化工进展 ›› 2021, Vol. 40 ›› Issue (5): 2917-2927.DOI: 10.16085/j.issn.1000-6613.2020-1272
鲁遥1(), 王朋2(), 尹梦楠1, 杨名毅1, 张凰3,4()
收稿日期:
2020-07-06
出版日期:
2021-05-06
发布日期:
2021-05-24
通讯作者:
张凰
作者简介:
鲁遥(1995—),女,硕士研究生,研究方向为土壤中持久性自由基的稳定机制。E-mail:基金资助:
LU Yao1(), WANG Peng2(), YIN Mengnan1, YANG Mingyi1, ZHANG Huang3,4()
Received:
2020-07-06
Online:
2021-05-06
Published:
2021-05-24
Contact:
ZHANG Huang
摘要:
土壤有机质中存在环境持久性自由基(EPFRs),其特征(信号强度、g值和线宽)与天然有机质组分及其结构之间关联的研究还存在不足。本文采用黑龙江黑土、云南红土和山东黄土提取的胡敏酸(HAs)作为实验样品,通过电子顺磁共振波谱技术(EPR)分析测定HAs中自由基的信号特征,利用元素分析、紫外分光光度法、13C NMR核磁、高效液相等方法测定HAs提取物的结构、组分和分子量分布等。结果表明,HAs中EPFRs的 量(0.84×1016 ~7.42×1016 spin/g)随着分子量的增加而减少,且与HAs的芳香性有显著的正相关关系(r=0.813, p<0.01),这归因于芳香族化合物自由电子能够部分离域形成EPFRs。EPFRs的g值(2.0034~2.0041)随芳香性的增加而减少(r=-0.752,p<0.01),表明芳香性组分对碳中心自由基有主要的贡献。相比于其他两个地区的土壤,红土HAs中EPFRs信号最稳定,主要归因于云南土壤中Fe3+含量丰富,在强紫外线的辐射下更有利于形成稳定的EPFRs。
中图分类号:
鲁遥, 王朋, 尹梦楠, 杨名毅, 张凰. 不同类型土壤胡敏酸提取物环境持久性自由基特征及影响因素[J]. 化工进展, 2021, 40(5): 2917-2927.
LU Yao, WANG Peng, YIN Mengnan, YANG Mingyi, ZHANG Huang. Characteristics and influencing factors of environmental persistent free radicals of humic acid extracts from different types of soil[J]. Chemical Industry and Engineering Progress, 2021, 40(5): 2917-2927.
样品 | g值 | 线宽ΔH | 自旋密度/spin·g-1 |
---|---|---|---|
B-HA-1 | 2.0034 | 4.36 | 7.42×1016 |
B-HA-2 | 2.0035 | 4.52 | 4.37×1016 |
B-HA-3 | 2.0036 | 4.58 | 2.99×1016 |
B-HA-4 | 2.0039 | 4.66 | 2.13×1016 |
R-HA-1 | 2.0041 | 4.66 | 3.66××1016 |
R-HA-2 | 2.0040 | 4.35 | 4.91××1016 |
R-HA-3 | 2.0039 | 4.38 | 2.94××1016 |
R-HA-4 | 2.0038 | 4.66 | 2.43××1016 |
Y-HA-1 | 2.0040 | 4.36 | 3.03×1016 |
Y-HA-2 | 2.0039 | 4.51 | 1.11×1016 |
Y-HA-3 | 2.0040 | 4.58 | 1.14×1016 |
Y-HA-4 | 2.0039 | 4.66 | 0.84×1016 |
表1 不同来源HAs中EPR信号特征参数
样品 | g值 | 线宽ΔH | 自旋密度/spin·g-1 |
---|---|---|---|
B-HA-1 | 2.0034 | 4.36 | 7.42×1016 |
B-HA-2 | 2.0035 | 4.52 | 4.37×1016 |
B-HA-3 | 2.0036 | 4.58 | 2.99×1016 |
B-HA-4 | 2.0039 | 4.66 | 2.13×1016 |
R-HA-1 | 2.0041 | 4.66 | 3.66××1016 |
R-HA-2 | 2.0040 | 4.35 | 4.91××1016 |
R-HA-3 | 2.0039 | 4.38 | 2.94××1016 |
R-HA-4 | 2.0038 | 4.66 | 2.43××1016 |
Y-HA-1 | 2.0040 | 4.36 | 3.03×1016 |
Y-HA-2 | 2.0039 | 4.51 | 1.11×1016 |
Y-HA-3 | 2.0040 | 4.58 | 1.14×1016 |
Y-HA-4 | 2.0039 | 4.66 | 0.84×1016 |
样品 | 元素分析(质量分数) | 灰分 /% | E285 | E4/E6 | |||||
---|---|---|---|---|---|---|---|---|---|
C/% | H/% | O/% | N/% | C/H比 | (N+O)/C比 | ||||
B-HA-1 | 54.39 | 4.26 | 37.36 | 3.06 | 1.04 | 0.57 | 0.9 | 0.95 | 4.23 |
B-HA-2 | 54.63 | 4.53 | 36.99 | 3.24 | 1.00 | 0.56 | 1.1 | 0.87 | 4.33 |
B-HA-3 | 54.70 | 4.87 | 36.40 | 3.59 | 0.94 | 0.55 | 1.1 | 0.83 | 4.35 |
B-HA-4 | 54.81 | 5.24 | 35.72 | 3.82 | 0.87 | 0.54 | 1.2 | 0.64 | 4.38 |
R-HA-1 | 53.75 | 5.03 | 37.44 | 3.20 | 0.89 | 0.57 | 2.6 | 0.89 | 3.71 |
R-HA-2 | 53.88 | 5.22 | 37.12 | 3.22 | 0.86 | 0.56 | 1.4 | 0.75 | 3.93 |
R-HA-3 | 54.57 | 5.39 | 36.23 | 3.27 | 0.84 | 0.54 | 2.2 | 0.73 | 4.05 |
R-HA-4 | 55.34 | 5.79 | 34.93 | 3.32 | 0.80 | 0.52 | 2.0 | 0.68 | 4.16 |
Y-HA-1 | 51.13 | 5.14 | 39.83 | 3.57 | 0.83 | 0.64 | 2.7 | 0.74 | 4.15 |
Y-HA-2 | 51.30 | 5.34 | 38.31 | 4.42 | 0.80 | 0.63 | 1.7 | 0.62 | 4.23 |
Y-HA-3 | 51.59 | 5.70 | 37.82 | 4.26 | 0.75 | 0.62 | 2.6 | 0.51 | 4.27 |
Y-HA-4 | 51.72 | 5.86 | 36.87 | 4.92 | 0.73 | 0.61 | 2.4 | 0.41 | 4.30 |
表2 3种土壤分批次提取的HAs的元素分析和紫外吸收光谱
样品 | 元素分析(质量分数) | 灰分 /% | E285 | E4/E6 | |||||
---|---|---|---|---|---|---|---|---|---|
C/% | H/% | O/% | N/% | C/H比 | (N+O)/C比 | ||||
B-HA-1 | 54.39 | 4.26 | 37.36 | 3.06 | 1.04 | 0.57 | 0.9 | 0.95 | 4.23 |
B-HA-2 | 54.63 | 4.53 | 36.99 | 3.24 | 1.00 | 0.56 | 1.1 | 0.87 | 4.33 |
B-HA-3 | 54.70 | 4.87 | 36.40 | 3.59 | 0.94 | 0.55 | 1.1 | 0.83 | 4.35 |
B-HA-4 | 54.81 | 5.24 | 35.72 | 3.82 | 0.87 | 0.54 | 1.2 | 0.64 | 4.38 |
R-HA-1 | 53.75 | 5.03 | 37.44 | 3.20 | 0.89 | 0.57 | 2.6 | 0.89 | 3.71 |
R-HA-2 | 53.88 | 5.22 | 37.12 | 3.22 | 0.86 | 0.56 | 1.4 | 0.75 | 3.93 |
R-HA-3 | 54.57 | 5.39 | 36.23 | 3.27 | 0.84 | 0.54 | 2.2 | 0.73 | 4.05 |
R-HA-4 | 55.34 | 5.79 | 34.93 | 3.32 | 0.80 | 0.52 | 2.0 | 0.68 | 4.16 |
Y-HA-1 | 51.13 | 5.14 | 39.83 | 3.57 | 0.83 | 0.64 | 2.7 | 0.74 | 4.15 |
Y-HA-2 | 51.30 | 5.34 | 38.31 | 4.42 | 0.80 | 0.63 | 1.7 | 0.62 | 4.23 |
Y-HA-3 | 51.59 | 5.70 | 37.82 | 4.26 | 0.75 | 0.62 | 2.6 | 0.51 | 4.27 |
Y-HA-4 | 51.72 | 5.86 | 36.87 | 4.92 | 0.73 | 0.61 | 2.4 | 0.41 | 4.30 |
样品 | 脂肪碳 (δ0~45) | 烷氧基碳 (δ45~110) | 芳香碳 (δ110~165) | 羧基碳 (δ165~190) | 羰基碳 (δ190~220) | 芳香性/% | 脂肪性/% |
---|---|---|---|---|---|---|---|
B-HA-1 | 19.95 | 13.05 | 45.02 | 13.08 | 8.90 | 57.69 | 42.31 |
B-HA-2 | 21.14 | 13.86 | 42.95 | 16.18 | 5.87 | 55.13 | 44.87 |
B-HA-3 | 22.45 | 15.55 | 40.96 | 17.08 | 3.96 | 51.89 | 48.10 |
B-HA-4 | 24.66 | 17.34 | 39.96 | 11.09 | 6.95 | 48.78 | 51.22 |
R-HA-1 | 24.75 | 16.83 | 37.62 | 12.87 | 7.93 | 47.50 | 52.50 |
R-HA-2 | 27.27 | 15.15 | 37.37 | 16.16 | 4.05 | 46.83 | 53.16 |
R-HA-3 | 31.63 | 12.24 | 36.73 | 17.35 | 2.05 | 45.57 | 54.43 |
R-HA-4 | 30.00 | 19.00 | 36.36 | 11.11 | 3.53 | 41.86 | 58.14 |
Y-HA-1 | 26.26 | 17.17 | 36.63 | 11.98 | 7.98 | 45.68 | 54.32 |
Y-HA-2 | 24.63 | 18.81 | 35.35 | 12.12 | 9.09 | 44.87 | 55.13 |
Y-HA-3 | 21.11 | 28.29 | 32.35 | 9.43 | 8.82 | 39.76 | 60.24 |
Y-HA-4 | 27.35 | 23.65 | 30.50 | 14.50 | 4.00 | 37.04 | 62.96 |
表3 固态13C NMR谱分析结果
样品 | 脂肪碳 (δ0~45) | 烷氧基碳 (δ45~110) | 芳香碳 (δ110~165) | 羧基碳 (δ165~190) | 羰基碳 (δ190~220) | 芳香性/% | 脂肪性/% |
---|---|---|---|---|---|---|---|
B-HA-1 | 19.95 | 13.05 | 45.02 | 13.08 | 8.90 | 57.69 | 42.31 |
B-HA-2 | 21.14 | 13.86 | 42.95 | 16.18 | 5.87 | 55.13 | 44.87 |
B-HA-3 | 22.45 | 15.55 | 40.96 | 17.08 | 3.96 | 51.89 | 48.10 |
B-HA-4 | 24.66 | 17.34 | 39.96 | 11.09 | 6.95 | 48.78 | 51.22 |
R-HA-1 | 24.75 | 16.83 | 37.62 | 12.87 | 7.93 | 47.50 | 52.50 |
R-HA-2 | 27.27 | 15.15 | 37.37 | 16.16 | 4.05 | 46.83 | 53.16 |
R-HA-3 | 31.63 | 12.24 | 36.73 | 17.35 | 2.05 | 45.57 | 54.43 |
R-HA-4 | 30.00 | 19.00 | 36.36 | 11.11 | 3.53 | 41.86 | 58.14 |
Y-HA-1 | 26.26 | 17.17 | 36.63 | 11.98 | 7.98 | 45.68 | 54.32 |
Y-HA-2 | 24.63 | 18.81 | 35.35 | 12.12 | 9.09 | 44.87 | 55.13 |
Y-HA-3 | 21.11 | 28.29 | 32.35 | 9.43 | 8.82 | 39.76 | 60.24 |
Y-HA-4 | 27.35 | 23.65 | 30.50 | 14.50 | 4.00 | 37.04 | 62.96 |
1 | 韩林, 陈宝梁. 环境持久性自由基的产生机理及环境化学行为[J]. 化学进展, 2017, 29(9): 1008-1020. |
HAN L, CHEN B L. Generation mechanism and fate behaviors of environmental persistent free radicals[J]. Progress in Chemistry, 2017,29(9): 1008-1020. | |
2 | GOMBERG M. An instance of trivalent carbon:triphenylmethyl[J]. Journal of the American Chemical Society, 1900, 22(11): 757-771. |
3 | CASTRANOVA V. Signaling pathways controlling the production of inflammatory mediators in response to crystalline silica exposure: role of reactive oxygen/nitrogen species[J]. Free Radical Biology and Medicine, 2004, 37(7):916-925. |
4 | BALAKRISHNA S, LOMNICKI S, MCAVEY K M, et al. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity[J]. Particle and Fibre Toxicology, 2009, 6(1): 11. |
5 | PAN B, LI H, LANG D, et al. Environmentally persistent free radicals: occurrence,formation mechanisms and implications[J]. Environmental Pollution, 2019, 248:320-331. |
6 | HEIMER N E. Persistent free radicals from the reaction of sulfenamides with tetracyanoethylene[J]. The Journal of Organic Chemistry, 1977, 42(23): 3767-3769. |
7 | DELLINGER B, LOMNICKI S, KHACHATRYAN L, et al. Formation and stabilization of persistent free radicals[J]. Proceedings of the Combustion Institute, 2007, 31(1): 521-528. |
8 | GEHLING W, DELLINGER B. Environmentally persistent free radicals and their lifetimes in PM2.5[J]. Environmental Science & Technology, 2013, 47(15): 8172-8178. |
9 | GEHLING W, KHACHATRYAN L, DELLINGER B. Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5[J]. Environmental Science & Technology, 2014, 48(8): 4266-4272. |
10 | 阮秀秀, 孙万雪, 程玲, 等. 环境持久性自由基的研究进展[J]. 上海大学学报(自然科学版), 2016, 22(2): 114-121. |
RUAN Xiuxiu, SUN Wanxue, CHENG Ling, et al. Research progress of environmental persistent free radicals [J]. Journal of Shanghai University (Natural Science Edition), 2016, 22(2): 114-121. | |
11 | DELA CRUZ A N, GEHLING W, LOMNICKI S, et al. Detection of environmentally persistent free radicals at a superfund wood treating site[J]. Environmental Science & Technology, 2011, 45(15): 6356-6365. |
12 | DELA CRUZ A L, COOK R L, LOMNICKI S M, et al. Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals[J]. Environmental Science & Technology, 2012, 46(11): 5971-5978. |
13 | DELA CRUZ A L, COOK R L, DELLINGER B, et al. Assessment of environmentally persistent free radicals in soils and sediments from three superfund sites[J]. Environmental Science: Processes & Impacts, 2014, 16(1): 44-52. |
14 | REX R W. Electron paramagnetic resonance studies of stable free radicals in lignins and humic acids[J]. Nature, 1960, 188(4757): 1185-1186. |
15 | AESCHBACHER M, SANDER M, SCHWARZENBACH R P. Novel electrochemical approach to assess the redox properties of humic substances[J]. Environmental Science & Technology, 2010, 44(1):87-93. |
16 | PATIL S V, ARGYROPOULOS D S. Stable organic radicals in lignin: a review[J]. ChemSusChem, 2017, 10(17): 3284-3303. |
17 | RIFFALDI R, SCHNITZER M. Electron spin resonance spectrometry of humic substances[J]. Soil Science Society of America Journal, 1972,36(2): 301-305. |
18 | SAAB S C, MARTIN-NETO L. Studies of semiquinone free radicals by ESR in the whole soil, HA, FA and humin substances[J]. Journal of the Brazilian Chemical Society, 2004, 15: 34-37. |
19 | JIA H Z, ZHAO S, NULAJI G, et al. Environmentally persistent free radicals in soils of past coking sites: distribution and stabilization[J]. Environmental Science & Technology, 2017, 51(11): 6000-6008. |
20 | JIA H Z, ZHAO S, SHI Y F, et al. Formation of environmentally persistent free radicals during the transformation of anthracene in different soils: roles of soil characteristics and ambient conditions[J]. J. Hazard Mater., 2019, 362: 214-223. |
21 | FELD-COOK E E, BOVENKAMP-LANGLOIS L, LOMNICKI S M. Effect of particulate matter mineral composition on environmentally persistent free radical (EPFR) formation[J]. Environmental Science & Technology, 2017, 51(18): 10396-10402. |
22 | TIAN L W, KOSHLAND C P, YANO J, et al. Carbon-centered free radicals in particulate matter emissions from wood and coal combustion[J]. Energy & Fuels, 2009, 23(5): 2523-2526. |
23 | 赵力, 陈建, 李浩, 等. 裂解温度和酸处理对生物炭中持久性自由基产生的影响[J]. 环境化学, 2017, 36(11): 2472-2478. |
ZHAO Li, CHEN Jian, LI Hao, et al. Effects of pyrolysis temperature and acid treatment on the generation of free radicals in biochars[J]. Environmental Chemistry, 2017, 36(11): 2472-2478. | |
24 | LIAO S H, PAN B, LI H, et al. Detecting free radicals in biochars and determining their ability to inhibit the germination and growth of corn, wheat and rice seedlings[J]. Environmental Science & Technology, 2014, 48(15): 8581-8587. |
25 | YANG J, PAN B, LI H, et al. Degradation of p-nitrophenol on biochars: role of persistent free radicals[J]. Environmental Science & Technology, 2016, 50(2): 694-700. |
26 | LIU Y, DAI Q Y, JIN X Q, et al. Negative impacts of biochars on urease activity: high pH, heavy metals, polycyclic aromatic hydrocarbons, or free radicals?[J]. Environmental Science & Technology, 2018, 52(21): 12740-12747. |
27 | DUGAS T R, HEBERT V Y, DELLINGER B, et al. Environmentally persistent free radicals are redox active and more cytotoxic than the average ultrafine particle[J]. Free Radical Biology and Medicine, 2009, 47: S121. |
28 | WHITMAN T, ZHU Z H, LEHMANN J. Carbon mineralizability determines interactive effects on mineralization of pyrogenic organic matter and soil organic carbon[J]. Environmental Science & Technology, 2014, 48(23): 13727-13734. |
29 | SEDLECKIJ I, BRUNOWSKIJ B. Structure of humic acid and its connection with lignin and to carbon[J].Comptes Rendus De L Academie Des Sciences De L Urss, 1935, 9: 279-281. |
30 | 王春霞, 许善锦, 王夔. 自由基在大骨节病病理过程中的作用—Ⅰ.活性氧自由基和大骨节病病区腐植酸对Ⅱ型胶原蛋白造成的损伤[J]. 北京医科大学学报, 1989, 21(4): 307-310. |
WANG Chunxia, XU Shanjin, WANG Kui. The role of free radicals in the pathological process of Kashin Beck disease—Ⅰ. The damage to type Ⅱ collagen caused by active oxygen radicals and fulvic acid from epidemicdistrict of KBD[J]. Journal of Beijing Medical University, 1989, 21(4): 307-310. | |
31 | 张若瑄, 王朋, 张绪超, 等. 土壤中环境持久性自由基的形成与稳定及其影响因素[J].化工进展, 2020, 39(4): 1528-1538. |
ZHANG Ruoxuan, WANG Peng, ZHANG Xuchao, et al. Formation, stability and influencing factors of environmentally persistent free radicals in soil: a review[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1528-1538. | |
32 | GONZÁLEZ PERÉZ M, MARTIN-NETO L, SAAB S C. Characterization of humic acids from a Brazilian oxisol under different tillage systems by EPR, 13C NMR, FTIR and fluorescence spectroscopy[J]. Geoderma, 2004, 118(3/4): 181-190. |
33 | PAN B, XING B, LIU W, et al. Investigating interactions of phenanthrene with dissolved organic matter: limitations of Sterne-Volmer plot[J]. Chemosphere, 2007, 69(10): 1555-1562. |
34 | 曹文华, 刘国维.低含量风化煤活化提取高纯度腐植酸研究[J]. 腐植酸, 2000(4): 33-34. |
CAO Wenhua, LIU Guowei. Study on activation extraction of high purity humic acid from low content weathered coal [J]. Humic Acid, 2000(4): 33-34. | |
35 | ZHANG D, PAN B, COOK R L, et al. Multi-walled carbon nanotube dispersion by the adsorbed humic acids with different chemical structures[J]. Environmental Pollution, 2015, 196:292-299. |
36 | LI H, PAN B, LIAO S, et al. Formation of environmentally persistent free radicals as the mechanism for reduced catechol degradation on hematite-silica surface under UV irradiation[J]. Environmental Pollution, 2014, 188:153-158. |
37 | LOVLEY D R, COATES J D, BLUNT-HARRIS E L, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590): 445-448. |
38 | 盛明, 韩晓增, 龙静泓, 等. 中国不同地区土壤有机质特征比较研究[J]. 土壤与作物, 2019, 8(3): 320-330. |
SHENG Ming, HAN Xiaozeng, LONG Jinghong, et al. Characterization of soil organic matter in different regions of China[J]. Soils and Crops, 2019, 8(3): 320-330. | |
39 | 仲伟鉴, 印木泉. 废气煤烟颗粒提取物诱发DNA氧化损伤的实验研究[J]. 第二军医大学学报, 2000, 21(9): 874-876. |
ZHONG Weijian, YIN Muquan. Oxidative DNA damage induced by cool soot[J]. Academic Journal of Second Military Medical University, 2000, 21(9): 874-876. | |
40 | ARANGIO A M, TONG H, SOCORRO J, et al. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles[J]. Atmospheric Chemistry and Physics, 2016, 16(20): 13105-13119. |
41 | CRUZ A L N D, COOK R L, LOMNICKI S M, et al.Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals[J]. Environmental Science & Technology, 2012, 46(11): 5971-5978. |
42 | SHALTOUT A A, BOMAN J, SHEHADEH Z F, et al. Spectroscopic investigation of PM2.5 collected at industrial,residential and traffic sites in Taif, Saudi Arabia[J]. Journal of Aerosol Science,2015,79:97-108. |
43 | STERN N, MEJIA J, HE S M, et al. Dual role of humic substances as electron donor and shuttle for dissimilatory iron reduction[J]. Environ. Sci. Technol., 2018, 52(10): 5691-5699. |
44 | SENESI N. Application of electron spin resonance and fluorescence spectroscopies to the study of soil humic substances[J]. Developments in Agricultural and Managed Forest Ecology, 1992, 25:11-26. |
45 | WATANABE A, MCPHAIL D B, MAIE N, et al. Electron spin resonance characteristics of humic acids from a wide range of soil types [J]. Organic Geochemistry, 2005, 36(7): 981-990. |
46 | 聂艳龙. 黑龙江省农田黑土区腐殖物质结构差异及光谱特性研究[D].哈尔滨: 东北农业大学, 2016. |
NIE Yanlong. Research structure and spectral characteristics of humus substance from black soil region in Heilongjiang Province[D]. Harbin:Northeast Agricultural University, 2016. | |
47 | KIM I, BUCKAU G, LI G H, et al. Characterization of humic and fulvic acids from Gorleben groundwater[J]. Fresenius Journal of Analytical Chemistry, 1990, 338(3): 245-252. |
48 | LU X Q, HANNA J V, JOHNSON W D. Source indicators of humic substances: an elemental composition solid state 13C CP/MAS NMR and Py-GC/MS study[J]. Applied Geochemist, 2000, 15(7): 1019-1033. |
49 | SENESI N. Application of electron spin resonance (ESR) spectroscopy in soil chemistry[M]//Advances in Soil Science, 1990: 77-130. |
50 | HARGITAI L. Biochemical transformation of humic substances during humification related to their environmental functions[J]. Environment International, 1994, 20: 43-48. |
51 | BAKER A. Fluorescence excitation-emission matrix characterization of some sewage-impacted rivers[J]. Environmental Science & Technology, 2001, 35(5): 948-953. |
52 | SENESI N, MIANO T M, PROVENZANO M R, et al. Characterization,differentiation,and classification of humic substances by fluorescence spectroscopy [J]. Soil Science, 1991, 152: 259-271. |
53 | 魏自民, 席北斗,李鸣晓,等. 微生物接种堆肥胡敏酸三维荧光特性研究[J].光谱学与光谱分析, 2008, 28(12): 2895-2899. |
WEI Zimin, XI Beidou, LI Mingxiao, et al. Study on three-dimensional fluorescence spectroscopy characteristics of humic acid during composting with microbes inoculation[J]. Spectroscopy and Spectral Analysis, 2008,28(12): 2895-2899. | |
54 | 黄曼, 卞科. 蛋白质疏水性测定方法研究进展[J]. 粮油食品科技, 2004, 12(2): 31-32. |
HUANG Man, BIAN Ke. Researching development on the methods of protein hydrophobicity estimation[J]. Science and Technology of Cereals,Oils and Foods, 2004, 12(2): 31-32. | |
55 | WILSON S A, WEBER J H. Electron spin resonance analysis of semiquinone free radicals of aquatic and soil fulvic and humic acids[J]. Analytical Letters, 1977, 10(1): 75-84. |
56 | 何海军, 瞿文川, 钱君龙, 等. 湖泊沉积物中腐殖酸的紫外-可见分光光度法测定[J]. 分析测试技术与仪器, 1996, 2(1): 14-18. |
HE Haijun, QU Wenchuan, QIAN Junlong, et al. Determination of humic acid in lake sediment by UV-vis absorbance spectrophotomter[J]. Analysis and Testing Technology and Instruments, 1996, 2(1): 14-18. | |
57 | THOMSEN M, LASSEN P, DOBEL S, et al. Characterisation of humic materials of different origin: a multivariate approach for quantifying the latent properties of dissolved organic matter[J]. Chemosphere, 2002, 49(10): 1327-1337. |
58 | CHEN J, GU B H, LEBOEUF E J, et al. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions[J]. Chemosphere, 2002, 48(1): 59-68. |
59 | KANG K H, SHIN H S, PARK H. Characterization of humic substances present in landfill leachates with different landfill ages and its implications[J]. Water Research, 2002, 36(16): 4023-4032. |
60 | 徐磊. 基于高分辨质谱的富里酸和腐殖酸分子组成与结构研究[D]. 南昌: 南昌大学, 2019. |
XU Lei. Study on molecular composition and structure of fulvic acid and humic acid by high resolution mass spectrometry[D]. Nanchang: Nanchang University, 2019. | |
61 | 张广彩, 王雅南, 常昕, 等. 应用多元统计研究蘑菇湖水体DOM紫外光谱特征[J]. 环境科学研究, 2019, 32(2): 301-308. |
ZHANG Guangcai, WANG Yanan, CHANG Xin, et al. Apply multivariate statistical method to study DOM ultraviolet spectral characteristics of Moguhu lake[J]. Research of Environmental Sciences, 2019, 32(2): 301-308. | |
62 | SONG J Z, HUANG W L, PENG P A, et al. Humic acid molecular weight estimation by high-performance size-exclusion chromatography with ultraviolet absorbance detection and refractive index detection[J]. Soil Science Society of America Journal, 2010, 74(6): 2013-2020. |
63 | ZHU S, HAMIELEC A E. Chain-length-dependent termination for free radical polymerization[J]. Macromolecules, 1989, 22(7): 3093-3098. |
64 | SCHEREN P A G M, RUSSELL G T, SANGSTER D F, et al. Chain-length-dependent termination rate processes in free-radical polymerizations. 3. Styrene polymerizations with and without added inert diluent as an experimental test of model[J]. Macromolecules, 1995, 28(10): 3637-3649. |
65 | PAUL A, STÖSSER R, ZEHL A, et al. Nature and abundance of organic radicals in natural organic matter: effect of pH and irradiation[J]. Environmental Science & Technology, 2006, 40(19): 5897-5903. |
66 | 杨颖, 孙振亚. 一类新的环境有害物质——环境持久性自由基(EPFRs)的研究进展[J]. 矿物岩石地球化学通报, 2012, 31(3): 287-290. |
YANG Ying, SUN Zhenya. The research progress on a new type harmful matter-environmental persistent free radicals(EPFRs)[J]. Bulletin of Mineralogy,Petrology and Geochemistry, 2012, 31(3): 287-290. |
[1] | 李昕, 杨早, 钟欣茹, 韩昊轩, 庄绪宁, 白建峰, 董滨, 徐祖信. 污泥超高温堆肥衍生胡敏酸对Pb2+的结合机制[J]. 化工进展, 2023, 42(9): 4957-4966. |
[2] | 张若瑄,王朋,张绪超,段文焱. 土壤中环境持久性自由基的形成与稳定及其影响因素[J]. 化工进展, 2020, 39(4): 1528-1538. |
[3] | 周敏茹,姚培,张启蒙,李树白,刘媛,夏守鑫. 磁响应型胡敏酸纳米材料的制备及其对Cu(Ⅱ)的吸附性能[J]. 化工进展, 2020, 39(3): 1145-1152. |
[4] | 黄倩, 付美龙, 赵众从. 超临界CO2压裂液增黏剂的长管实验评价及增黏机制探讨[J]. 化工进展, 2019, 38(06): 2939-2946. |
[5] | 姚正天, 沈本贤, 仝玉军, 孙辉. 春风减渣改质塔河减渣制取60#道路沥青效果[J]. 化工进展, 2018, 37(10): 4109-4118. |
[6] | 王朋, 吴敏, 李浩, 郎笛, 潘波. 环境持久性自由基对有机污染物环境行为的影响研究进展[J]. 化工进展, 2017, 36(11): 4243-4249. |
[7] | 刘向君, 罗丹序, 熊健, 梁利喜. 龙马溪组页岩干酪根平均分子结构模型的构建[J]. 化工进展, 2017, 36(02): 530-537. |
[8] | 赵波,陆居有,毛伟,王博,吕剑. 氟代烃类发泡剂的研究进展[J]. 化工进展, 2014, 33(07): 1864-1870. |
[9] | 郑 敏,金晓英,王清萍,陈祖亮. 胡敏酸改性膨润土同时吸附铜离子和2,4-二氯苯酚 [J]. 化工进展, 2010, 29(9): 1767-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
京ICP备12046843号-2;京公网安备 11010102001994号 版权所有 © 《化工进展》编辑部 地址:北京市东城区青年湖南街13号 邮编:100011 电子信箱:hgjz@cip.com.cn 本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn |