | 12.41 | 7.66 | 16.44 | 6.12 |
21d | 38.89 | 15.28 | 14.32 | 8.86 | 15.65 | 7.02 |
35d | 36.75 | 16.36 | 15.28 | 9.9 | 15.64 | 6.07 |
49d | 39.65 | 14.46 | 13.86 | 8.81 | 16.43 | 6.8 |
HTC | ||||||
7d | 43.91 | 12.65 | 13.39 | 7.68 | 15.88 | 6.49 |
21d | 40.88 | 12.2 | 15.01 | 8.8 | 16.77 | 6.34 |
35d | 38.6 | 13 | 15.83 | 9.45 | 16.5 | 6.62 |
49d | 38.46 | 13.39 | 15.49 | 9.28 | 16.72 | 6.67 |
表3 RS、TC、HTC中 HAs的13C NMR光谱中特征碳的分布(%)
项目 | δ为0~65 | δ为65~110 | δ为110~140 | δ为140~160 | δ为160~190 | δ为190~220 |
---|---|---|---|---|---|---|
脂肪族碳 | 醚、羟基碳 | 芳香碳 | 酚醛碳 | 羧酸碳 | 羰基碳 | |
RS | 45.06 | 12.01 | 12.38 | 7.76 | 16.94 | 5.86 |
TC | ||||||
7d | 43.07 | 14.31 | 12.41 | 7.66 | 16.44 | 6.12 |
21d | 38.89 | 15.28 | 14.32 | 8.86 | 15.65 | 7.02 |
35d | 36.75 | 16.36 | 15.28 | 9.9 | 15.64 | 6.07 |
49d | 39.65 | 14.46 | 13.86 | 8.81 | 16.43 | 6.8 |
HTC | ||||||
7d | 43.91 | 12.65 | 13.39 | 7.68 | 15.88 | 6.49 |
21d | 40.88 | 12.2 | 15.01 | 8.8 | 16.77 | 6.34 |
35d | 38.6 | 13 | 15.83 | 9.45 | 16.5 | 6.62 |
49d | 38.46 | 13.39 | 15.49 | 9.28 | 16.72 | 6.67 |
波长/cm-1 | 1736 | 1672 | 1514 | 1381 | 1225 | 982 | 868 | |
---|---|---|---|---|---|---|---|---|
RS | ||||||||
1736 | + | +(-) | +(-) | -(-) | +(-) | +(+) | +(+) | |
1672 | + | +(-) | -(-) | +(+) | +(+) | +(+) | ||
1514 | + | -(-) | +(+) | +(+) | +(+) | |||
1381 | + | -(+) | -(-) | -(+) | ||||
1225 | + | +(+) | +(+) | |||||
982 | + | +(-) | ||||||
868 | + | |||||||
波长/cm-1 | 1738 | 1523 | 1383 | 1184 | 995 | 889 | 798 | |
TC-21d | ||||||||
1738 | + | -(-) | -(-) | +(+) | +(-) | +(+) | -(-) | |
1523 | + | -(+) | -(-) | +(-) | +(-) | +(-) | ||
1383 | + | -(+) | -(+) | -(+) | -(+) | |||
1184 | + | +(-) | +(-) | +(-) | ||||
995 | + | +(-) | +(-) | |||||
889 | + | +(-) | ||||||
798 | + | |||||||
波长/cm-1 | 1736 | 1585 | 1504 | 1385 | 1319 | 1176 | 1093 | 764 |
HTC-21d | ||||||||
1736 | + | -(+) | -(+) | -(+) | -(+) | +(+) | +(+) | +(+) |
1585 | + | +(+) | +(-) | +(-) | +(-) | +(-) | +(-) | |
1504 | + | +(-) | +(-) | -(-) | +(-) | -(-) | ||
1385 | + | + | +(-) | +(-) | -(-) | |||
1319 | + | +(-) | +(-) | +(-) | ||||
1176 | + | +(+) | +(-) | |||||
1093 | + | +(-) | ||||||
764 | + |
表4 RS、TC、HTC中HAs与Pb2+络合的同步光谱和异步光谱中交叉峰的信号值
波长/cm-1 | 1736 | 1672 | 1514 | 1381 | 1225 | 982 | 868 | |
---|---|---|---|---|---|---|---|---|
RS | ||||||||
1736 | + | +(-) | +(-) | -(-) | +(-) | +(+) | +(+) | |
1672 | + | +(-) | -(-) | +(+) | +(+) | +(+) | ||
1514 | + | -(-) | +(+) | +(+) | +(+) | |||
1381 | + | -(+) | -(-) | -(+) | ||||
1225 | + | +(+) | +(+) | |||||
982 | + | +(-) | ||||||
868 | + | |||||||
波长/cm-1 | 1738 | 1523 | 1383 | 1184 | 995 | 889 | 798 | |
TC-21d | ||||||||
1738 | + | -(-) | -(-) | +(+) | +(-) | +(+) | -(-) | |
1523 | + | -(+) | -(-) | +(-) | +(-) | +(-) | ||
1383 | + | -(+) | -(+) | -(+) | -(+) | |||
1184 | + | +(-) | +(-) | +(-) | ||||
995 | + | +(-) | +(-) | |||||
889 | + | +(-) | ||||||
798 | + | |||||||
波长/cm-1 | 1736 | 1585 | 1504 | 1385 | 1319 | 1176 | 1093 | 764 |
HTC-21d | ||||||||
1736 | + | -(+) | -(+) | -(+) | -(+) | +(+) | +(+) | +(+) |
1585 | + | +(+) | +(-) | +(-) | +(-) | +(-) | +(-) | |
1504 | + | +(-) | +(-) | -(-) | +(-) | -(-) | ||
1385 | + | + | +(-) | +(-) | -(-) | |||
1319 | + | +(-) | +(-) | +(-) | ||||
1176 | + | +(+) | +(-) | |||||
1093 | + | +(-) | ||||||
764 | + |
1 | TIRAVANTI G, PETRUZZELLI D, PASSINO R. Pretreatment of tannery wastewaters by an ion exchange process for Cr(Ⅲ) removal and recovery[J]. Water Science and Technology, 1997, 36(2/3): 197-207. |
2 | WEI Liangliang, ZHU Fengyi, LI Qiaoyang, et al. Development, current state and future trends of sludge management in China: Based on exploratory data and CO2-equivaient emissions analysis[J]. Environment International, 2020, 144: 106093. |
3 | CHEN Wei, TENG Chunying, QIAN Chen, et al. Characterizing properties and environmental behaviors of dissolved organic matter using two-dimensional correlation spectroscopic analysis[J]. Environmental Science & Technology, 2019, 53(9): 4683-4694. |
4 | 徐慧, 管蓓. 污水处理厂污泥用于矿山废弃地生态修复后土壤肥力变化的研究[J]. 绿色科技, 2017(14): 33-35. |
XU Hui, GUAN Bei. Study on the change of soil fertility after the ecological restoration of abandoned mine land using the sludge of sewage treatment work[J]. Journal of Green Science and Technology, 2017(14): 33-35. | |
5 | 孙潇. 昆明探索污泥资源化利用守护绿水青山[EB/OL]. [2022-10-02]. . |
SUN Xiao. Kunming explores sludge resource utilization to protect green water and green mountains[EB/OL]. (2020-07-07) [2022-10-02]. . | |
6 | 吴文庆, 王先恺. “污泥”如何变“花海”[EB/OL]. (2022-08-05) [2022-10-02]. . |
WU Wenqing, WANG Xiankai. How to turn “sludge” into a “sea of flowers”[EB/OL]. (2022-08-05) [2022-10-02]. . | |
7 | CHEN Wei, Habibul Nuzahat, LIU Xiaoyang, et al. FTIR and synchronous fluorescence heterospectral two-dimensional correlation analyses on the binding characteristics of copper onto dissolved organic matter[J]. Environmental Science & Technology, 2015, 49(4): 2052-2058. |
8 | 卢泽, 席北斗, 台德志, 等. 不同辅料与生物沥浸深度脱水污泥混合堆肥中溶解性有机质的光谱特征研究[J]. 光谱学与光谱分析, 2022, 42(7): 2120-2129. |
LU Ze, XI Beidou, TAI Dezhi, et al. Study on spectral characteristics of dissolved organic matter in composting with different conditioners and leached dewatered sludge[J]. Spectroscopy and Spectral Analysis, 2022, 42(7): 2120-2129. | |
9 | HUANG Mei, LI Zhongwu, HUANG Bin, et al. Investigating binding characteristics of cadmium and copper to DOM derived from compost and rice straw using EEM-PARAFAC combined with two-dimensional FTIR correlation analyses[J]. Journal of Hazardous Materials, 2018, 344: 539-548. |
10 | ZHANG Siyu, WEN Jia, HU Yi, et al. Humic substances from green waste compost: An effective washing agent for heavy metal (Cd, Ni) removal from contaminated sediments[J]. Journal of Hazardous Materials, 2019, 366: 210-218. |
11 | 王鑫宇, 张曦, 丁京涛, 等. 生物炭对好氧发酵水溶性有机物及重金属形态的影响[J]. 农业环境科学学报, 2021, 40(11): 2372-2382. |
WANG Xinyu, ZHANG Xi, DING Jingtao, et al. Effect of biochar on the aerobic fermentation of dissolved organic matter and on heavy metal forms[J]. Journal of Agro-Environment Science, 2021, 40(11): 2372-2382. | |
12 | LIU Xiaoming, HOU Yi, LI Zhen, et al. Hyperthermophilic composting of sewage sludge accelerates humic acid formation: Elemental and spectroscopic evidence[J]. Waste Management, 2020, 103: 342-351. |
13 | LI Feili, QIU Yuehua, XU Xinyang, et al. EDTA-enhanced phytoremediation of heavy metals from sludge soil by Italian ryegrass (Lolium perenne L.)[J]. Ecotoxicology and Environmental Safety, 2020, 191: 110185. |
14 | 华珞, 陈世宝, 白玲玉, 等. 用凝胶层析法和示踪技术评估腐植酸分子量分级组成及其与Cd、Zn的络合特性[J]. 核农学报, 1999, 13(4): 236-241. |
HUA Luo, CHEN Shibao, BAI Lingyu, et al. Evaluating the molecular weight and characteristics of humic acids gradations using gel filtration and radioisotope tracer technique[J]. Journal of Nuclear Agricultural Sciences, 1999, 13(4): 236-241. | |
15 | 庄捷, 薛锦辉, 赵斌成, 等. 猪粪厌氧消化进程中的重金属与腐殖质的有机结合机制[J].化工进展, 2023, 42(6): 3281-3291. |
ZHUANG Jie, XUE Jinhui, ZHAO Bincheng, et al. Organic binding mechanism of heavy metals and humus during anaerobic digestion of pig manure[J]. Chemical Industry and Engineering Progress, 2023, 42(6): 3281-3291. | |
16 | AIKEN George R. Humic substances in soil, sediment, and water: Geochemistry, isolation, and characterization[M]. New York: Wiley, 1985. |
17 | ZHANG Helan, Fernando CARRILLO-NAVARRETE, Cristina PALET-BALLÚS. Human hair biogenic fiber as a biosorbent of multiple heavy metals from aqueous solutions[J]. Journal of Natural Fibers, 2022, 19(6): 2018-2033. |
18 | 张宏华, 柏晓云, 林建伟, 等. 天然沸石和铁改性方解石联合覆盖对底泥铜和铅释放的控制效果及机制[J]. 环境化学, 2022, 41(8): 2729-2741. |
ZHANG Honghua, BAI Xiaoyun, LIN Jianwei, et al. Efficiency and mechanism of combined capping system using natural zeolite and iron-modified calcite for controlling copper and lead release from sediment[J]. Environmental Chemistry, 2022, 41(8): 2729-2741. | |
19 | NODA I, OZAKI Y. Two-dimensional correlation spectroscopy: Applications in vibrational and optical spectroscopy[M]. Hoboken: Wiley, 2004. |
20 | ZHU Yuanchen, JIN Yu, LIU Xuesheng, et al. Insight into interactions of heavy metals with livestock manure compost-derived dissolved organic matter using EEM-PARAFAC and 2D-FTIR-COS analyses[J]. Journal of Hazardous Materials, 2021, 420: 126532. |
21 | 王磊, 白成玲, 朱振亚. 氧化石墨烯/海藻酸钠复合膜对Pb(Ⅱ)的吸附性能和机制[J]. 复合材料学报, 2020, 37(3): 681-689. |
WANG Lei, BAI Chengling, ZHU Zhenya. Adsorption properties and mechanism of Pb(Ⅱ) adsorbed by graphene oxide/sodium alginate composite membrane[J]. Acta Materiae Compositae Sinica, 2020, 37(3): 681-689. | |
22 | 邱勇, 兰天, 赵庆杰. 海南热带雨林土壤中胡敏酸对Pb2+、Cu2+的吸附解吸特性研究[J]. 生态科学, 2020, 39(1): 78-84. |
QIU Yong, LAN Tian, ZHAO Qingjie. Characteristic of adsorption of Pb2+ and Cu2+ onto soil humic acids from tropical rainforest, Hainan Province[J]. Ecological Science, 2020, 39(1): 78-84. | |
23 | 兰天, 张辉, 刘源, 等. 玉米秸秆生物炭对Pb2+、Cu2+的吸附特征与机制[J]. 江苏农业学报, 2016, 32(2): 368-375. |
LAN Tian, ZHANG Hui, LIU Yuan, et al. Adsorption characteristics and mechanisms of Pb2+ and Cu2+ on corn straw biochar[J]. Jiangsu Journal of Agricultural Sciences, 2016, 32(2): 368-375. | |
24 | 鲁遥, 王朋, 尹梦楠, 等. 不同类型土壤胡敏酸提取物环境持久性自由基特征及影响因素[J]. 化工进展, 2021, 40(5): 2917-2927. |
LU Yao, WANG Peng, YIN Mengnan, et al. Characteristics and influencing factors of environmental persistent free radicals of humic acid extracts from different types of soil[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2917-2927. | |
25 | TAN Kim H. Humic matter in soil and the environment: Principles and controversies[M]. New York: M. Dekker, 2003. |
26 | PITUMPE ARACHCHIGE Pavithra S, HETTIARACHCHI Ganga M, RICE Charles W, et al. Chemistry and associations of carbon in water-stable soil aggregates from a long-term temperate agroecosystem and implications on soil carbon stabilization[J]. ACS Agricultural Science & Technology, 2021, 1(4): 294-302. |
27 | ROSA André Henrique, SIMÕES Marcelo L, CAMARGO DE OLIVEIRA Luciana, et al. Multimethod study of the degree of humification of humic substances extracted from different tropical soil profiles in Brazil’s Amazonian region[J]. Geoderma, 2005, 127(1/2): 1-10. |
28 | JUHANI Peuravuori, PETRI Ingman, KALEVI Pihlaja. Critical comments on accuracy of quantitative determination of natural humic matter by solid state 13C NMR spectroscopy[J].Talanta, 2003, 59(1): 177-189. |
29 | LI Zhengwen, WAN Chunli, LIU Xiang, et al. Understanding of the mechanism of extracellular polymeric substances of aerobic granular sludge against tetracycline from the perspective of fluorescence properties[J]. The Science of the Total Environment, 2021, 756: 144054. |
30 | 文萍, 汤佳, 蔡茜茜, 等. 超高温堆肥腐殖酸与Cd(Ⅱ)高效络合机制2DCOS分析[J]. 光谱学与光谱分析, 2020, 40(5): 1534-1540. |
WEN Ping, TANG Jia, CAI Xixi, et al. Insight into efficient complexation mechanism of Cd(Ⅱ) to hyperthermophilic compost-derived humic acids by two dimensional correlation analyses[J]. Spectroscopy and Spectral Analysis, 2020, 40(5): 1534-1540. | |
31 | WU Jun, TU Wenxin, LI Chunping, et al. Binding characteristics of copper onto biochar-derived DOM using general, heterospectral and moving-window two-dimensional correlation analyses[J]. Journal of Hazardous Materials, 2022, 435: 129021. |
32 | TAN Zhihan, ZHU Hongxiang, HE Xiaosong, et al. Effect of ventilation quantity on electron transfer capacity and spectral characteristics of humic substances during sludge composting[J]. Environmental Science and Pollution Research, 2022, 29(46): 70269-70284. |
33 | WANG Yuting, YU Wenfei, CHANG Zhaofeng, et al. Effects of dissolved organic matter on the adsorption of norfloxacin on a sandy soil (fraction) from the Yellow River of Northern China[J]. Science of the Total Environment, 2022, 848: 157495. |
34 | NIU Qiuqi, MENG Qingran, YANG Hongxiang, et al. Humification process and mechanisms investigated by Fenton-like reaction and laccase functional expression during composting[J]. Bioresource Technology, 2021, 341: 125906. |
35 | LI Xiaowei, DAI Xiaohu, DAI Lingling, et al. Two-dimensional FTIR correlation spectroscopy reveals chemical changes in dissolved organic matter during the biodrying process of raw sludge and anaerobically digested sludge[J]. RSC Advances, 2015, 5(100): 82087-82096. |
36 | LIN Yan, LIAO Yanfen, YU Zhaosheng, et al. A study on co-pyrolysis of bagasse and sewage sludge using TG-FTIR and Py-GC/MS[J]. Energy Conversion and Management, 2017, 151: 190-198. |
37 | HUANG Mei, LI Zhongwu, WEN Jiajun, et al. Molecular insights into the effects of pyrolysis temperature on composition and copper binding properties of biochar-derived dissolved organic matter[J]. Journal of Hazardous Materials, 2021, 410: 124537. |
38 | HUANG Mei, LI Zhongwu, CHEN Ming, et al. Dissolved organic matter released from rice straw and straw biochar: Contrasting molecular composition and lead binding behaviors[J]. Science of the Total Environment, 2020, 739: 140378. |
39 | LI Xiaowei, XING Meiyan, YANG Jian, et al. Organic matter humification in vermifiltration process for domestic sewage sludge treatment by excitation-emission matrix fluorescence and Fourier transform infrared spectroscopy[J]. Journal of Hazardous Materials, 2013, 261: 491-499. |
40 | MORITA Shigeaki, SHINZAWA Hideyuki, TSENKOVA Roumiana, et al. Computational simulations and a practical application of moving-window two-dimensional correlation spectroscopy[J]. Journal of Molecular Structure, 2006, 799(1/2/3): 111-120. |
[1] | 赵重阳, 赵磊, 石详文, 黄俊, 李治尧, 沈凯, 张亚平. O2/H2O/SO2 对改性富铁凹凸棒石高温吸附PbCl2 的影响[J]. 化工进展, 2023, 42(4): 2190-2200. |
[2] | 陈博, 洪祺祺, 唐丽荣, 张伟川, 陈伟香, 李星, 吕日新, 黄彪. 无铅铜基钙钛矿Cs2CuBr4的湿度传感性能[J]. 化工进展, 2022, 41(6): 3162-3169. |
[3] | 熊浩宇, 黄魁, 卢远桓, 刘玉玲, 董海丽. 湿法液相合成α-PbO与β-PbO[J]. 化工进展, 2022, 41(1): 435-442. |
[4] | 鲁遥, 王朋, 尹梦楠, 杨名毅, 张凰. 不同类型土壤胡敏酸提取物环境持久性自由基特征及影响因素[J]. 化工进展, 2021, 40(5): 2917-2927. |
[5] | 周敏茹,姚培,张启蒙,李树白,刘媛,夏守鑫. 磁响应型胡敏酸纳米材料的制备及其对Cu(Ⅱ)的吸附性能[J]. 化工进展, 2020, 39(3): 1145-1152. |
[6] | 徐大勇,张苗,杨伟伟,刘婷婷,姚巧凤,洪亚军. 氧化铝改性污泥生物炭粒制备及其对Pb(Ⅱ)的吸附特性[J]. 化工进展, 2020, 39(3): 1153-1166. |
[7] | 杨丙衡, 安路阳, 张立涛, 宋迪慧, 刘合鑫. 中间层为聚吡咯的复合电极深度处理焦化废水[J]. 化工进展, 2020, 39(10): 4256-4267. |
[8] | 冯健, 余杰, 周建, 张永德, 林晓艳, 罗学刚. 牛血清白蛋白纳米球接枝杨梅单宁的制备以及吸附去除水体中Pb2+的性能[J]. 化工进展, 2019, 38(02): 1075-1084. |
[9] | 宋凯伟, 李佳磊, 蔡锦鹏, 刘思言, 曹阳, 苏超, 刘殿文. 典型氧化铜铅锌矿物浮选的表面硫化研究进展[J]. 化工进展, 2018, 37(09): 3618-3628. |
[10] | 张连科, 王洋, 王维大, 李玉梅, 孙鹏, 韩剑宏, 姜庆宏. 生物炭负载纳米羟基磷灰石复合材料的制备及对铅离子的吸附特性[J]. 化工进展, 2018, 37(09): 3492-3501. |
[11] | 高丽霞, 戴子林, 张魁芳, 刘志强. 降低湿法锌冶炼废渣中铅含量[J]. 化工进展, 2017, 36(12): 4672-4678. |
[12] | 夏文青, 黄亚继, 王昕晔, 查健锐, 杨钊, 王健, 徐力刚. 非碳基吸附剂高温捕集氯化铅蒸气[J]. 化工进展, 2017, 36(09): 3508-3513. |
[13] | 刘秀红, 王永洪, 刘成岑, 侯蒙杰, 李龙. 电化学脱除Pb2+印迹复合膜的制备及其性能[J]. 化工进展, 2017, 36(09): 3422-3428. |
[14] | 饶兵, 戴惠新, 高利坤. 烟尘中微细粒氧化铅回收研究现状及进展[J]. 化工进展, 2016, 35(S1): 285-293. |
[15] | 张永德, 黄松涛, 罗学刚, 宗有莉, 欧敏华. 膨化稻壳对铀及伴生重金属离子的吸附机理[J]. 化工进展, 2016, 35(09): 2707-2714. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 891
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 187
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |